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30. omoclinic points of area preserving mMaps. K. Meyer.

Homoclinic points of area pressi—=———

et M be a o-dimensional symplectic manifold s.t. any simple closed curve

separates M into two regions, one of finite area, €.9. M is the plane. Given
a diffeomorphism f, a point p £ M is homoclinic to & hyperbolic fixed point

g of f if P & \/‘\/S(q) N Wu(q) and p # q. D 1S non—-degenerate if Ws(q) and
Wu(q) meet transversally at p. Let g be the set of sympletic (or area
preserving) diffeormorphisms of M with the compact open C)1 topology and let
W - “F be those diffeomorphisms that have a point nhomoclinic to a nyperbolic

fixed point.
Theorem. B is open in 3 .

idea of proof. If p is a non-degenerate nomoclinic point of f ¢ B the

transversal intersection survives C1 perturbations of f. If the intersection is
non-transversal then g near f might have a transversal nomoclinic point near
psog¢c W orelse Wgs{q), w Yo

9
are as in figure {a. But in this latter

case the bounded region in figure 1D qt ——_— q%\ Fig 1b-

) Fig

f(arc) / arc
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enclosed by Ws(q), Wu(q) and a small arc is mapped inside itself which

contradicts the area preserving property of f,

2 2
Corollary. Let H(t,x,¢) = eH1(t,x), x € R, be a C  time-dependent
Hamiltonian function on the plane depending on a further small parameter ¢,

Assume H‘I is pemodlc with period T and let H be the averaged function

Ho(x) (1/T)J'O H (s x)ds. Let HO have a non-degenerate saddle point g and

assume the level surface {x;HO(x) = Ho(q)} contains a simple closed curve C through

2
g. Let cpezR - R2 be the period map, i.e. the time T map of the flow

given by the Hamiltonian H(t,x,¢). Then there exists =N > 0 s.t.

Ve, 0 < |el| < eg» ®,_ has a homoclinic point.
€

oo 3
Example. The equation v + v + ¢{2av + 48V + vy cos t} = O comes from

a Hamiltonian which after a change of coordinates has the form H = eH
H (t X) = oL(x cos t + x25m t) + Q(x cos t + xgsm t) + y(x cos t + x_sin t) cos t.

T = 27 and Ho(x) = Ol(><1 )/2 + 3B(X )/8 + ¥, /2.

Fig 2a. Fig 2b.

For a >0, 8 <0 and v =0 HO looks like a paraboloid as in figure 2a

and when v # O this surface is modified by pushing inward and upward a little

at one point as indicated by the arrow and at the same time tilting the

paraboloid. Under an extra condition on o and 8 the level surfaces of H

are
0
as in figure 2b.

There is one hyperbolic saddle point g and there are two

simple closed curves through ¢ in its level surface. The corollary applies and

there are two (possibly degenerate) homoclinic points of Q. for small non-zero ¢.

Another example, proofs and diagrams are in [11.
Reference,
1. R. McGehee & K. Meyer, Homoclinic points of area preserving
diffeomorphisms, Amer, J. Math. (to appear).

Address. K. Meyer, Division of Mathematical Sciences

s University of
Cincinnati, Ohio, U.S.A.,
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amiltonian Systems. Kenneth R. Meyer,

Introduction : The literature on the pifurcation of periodic solutions of

Hamiltonian systems is found in

celestial mechanics; engineering, mathematics

and physics journals. Thus there has been considerable duplication of effort.

Most of the papers are concerne

d with the existence and bifurcation of periodic

solutions for particular equations, however a culling of the literature yields

several generic phenomena. Even though the authors of these articles do not

state their results in the language of Baire category theory they place

conditions on the equations whidh

Since transversality theory is fu

are obviously generic in the proper setting.

1y developed it is an easy step to translate

these results into the modern framework. 1 would like to give a short

account of some of these generic phenomena. The first part of this account

gives some improvements and extensions of My previous work and the second

part gives a survey of the literature on bifurcations near resonance

equilibria.

Notation and Background : Let M be a smooth @n +2)—dimensiona1 manifold

with sympletic form Q. Q defines an isomorphism b :sz’\/\ - Tp*f\/\, Ve Qp(vp,-)

with inverse #:Tp*l\/\ - Tp!\/\.

Hamiltonian vector field on M.

If H:M - R is smooth then X = (dH) is a

Let p € M be such that the solution vy of X

through p is periodic, ¥ & @nt )—dimensional local cross section to X at p

and 0 = v n {ge MH@@ =@ }. Thus if T is small enough, o is a

oh—dimensional cross section to

a =
Let 5 H(pD. )

Figure 1.

% in the level surface H = o (see figure 1).
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Let Qpa be the first return map (Poincaré map) for the flow generated by X on

the local cross section ca. Thus the study of the nature and bifurcation of

periodic solutions of X near y is reduced to the study of the nature and

bifurcation of the fixed points of , near p. {cpq} can be considered as a one

parameter family of local diffeomorphisms.

in

Some basic facts are summerised

Theorem 1. (1) Q‘Ga = w, is a sympletic structure.

) N is a symplectomorphism.

(8) The characteristic multipliers of vy are 1,1, )\1 i sie ’)‘2n

where A\, ,...,\ are the eigenvalues of Dgp_ (p).

1 2n O.O
4) If )\1,...,)\2',1 # 1 then vy lies in a smooth one
parameter family of periodic solutions of X and the

parameter may be taken to be the value of H locally.

In view of the above only symplectomorphisms which depend on one or

more parameters will be considered henceforth. Since the types of bifurcations

considered here are basically local in nature one can always use local
coordinates to reduce the problem to the study of a symplectomorphism of RQn
where Rgn is given the usual symplectic structure defined by the matrix

J = (_CI) a - The notation used here is basically that found in Abraham {(113.

Further references for this material are Meyer [©] and Poincaré [147.

Connection with Singularity Theory : In [97 a generating function suggested

by Poincaré was used to study the fixed points of a symplectomorphism by

applying standard singularity theory. Poincaré's generating function seems

somewhat artificial and so a slightly different generating function suggested by

the work of Weinstein [20] will be used here (also see [16]). By the

implicit function theorem no new fixed points will occur under small
perturbations near a fixed point where the linearised map does not take the
eigenvalue 1. Thus one should first investigate what happens generically when

a symplectomorphism has a fixed point where the linearised map does take

the eigenvalue 1. With this in mind we shall construct the special generating

function.

Consider the fractional linear transformation & of C given by

- -1 -1
8:z » w = (14+2)(1-2) L with inverse given by % :w - z = (w=1Xw+1) . Clearly

® maps 0w 1, i »1iand « » -1 and so carries the imaginary axis onto the

unit circle with the left half plane going to the interior. In the usual way &




may be extended to matrices.

Lemma 2. (&) & maps the set of k x k matrices with no eigenvalue +1
bijectively onto the set of k x K matrices with no eigenvalue -1.

(b) The eigenvalues of 3(A) are @(}\1), “es 3 @()\k) where )\1 456 6 8 ,)\k
are the eigenvalues of A,

(c) If Alis a2n X on Hamiltonian matrix with 8(A) defined then

-1
3(A) is symplectic and if B is a 2n x 2n symplectic matrix with & (B)

-1
defined then & (B) is Hamiltonian.

Proof. Parts (a) and (b) are well known Let A be a Hamiltonian matrix

i.e. ATJ + JA =0 and B (I+A)(I—A) Then

BTJB

I

(I—A ) (I+A )J(I-i—A)(I-A)

I

(I—A ) (J+A J)(I+A)(I—A)

]

(I—A Yy J(I A)(I+A)’I—A)

1]

(I—A) T Ay = (I—A) (J+JA)
(I—AT)—1(I-—AT)J =

Il

and so B is symplectic. The second part of (¢) is similar.

Now we shall extend & tc nonlinear maps. Let V be an open
neighbourhood of O in R2n and H:V - R a smooth map such that gradH(0) =
and the matrix JaQH/axg(O) has no eigenvalue equal to +1. Then g = J grad H
is a Hamiltonian vector field on V with O as a critical point. By assumption
id - g is locally invertable near 0. Let 3(g) = = (ig+g)e(id- g) and so f is
defined in a neighbourhood of the origin in R2 and by part (c) of the lemma
above f is a symplectomorphlsm since g = J grad H is a Hamiltonian vector
field. Also note that the critical points of g give rise to fixed points of f. For
if g(x)=0 and x.is close enouoh to zero then x is the unique solution of
y = ay) = X. So (id+g)e (1d—g) (x) (id+gXx) = X. Thus (locally) there is an
association which sends the function H to the symplectomorphism f in such a
way that the critical. points of H are exactly the fixed points of f. Clearly

the inverse is defined up to an additive constant.

If H depends smoothly on parameters then of course so does f and SO
the bifurcation of fixed points of f is reduced to the bifurcation of the critical
points of H. But the bifurcation of critical points has been extensively

studied.

When n = 1 a symplectomorphism is just an area preserving

diffeomorphism of a planar region. In this case by part (b) of lemma 2 a
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nondetenerate saddle point (hondegenerate maximum or minimum) of H

corresponds to a hyperbolic (an elliptic) fixed point of f.

If there are no parameters then generically a function has only

nondegenerate saddles, maxima and minima and so generically an area

preserving mapping has only hyperbolic and elliptic fixed points. With one
parameter a new type of critical point can occur namely H = x2 + y8 + HY.
(Warning : In general a simple singularity can be brought to polynomial form
by a change of variables but it may not be symplecticl) The corresponding f

will have an elliptic and a hyperbolic fixed point for |, < O which approach

each other as y -» 0=, At u = 0, f will have a degenerate fixed point and for

M > O no fixed point (see figure 2). For 2 parameters a new type of

2 4
singularity is given by H = +x +y + uyg + Vy. One can easily analyse the
critical points of this simple polynomial.

Figure 2,

Higher Order Bifurcations :

In general periodic points bifurcate from a

fixed point when the eigenvalues of the linearised map are pth roots of unity.

This type of bifurcation was completely investigated in [9] for area preserving

mappings depending on one parameter. However the analysis found in [9] and

[107 was clumsy in the case when the map has a fixed point where the

linearised map has eigenvalues - (the transition points). F. Takens suggested

the following lemma as a means of simplifying the arguments.

Lemma 3. Let ¢V - RQ, V an open neighbourhood of 0 ¢ R2

, be an area
Preserving mapping with the origin as a fixed point.

Assume that Dg(0) is
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101
o -1
0 ¢ R such that @(X,¥) = X,Y) where

similar to (— > Then there exists a symplectic coordinate system (x,y) at

><=—><-ry+0L><3+B><y+ yxy +5y +><

3
Y = -y + ax +b><2y+cxy +dy +Y5

2 2.5/2
+ v

and ><5,Y5 = o {x ).

The proof of this lemma proceeds as the proof of Birkhoff's
normalisation theorem. Using this lemma the complicated conditions on the
higher order terms in the transition case can be replaced by & £ 0. The

analysis proceeds exactly as in [9] but the computations are simpler.

Periodic Solutions near Equilibrium Points : Let M be a on—dimensional

symplectic manifold, H:M - R a Hamiltonian, X = (dH)# and p € M an
equilibrium point of X i.e. Xp = (dH)#(p) - 0. The eigenvalues of D(dH)#:(p)--
the Hessian of X at p —— are called the characteristic exponents of X at p.
The characteristic exponents appear in negative pairs ] and thus may be
ordered Ay JuN ,...,)\
N

1,—)\2,. L.,=\ . It is generic (codimension zero) that
n

5 ,}\ are independent over the integers [8]. If )\ . o )\n are

n’ %
17
independent over the integers then a classical theorem of L iapunov states that
for each pair of pure imaginary exponents the flow admits a local invariant

surface containing p which is filled with periodic orbits.

Codimension 1 bifurcations of these Liapunov families have been
considered in the celestial mechanics literature for a system of two degrees
of freedom. Most or this literature is devoted to a study of the periodic
solutions near the L_agr‘ange triangular libration points in the restricted three
body problem. However a careful selection will yield an almost complete list

of codimension 1 phenomena.

Again the problem is local and so one may assume that M = R4 and
p=0¢ R4. Let H depend smoothly on & single parameter . Then X is
given by

= AQ)X+ fOu) = J grad HOGW
where f(O,u) = O, D1T”(O,g) - 0. Let the eigenvalues of A be XW(I’J)’)\Q(‘J)’_)\W(H)’
—)\g(u). 1In this case it can happen generically that there are non—zero
integers p and g such that p}\1 + q)\2 = p)\1(0) + q)\g(O) = 0 and }\1,}\2 are pure

imaginary.
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Case I : p =g=1. 1In this case the eigenvalues of A generically are” of the

form +iy(w) + B/ where (u), Bl) are real and (0) # O, B(O) # 0. Thus

for u < O there are two families of periodic solutions given by Liapunov's
theorem and for u > O there are no periodic solutions near zero by the stable

manifold theorem. Generically one of two things can happen. Either 1) for

p<0 and y small the two Liapunov families are globally connected and as a

unit tend to zero as u tends to zero or 2) the two families exist even for

H = 0 and as u receeds from zero through positive values the two families
detach as a unit and the whole family receeds from the origin. (See [12],

[537] and [47], also see figures 3a and b.)

Case Il : p =1, g =2,3. This case has not been completely explored but

when

q = 2 the system has only one family of periodic solutions when =0

(See [2], [17].)

Case III :

p=1, g=4. In this case the two Liapunov families exist even
when | = 0. The unfolding of this critical point is quite surprising since a
whole family of periodic solutions receed from the origin as y receeds from
0 through positive values (see [13] and [6]). I believe p =1, q > 4 is

similar to p = 1, g = 4. (See figure 3c.)

Case IV : p 2 2, g 3 2 and (p,q) relatively prime. In this case there exist

additional periodic solutions of much longer period (approximate period egual

to q2ﬁ/ix2 = pQﬁ/i)“l ). There are two main subcases :

A) For y 0 there are no periodic solutions of period near q2ﬂ/ix2. For
i > O two families of periodic solutions —- one elliptic and one hyperbolic —-

receed from the origin as y receeds from zero. These two families for

i > O connect the two families given by Liapunov's classical theorem.

B) For u < O there are two families —— one elliptic and one hyperbolic —--

which bifurcate from one orbit of one of the two Liapunov families. As u

tends to zero, y < 0, the orbit from which these new orbits bifurcate tends

to the origin. For p = 0 these two families exist and are connected to the

origin. For u > O these two families bifurcate from a periodic orbit on the

other Liapunov family. (See [67], [11], [13], (157, [177, [18] and
figure 3d.)

Figure 3 gives a brief indication of the bifurcations described above.

In each figure the y-axis may be taken as the value of H and the x—axis as
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Figure 3a Figure 3b

-

»

L >0

Figure 3d

i
'
I
1
i
!
i

u >0 u <O u>2~0

as the other spatial coordinates. The dashed lines represent families of
hyperbolic periodic orbits and the solid lines represent families of elliptic
periodic orbits. A point on one of these lines represents a periodic solution.

The delta represents the equilibrium point.

Some MSc. problems : 1. Make a complete list of codimension 2

bifurcations of periodic points of an area preserving mapping and compare the

results with those found by numerical computations in the restricted problem




69

(see [4] and [5]).

2. Consider the bifurcations of symmetric periodic orbits in a
Hamiltonian system of two degrees of freedom which is invariant under Z
action (codimension O only). Compare the results with those found in

(47, [B] and [7].

3. Complete the list of codimension 1 bifurcations near resonance

equilibria,
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