THE IMPLICIT FUNCTION THEOREM AND
ANALYTIC DIFFERENTIAL EQUATIONS.

K.R, Meyer,

Reprinted from
Warwick Dynamical Systems 1974,

Lecture Notes in Mathematics, Springer-Verlag, 1975,



The Implicit Function Theorem and Analytic Differential Equations.

1. Introduction. Although it is old, the calculus in Banach spaces

has recently become a popular tool in the theory of differential equat-
ions. Graves [2] in 1927 showed that a general form of the implicit
function theorem could be used to establish the fundamental existence
and uniqueness theorem of differential equations, Dieudonné (1], Lang
t4] et al have made the basic theory readily available and the power of
this method has forcefully been demonstrated by the results of Mather

[7], Robbin [8], Smale [10] et al,

In this paper we show how several theorems on analytic differential
equations can be established by using the implicit function theorem.
These theorems were originally proved by the method of majorants. Ind-
eed many of the classical theorems in the analytic theory of differential
equations which were originally proved by constructing majorant series

can be proved by the methods presented here,

The key to the method lies in the definition of the function space
Aé given in section 2. This space was used in Harris, Sibuya and
Weinberg [3]. Many of the ideas presented here came from several conv~

ersations with Professor Y. Sibuya over a period of many years.,

2. The _space of analytic functions.

There are several ways of embedding an analytic function in a Bana-
ch space. The space considered here is very useful when one wishes to
consider an analytic function as a power series and deal directly with
the coefficients. The proof of Poincaré's linearization theorem and

its generalization given in section 3 depends heavily on this choice of

function space.

The notation follows Dieudonné [1] and Lang [4]. Let E, F, G,...



denote Banach spaces with norms

-l and Lg(E, F) the linear space
of all bounded symmetric k-linear maps from E to F, Lg will not
always be normed in the usual way. The spaces Lg(E, F), k=1,2,...

will be said to be consistently normed if each space Lg(E, F) has a norm

-]k with the following properties
1) {Lg(E, F), |°]k} is a Banach space

2) Ia(xl,...,xk)l < ]a|k|x1|...|xk| for all x; ¢ E and

3) the usual isomorphism of Lg+k(E, F) into Lg(E, Lg(E, F)) is

a norm preserving isomorphism.

Examples. 1) If the norms on LE(E, F) are defined as usual by
lal, = sup{|a(x;,...,x )| ; x; ¢« E and Ix;| < 1} then it is well known
that 1), 2) and 3) hold.

2) Let E=cC" (or R") with |x| = the maximum of the modulus

of the components of x,. Let €1reer,® be the usual basis of CP

n
A k-linear map from c® to F has the form

where x, = (x.l,...,x. ) and «a, . = a(ei yeee, €, ) € F
J 11 1

As usual a is symmetric if and only if a permutation of the subscripts

of the a's 1leaves them unchanged. Define
1.1
la], = R |a o
k ) ] i .1
11-1 1k—1 1 k
h+k

Clearly 1) and 2) hold. Now let a € LS (E, F). If XireeX

then we may consider
a(x X, ,* *) € Lk(E F) defined b
172 %p e S ’ y

* *x =
a(xl,'-,xh, pee )Yy Yy) a(xl,..-,xh,yl,....yk)-
Thus
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Henceforth we shall assume that the spaces Lg(E, F) are consisten-

tly normed and omit the subscript on the norm.

Let & > 0. Define Aé(E' F) as the set of all formal power ser-

ies of the form
T K
f(x) = [ a(x)
k=0

k

L}

where a, e Lg(E, F), x (X,...,X) € Ek such that

k

il = 12l =kzo|ak|s“ <o
Note that {A (E, F), | -||6} is essentially £, and so is a Banach
space, By the Weierstrass M-test we see that f is absolutely and
uniformly convergent for |x| <6 so f : {x e E; |x| <8} »F is
continuous. Also note that sup{|f(x)| ; [x]| < 8} < ||f||5 and
la | < ||fH6/6k . This last inequality plays the role of Cauchy's

inequality.

The space Aa(E, F) 1is the major space we shall analyze and use in

the later applications. When E =F = CP

and the spaces Lg(c“,c“)
are consistently normed as in the second example we have the space used
by Harris, Sibuya and Weinberg [31]. This space norms an analytic funct-

ion directly from the coefficients of its power series expansion and is
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very useful for problems where one must look at the series expansions

closely.

We shall now develop some fundamental facts about this space which

will be used in our subsequent applications.

emma 1, Let f : {x ¢ C" 3 Ixil < p} » F be analytic and bounded by

M in norm.  Then for each & < p, f ¢ Ag(C", F) and 1 2llg< M/(1-8/0)"

Remark, Here as elsewhere we identify a function and its power series
representation. In the above the spaces Lg(Cn, F) are to be normed

either as in example 1 or 2.

Proof. Since f is analytic for Ixil < p, £ has a power series
representation
f(x X ) = z a xkl x 2
1 n k.30 kl .kn 1
—(k1+...+k )
By Cauchy's inequality luk X | < Mp thus
1k
k1+. .+kn
Hellg = I Mo, I8

k.>0 1'""n
1—

Kyt 4K
< ] M(8/p) "= M/(1-6/p)"
k.30

i

In the above << is used in the usual sense of majorant series,

i.e. each term of the series on the right is greater than or equal to
the corresponding term on the left. The above proof gives the lemma
when the Lg are normed as in example 2) but this norm dominates the

norm of example 1).

Lemma 2. If a; >0, i=0,1,2,... and Zgakak =M < o then, for

any positive integer i and any p, 0 <p < § ,



@

K. k-i i M

__.__'._-'—ap -
ke i (k i)! 7k (6 - p)l
Proof. Consider the scalar complex valued function
bt K
gz) = ] oz
k=0

which is analytic and bounded by M in the disk |z| < § . The

result follows by applying Cauchy's inequality to

Lemma 3. If f € AG(E’ F) and 0 < p < § then

Dt ¢ A (B, Li(E, F)) and [|[D2]l < 1tllf]l /600t

o«

Proof., Let f(x) = ] ak(xk). Now

k=0
1 - > ||f||5=kgo|ak|ak=kgo|ak|{p+ 6 - o))k
Lt Kk
=1 1 Glale*te -0l
k=0 i=0

-

I 11 Glagle e -0l
i=o k=i K

All terms in the above series are non negative and so the series maybe

rearranged as shown. Now let |x| < p and |y| < (8§ - p)/2

2) f(x +y) =

e~ 8

K .
(1 ak(xk'l.yi)}
i=0

ak((x + y)k) = i

e~ 8
o

k=0

Then
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= { (a, (x
iEO kzi 17k

1ayah

The last rearrangement in 2) follows from the fact that the last two ser-
ies in 1) majorize the last two series in 2). Thus the last two series

th

of 2) are absolutely convergent. From 2) we note that the i deriva-

tive should be

plrx) = it | (5Ha (x*1e
k=i

For the present use the above as a formal definition. Now

[ERIEHTICEY kgi(ﬁ)laklok'l < 1))l g/ e8-p)

by lemma 2, So

© i .
ey = L EHE (v
1=

where Df e Ap(E, L;(E, F)). Now it must be shown that Dif is the
ith derivative of f and for this one uses the converse of Taylor's

theorem [4].

N-1 i .
D
fx +y) = ] 2EE ) 4 g
1:

o i .
where Ry = { ) 2—{451 (Yl—N.‘)}(YN)
i=N *

To estimate RN use the above estimate on D'f and |yl < (8 - p)/2

in the series to obtain

AL

L 52yt Ny g N
1= - P

IRyl < { 5

el o
¢ - o)

A



So by the converse of Taylor's theorem the ith derivative of f exists

and is indeed equal to D't for 0 < i < N.

Lemma 4. Let f ¢ AG(E’ F) and g e An(D, E) with HgHn <8

then f - g e A (D, F) and 1 £ e glln < el

Proof. Let f(x) =
k

e~ 8

a () and g(x) = ] b, (x)
0 220

o0

k
® > ||f|| = Z la |5
§ k=0 k

)

s .k
! la [{ ] Io |n™}
k=0 X g=¢ *

v

kzolaklszo{ Z Ibﬂ'l‘".lbzrl}ns

a0

s£0 {kgolaklzlbl1l..'

b, |In®
lr

1t ll,

In the above the summation denoted by z is to be taken over all sets
*
of integers 2.,...,% with &2, >0 and &, +...+ &_ = s,
1 r i- 1 r
The above lemma tells when the composition map is well defined.

The next lemmas prove that it is continuously differentiable in the int-

erior of its domain of definition,

Lemma 5. Let U = {g ¢ An(D, E) ; I]glln < 8} and

0 : AG(E’ F)y x U + An(D, F) : (f, g) =~ f og. Then O is continuous.

Proof. By lemma 4 one has

lloce + £',8) - oct,e)fl = I1£" » ell < 1],

and so O is uniformly continuous in its first argument. Let

fe Ak, F), gel, ||g1[n =q<é& and B defined by 38 = § - a.
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K ‘ |
By lemma 3 one has D'f € Ag_,o(E, L5, F)) and

[|D¥5]] 4 _gp < k! 1 £ll,26)% . Let h e Uwith |[b]l, <6 . Then

L k
o(t,g + B)(x) - O(E,E)(x) = D) (n(x)")

I £1]
and so ||O(f,g + h) - O(f,g)lln < ——E—Ji llhlln and so O 1is continu-

ous with respect to its second argument. Thus O 1is continuous.

o

Lemma 6. Let U and O be as in Lemma 5. Then O is C

Proof. First let us show that O has continuous partials of all orders

with respect to its second arguments. Let f € Aé(E' F), g ¢ U,

||g]|n =g <& and B determined by 38 =6 - a. Now

k. K, k
D°f € Ag_oo(E, Lg(E, F)) and 1D £l 5 _op

h e U with thln < g . Then

A

k! l|f||6(28)-k . Let

Q, (&) () (x)
+ R
k! N+1

N
o(f,g + h)(x) = 1
k=0

© k k
where Q) = KD 1 g and Ryy = T DEf(eGx)I(h(x) )

TEIP

BN

. N+1
As before one estimates that |lRN+1|ln < ||hHn and

so Ry, = °(l|h||§)~ By lemma 5 we have that Q is continuous.
Thus by the converse of Taylor's theorem Dgo exists for

0<k<N and DsO(f,g) = Q(e) = %) . .

Now since Dkf € AB(E’ Lg(E, F)) for all p < § by lemma 3 and
composition is continuous by lemma 5 we have that D;O is continuous
in both arguments.

Now let g, o and B be as above. DEO(f,g) = (Dkf) o g is cle-

arly linear in its first argument and by lemmas 3 and 4 we have

'k _ k k ok
|| Djoct, )l = 1@ Dell, < Dl < || £]| k87" and so



DgO(f,g) is a bounded linear operator in its first argument. It foll-
ows then that DlDEO(f,g) exists and D1D§0(f,g) = D;O(f,g). A simple
induction argument yields that O has continuous partial derivatives

of all orders and hence is c”

The following lemmas will be stated without proof since we shall
not use these results for our applications. The proofs of these lemmas

are similar to the proofs of the previous lemmas.

Lemma 7. Let Ev : A (E, F) x {x e E; |x|] <8 +F, (£,x) £(x).

Then Ev is C° and DgEv(f,x)(yk) = (0%t (x)}1(y5).
Lemma 8. If F 1is a Banach algebra then so is AG(E' F).

Lemma 9. Let g ¢ Ag(E, F) and f ¢ Ag(E, L(F, G)) then fg ¢ A (E, G)

and tell, < 121l 1lell,

3. Applications.

This section contains several applications of the implicit function
theorem in a Banach space and the lemmas of section 2. The main appli-
cations are the stable manifold theorem and the Poincaré linearization
theorem for analytic diffeomorphisms. Several other applications are

briefly discussed at various points in this section.

Throughout this section we shall deal with real analytic functions
and so As(Rn,Rm) shall denote the space of section 2 where Lg(Rn,Rm)
is normed as in example 2 of section 2. Several of the results hold

with minor modification for the more general space AG(E’ F).

A. The stable manifold theorem,

Theorem (The analytic stable manifold theorem). Let C be an
n x n real, non-singular matrix with k eigenvalues with modulus less

than one and n - k eigenvalues with modulus greater than one. Let

10
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¢ ¢ Ag(R",R") be such that ¢(0) = 0 and D$(0) = C. Then there
exists a neighbourhood N of the origin in R" such that
WS = {ueN ; ¢n(u) ¢ N for n > 0} is a real analytic, k-dimensional

submanifold of N, Moreover if u ¢ wS then ¢n(u) + 0 as n + =«

Proof. By a linear change of variables we may assume that

A 0
C = < ) .where A is a k * k real matrix with |A| = a <1 and

0 B
B is an (n - k) x (n - k) real matrix with |B™!| = g8 <1 . \Writing
R" = R* @ R*% and (x,y) ¢« B* ® R*¥ then

¢ © (x,y)~ (x',y') where x' = Ax + f(x,y), y' = By + g(x,y) and
£ e AgR™RY), g e AGR™,R"), £(0,0) = £(0,0) = D£(0,0) = Dg(0,0) = 0.
In order to prove the existence of WS we shall seek a change of

variables of the form £ = x, n =y - h(x) such that the £-axis is invar-

iant. Then we shall show that the {-axis - or the graph of h - is wS .

Formally ¢ : (£,n)~ (£',n') where

E' = Af + £'(g,n)
n' = Bn + g'(§,n)
and
g'(&,n) = Bh(g) - h(Af + £(&,n+h(£))) + g(£,n+h(§))
The § - axis is invariant if and only if g'(£,0) = 0. Thus we must

first solve

F(h,f,g)(§) = Bh(£) - h(AE + £(§,h(£))) + g(E,h(§)) = 0

Let U= {h e A R,B") ; ||n|[;< 6, h(0) = Dh(0) = 0},
Vs {f  AGR™RS) || £]],< (1 - )8, £(0) = D£(0) = 0} and
W=1{ge AG(Rn,Rn-k) ; €(0) = Dg(0) = 0} . Then, by lemmas 4 and 6,

F:UxVx W+ W is well defined and smooth, Clearly
F(0,0,0) = 0 and DlF(0,0,0)(l)(E) = BR(§) - L(AL) . Let
A= DlF(0,0,0). It is easy to see that A has a bounded inverse given

-s-1

by A '(m)(g) =} B ST 'm(aSg), ||A°Y]] < B(1 - B)-?
s=0

11



Thus by the implicit function theorem (4] there is an 60 >0
such that if f ¢ V, ||f[l6 < e and g € W, Hgll(5 < & then there exis-

ts an h e U with F(h,f,g) = 0, We wish to solve F = 0 without the

assumption that f and g are small but we may assume that & is small,

In order to do this we scale as follows. Let f eV and g e W be

given and for any a > 0 let f(g,n) = a~'f(af,an) and E(E,n)
a_‘g(aa,an), Since f and g are second order we may choose a so

small that | £ < g and g < e By the above these exists
8 0 §

0
an h such that F(E,f,é) =0, Define h(g) = uﬁ(a'lﬁ). Then h

satisfies Bh(af) - h(Aag + f(af,h(ag))) + g(ag,h(ag)) = 0. By chang-

ing variables by ¢ = af one has Bh(z) - h(Ar + f(z,h(g)) + g(z,h(g))=0.

This last equation is just F(h,f,g) = 0 so in summary one has: if
f €V and g e W then there exists an @a>0 and an h € Aad(Rk,Rn'k)

such that F(h,f,g) = 0.

Thus we have shown that there is a change of variables
X=4&,y=n-nh(f) such that the £-axis is invariant under ¢. By
applying the same result to ¢! there is a change of variables so that
the n-axis is invariant under ¢, Let these changes of variables be
made and s0 ¢ : (§,n)~ (£',n') where £' = Af + '(E,n), n' = Bn +
g'(&,n), £'(0,n) = 0, g'(£,0) = 0, Df(0,0) = 0 and Dg(0,0) = 0. By
the mean value theorem there is a neighbourhood N of the origin in
R" anda 6, 0<6 <1, such that [AE + £'(€,n)| < 6 and
SN A R T LIL
then these estimates imply that as long as (En,nn) ¢ N one must have

[gR] < 6n|£0] and [n?| > e_nlnol . Thus if n® =0 and £9 is small

IBn + g'(&,n)] > 0='n for all (£,n) ¢ N. 1f ¢

enough then (En,nn) = (g“,O) -0 as n + o , Also if no # 0 then

(En,nn) must leave any compact subset of N for some n > 0.

Remarks 1) Since h(0) = 0 and Dh(0) = 0 then W° is tangent to

the x-axis at the origin.

2) One need not assume that £(0,0) = g(0,0) = Df(0,0) =

12
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Dg(0,0) = 0 to obtain that h exists but without these assumptions
h will no longer satisfy h(0) = Dh(0) = 0. In this case one finds
that a small perturbation of the linear map u* Cu has a fixed point
pear the origin and there is a local stable manifold associated with

this fixed point.

3) By slightly rewording this theorem one sees that ¢ may
be taken as an element of AG(E' F) where E and F are arbitrary
Banach spaces. One need only assume that D¢(0) =C : E+ F has a

hyperbolic splitting into invariant subspaces.

4) Of course there is an analytic stable manifold theorem
for hyperbolic critical points of an ordinary differential equation.

The statement and proof of this theorem is similar to the above.

B. Poincaré's Linearization Theorem.

The proof of the stable manifold theorem given above can easily be
generalized as indicated in the remarks. The main step in the argument
is to show that DIF(O'O’O) = A has a bounded inverse and one easily
sees that A is essentially a small perturbation of the identity trans-
formation. Thus the inverse of A is given by a small modification of

the formula (1 - A)7! = Zz Ak. The theorem of this subsection,

Poincaré's linearization theorem, is more difficult and depends heavily
upon the finite dimensional nature of the problem. For this problem
it is absolutely necessary to use AG(Rn,Rn) with the norm on the spaces

Lg(R“,Rn) as given in example 2) of section 2.

Theorem, (Poincaré's Linearization Theorem).
Let A be an n x n real matrix such that
a) there exists a non-singular matrix P such that

P~'AP =D = diag(Ay, ... A ), b) 0 < lxil <1 for i=1,...,n,

13
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1,72 n s = - -
c) AJ # Al X2 ...An for j 1,...,n and all non-negat

ive integers kl""'kn such that k, +...+ k_ > 2.

Let ¢ e Aé(Rn,Rn) be such that ¢(0) = 0 and D¢(0) = A. Then
there exists n > 0 and ¢ e An(Rn,Rn) such that ¢(0) = 0, Dy(0) = I
and ¥ o p o Y W Aw,

Remark. The map V¥ is an analytic change of variables near the origin

in R™ which linearizes ¢

Proof. In coordinates ¢ : x = Ax + g(x) where g(0) = 0, Dg(0) =0

and g € Ad(Rn,Rn). Seek a change of variables of the form

w = X + u(x) where u(0) = Du(0) = 0 and u e AG(Rn,Rn) so that in the
new coordinates w - Aw, One calculates that u must satisfy the funct-
ional equation

F(u,g)(x) = Au(x) - u(Ax + g(x)) - g(x) = 0,

Since all the eigenvalues of A are less than one in modulus there is

a norm on A such that |A| < a <1, Let
U={geAg(R",R") ; g(0) = Dg(0) = 0 and Ilglly < (1 - a)é} and
V=1{uce AG(Rn,Rn) ; u(0) = Du(0) = 0}. Then, by lemma 4 and 6,

F . VxUy=+yV

is well defined and smooth. Clearly F(0,0) = 0 and DlF(0,0)(v)(x) =
"Av(x) - v(Ax). Let UlF(0,0) = L, In order to apply the implicit

function theorem one must show that L has a bounded inverse.

First seek a formal real solution of Lv = w where w 1is a formal
power series. In order to do this some notation must be given. Let

K denote the set of all integer vectors Kk = (kl,...,kn), ki > 0 and

_ _ n n .
k| = tl ...t kn. If x = (xl,...,xn) e R (or C°) and k € K 1let
xk = xll...xﬁn. (Note that xk has a different meaning in section 2,)

Thus condition c¢) of the theorem can now be written Aj # Ak for all

J and all k e K, |k| > 2 where A = (Al,...,ln). Let the eigenvalues

14
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of A be so ordered that X; = Ai+k for i=1,...,Y and Ai real

for i =22 +1,...,n, Let the corresponding eigenvectors ay of

A bve so chosen that a, = a. for i=1,...,2 and a, real for
i i+ i
i=22+1,...,n. Let P be the n x n nonsingular matrix whose

ith column is a; and let

0 I, o0
Q = I, © 0 , s=mn - 22.
) 0 1
S
Then PT'AP = D = diag(A;,...,A ) and P =PpPg. Let x =Py,

is

]
€

v(y) = P'lv(Py) and w(y) = P-'w(Py). Then the equation Lv

equivalent to Av = w where

Av(y) = Dv(y) - v(by).

The functions v and w are real if and only if v{(x) = v(X)

and W(x) = w(X) or equivalently QU(y) = v(Qy) and Qu(y) = w(Qy).

Let w(y)
are taken over all k ¢ K such that |x| > 2, Then a formal comput-
ation yields

k
Av(y) = ] Mpvy

where M, = {b - AkI}. By the assumption c) the matrix M, is non-
singular and so a formal solution of Av = w is obtained by taking

= M-}
Vk Mk we -

If w is real then Qu(y) = w(Qy) or Ek = qu where q = kQ.

S ¥ = (D - Y- - \Qry-1, =
Now v, . @y {D - A7I} qu Q{D - A"1} g qu . Thus

QU(y) = v(Qy) or v is real. Thus the formal solution v of Lv =

is real when w is real.

By conditions b) and ¢) the matrix Mi‘ is bounded, i.e.

]M£‘| <R for all k ¢ K, |k|] > 2. Thus [v] or

= l“ﬁl“k| < Rlu|

15

Ewkyk and v(y) = kayk where the sums here as below

w



Hvllg <R [lwllg. Thus L has a bounded inverse.

Since DlF(0,0) = L has a bounded inverse one may apply the implicit

function theorem and scale as before to yield the stated theorem.
Remarks lf Clearly the theorem holds with ¢ e A6(Cn,Cn) and
¥ e A_(C",c"y.
n
2, The corresponding theorem concerning linearization of a

differential equation near a critical point can be proved in a similar

way,
C. Generalized Poincaré's Theorem.

This subsection will discuss how assumption c¢) of Poincaré's theor-
em may be dropped. Let a) and b) hold. From the previous discussion

it is clear that if c¢) does not hold then L has non-trivial kernel and
so is not invertible,. Thus one cannot hope to completely linearize the
diffeomorphism ¢. However, one can reduce ¢ to a simple canonical

form by a change of variables.

Theorem, Let A be an n x n real matrix such that

a) there exists a non-singular matrix P with P~'AP =D =
dlag(xl,...,kn) and

b) 0 < |Ai| <1 for i=1,2,...,n.

Let ¢ e A (R",R") be such that ¢(0) = 0 and D¢(0) = A. Then

there exists n > 0 and ¢ e An(Rn,Rn) such that y(0) = 0, Dy(0) = I
and y”' e ¢ o Y : wo Aw + h(w) where h is in the kernel of L (i.e.
Ah(w) - h(Aw) = 0).

Remarks. The proof given below gives a complete description of the
kernel of L. In particular h must be a polynomial. The above is

a generalization of the results of Lattes [5] and [6] for two dimensional

analytic diffeomorphisms,

16
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Proof. Formally the change of variables w = x + u(x) reduces

X Ax + g(x) to w= Aw + h(w) if and only if
F(u,h,g)(x) = Au(x) - u(Ax + h(x)) + g(x + u(x)) - h(x) = 0.

Before giving the spacesto which u, h and g belong it will be necess-

ary to discuss the kernel of L.

As before we may use P to reduce A to D and use Q to handle
the reality conditions. The reality discussion is left to the reader.
The operator A defined as before takes v(y) = kaxk to

_ k - _,k
Av(y) =] Mkvky where Mk {D - A71}. Let

S=1{(,k); Jef1,2,...,n), k e K, |[k] >2, and A, =5}, By b)

J
it is clear that S is a finite set. Let S EREREL be the standard
basis for C" or R . Then v 1is in the kernel of A if and only
if v 1is of the form
viy) = J a,, e.v5 (j,k) € S .
§ (J.,k)7J

Let 1 be the projection of Aé(n“,R“) defined by

_ T k
n\)(Y) = g ej(erk)y .

It is clear that Al = A and so A : (I - H)Ad(Rn,Rn) + (I - n)AG(R“,R“);
Moreover by the estimates of the previous section A has a bounded inver—%

se on

{2 e (I - n)Aé(R“,R“) : £(0) = DL(0) = 0} .

Now let U = {u e (I - M)A (R",R") ; u(0) = Du(0) = 0 and
Hullg < 8}, V=1Ane HAG(Rn,Rn) ; h(0) = Dh(0) = 0 and
lInllg < (1 - a)s}, W={ge AZG(RH,Rn) ; g(0) = Dg(0) = 0} and
Zz={m e AG(Rn,Rn) . m(0) = Dm(0) = 0}. Then as before F : U x V x W » §
is smooth. Also it is clear that F(0,0,0) = 0, DIF(O,O,O) = L|(I - II)A6
= L and DzF(O’O'O) = identity. Since g 1is given, and one wishes to
use the implicit function theorem to find u and h, one must show that

the derivative of F with respect to its first two arguments is

17



invertible. That is one must solve

iv + h=g¢g
for v e (I - H)Aé(Rn,Rn) and h e HAG(Rn,Rn) for any g e AG(R“,R“)
where the above three functions and their derivatives are zero at y = 0,

Clearly the solution is given by h = 1Ilg and v = L7'(I - mg. The

theorem now follows as before.

D. Remarks on Further Applications.

Here are some brief comments on further applications of the lemmas

of section 2 and the implicit function theorem in Banach spaces.

1) It is amusing that the analytic inverse and implicit function
theorems are corollaries of the Cl—implicit function theorem. Let
f(x) = Ax + h(x) and g(x) = A™'x + k(x). Then the equation
f - g =1id 1is equivalent to F(k,h)(x) = Ak(x) + h(A™'x + k(x)) = 0.
One can easily view F as a function on the spaces of section 2 and
show that DlF(O’O) is invertible. Thus for each small analytic h
there exists an analytic k solving F(k,h) = 0. Using the scaling
methods already given the analytic inverse function theorem follows at

once.

2) The analytic existence and dependence on initial conditions
theorems for ordinary differential equations can be obtained as in

Robbin [9]

3) In the three theorems discussed in detail one can replace
R" by c? throughout and at some points simplify the proofs, 0f cour-
se there are similar theorems for critical points of ordinary differential

equations,

4) In Poincaré's theorem if the matrix A is not diagonalizable
then one can write P ™'AP = D + N where N is small and nilpotent.

The operator A is of the form A = A1 + A2 where Alv(y) =

18
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Dv(y) - v(Dy) and sz(y) = Nv(y) - (v(Dy + Ny) - v(Dy)). As

before Al has a bounded inverse and A2 can be made small. Thus

A has an inverse. The same remark holds for the generalized Poincaré
theorem.
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