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Introduction: This paper gives three examples of ordinary differential
equations which depend on one or more parameters and which admit invariant tori

for some values of the parameters. These examples illustrate how invariant tori

evolve as the parameters are changed; in particular how they disappear, bifurcate

and lose smoothness. The equations presented are choosen to be as simple as
possible in order to clearly show the interesting phenomenon without unnecessary
details. However, the theory of normal forms and unfoldings was used to select
typical examples, but no attempt will be made to define precisely the universe
of discourse where these examples are generic. The unfolding of invariant tori

would consist of a multitude of cases not all of which are that interesting.

Fach example contains the small parameter e which is introduced simply in
order to use small parameter methods in the analysis. The parameter e should
be considered simply as a disposable small parameter and not the parameter of
interest. The reason for introducing a small parameter is so that examples can
be analysized which would otherwise be highly degenerate. These examples are
choosen from the class of equations where the usual functional analysis method

either fail or are difficult to apply. [T consider these examples as counter-
examples to several folk conjectures about the evolution of invariant tori.

The invariant tori given in the examples are simply the union of the stable
(or unstable) manifolds of a finite number of periodic orbits. This represen-
tation of an invariant torus is easier to handle in the situations where there
is a loss of smoothness or a bifurcation. Thus in all the examples given below

there is an extrainment of the frequencies or the frequencies are in resonance

(thus the title of the paper).
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I hope that this presentation will help dispel the widely held belief that the
evolution of an invariant torus is not much more complicated than the evnlution
of a periodic solution. The common feeling seems to be that what is complicated
is the flow on the invariant torus and not what happens to the torus itself.

This belief comes in part from the 1ackvof simple examples and precise theorems.
One of the strongest supports of the thesis that the evolution of an invariant
torus is complex and interesting is the computer studies found in Aronson,
Chory, Hall and McGehee [1]. This paper considers the equivalent problem of
tracing an invariant circle of a map as two parameters a varied. This paper
shows that the evolution of an invariant circle for a map is rich in phenomena

and wrothy of study.

The first example illustrates what happens when two invariant tori almost
undergo a saddle-node type bifurcation. Resonance terms are so choosen that
only part of the invariant tori undergo a saddle-node bifurcation before the
rest of them does. Thus as a parameters is varied two invariant tori come
together and touch along one periodic orbit for a particular value of the para-
meter. Changing the parameter more destroy the structure of the tori; but two
periodic solutions (one from each torus) presist for a short range of the para-
meters. Finally, the remaining periodic solutions undergo a saddle-node bhifur-
cation and all remnants of the invariant tori are gone. Thus there is an inter-
val in the parameter range between the values where there are two tori and where
the invariant sets have completely disappeared.

The second example illustrates what happens when an invariant torus almost
undergoes a Hopf bifurcation. Like the first exaﬁple, part of the invariant

torus undergoes a Hopf bifurcation before the rest does. This bifurcation gives



raise to a range of parameter values where there is an invariant set which is a
type of "pinched manifold“. The jnvariant set in this parameter range can be
visualized as a three torus which is pinced along one éirc]e.

The third example illustrates the loss of smoothness that an invariant torus
can experience when one of the periodic orbits in it becomes a sprial. This
example models one of the phenomena discussed in Aronson et. al [11.

I would like to thank Professor George Sell for his though provoking comments

on this subject. Indeed, he suggested the phenomena which is illustrated by

example 2.

Example 1. A Saddle-Node Bifurcation

This example considers perturbations of a two dimensional autonomous system
which depends on a parameter u in such a way that for p < IR the system has
two limit cycles (one stable and one unstable), a semi-stable limit cycle for

W=y s and no limit cycle for . > p. . The simplist model for the unper-

turbed system is

(b - wg) - (o = 0g)°

e T °
"

(1)

D
]

)

where o is a non-zero constant (the frequence). In the above (p,3) are
polar coordinates in an annular region around the circle » = T One readily

sees that this equation admits two limit cycles, o =» = (o - go) for

D 1 3 one 1imit cycle o = ° for p = M, ; and no limit cycle for p < Wy e

The periods of these 1imit cycles are 2n/w .
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Now add a small non-autonomous, hut T periodic, perturbation to equation
(1) If we artifically consider equation (1) as a T-periodic system, then the
1imit‘cyc1es discussed above become invariant tori in space-time when one iden-
tifies the time coordinate modulo T . It is natural to suspect that even after

* *
the perturbation is added there is a u  close to o such that for u >

there are two invariant tori, for yu = u* there is one tori and for p < u*
there are none. The example given below shows that this conjecture is false at
lTeast in the resonance case. Chenciner [2] has shown the conjecture is true
in the case when  is badly approximated by rationals. Thus we are left with
the usual gap in differential equations, what happens in the case when the fre-
quencies are well approximated by rationals?

In the resonance case, when ¢ = p/qa , (p and q relative prime integers)
the general theory of normal forms predicts that a non-trivial perturbation term
should be a 2w-periodic function of (g6 - pt) . That is one can eliminate any

other type of perturbation term by a normalization transformation. Instead of

considering the most general case, consider only the perturbation given by

2 . 2
p=(u-u)- (o - Py)” * ea cos(as - pt)

(2)

<D
1}

P/q + eg sin(qo - pt) .

In the above o and g are positive constants and the system is 2w /p
periodic. We wish to study these equations when p 1s near ° and yu is
near Hy SO make the scaling transformation er =p - Py s
equations (2) become then

r=cef{v - r? 4 o cos(qe - pt)}

D
1}

P/d + eB sin (g6 - pt) .
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In the above equation only g6 - pt appears and so it is natural to introduce a
new angle ¢ equal to this combination but this would mix the time variable and
the spacial variables. In order to keep the geometry straight introduce a new
angular variable t defined modulo 2 , agument the equation (3) with the
equation t = 1 and replace t by +t on the right hand side of (3). The
variables (r,6,t) are now variables in RY x §* x st =R x T2 . Since p

and q are relative prime integers there are integers a and b such that

ap + bg = 1 . Make the change of variables

<
"

qé - prt
(4)

ae + br

Q
]

so that the equations become

2
r=cecf{v-r"+acos ¢}

—
(G2}
~
<
0]

e sin ¢

1/qg + eaa Sin ¢ .

Q
1]

Since the coefficients q, p, a, b 1in (4) are integers and the determinant of
the coefficients in (4) is +1 the transformation (4) and its inverse preserve
the integer lattice 22 in R% . Thus (4) represents a valid change of
variables on T2 or both y and o are angular coordinates defined mod 2n .

Since the first two equations in (5) do not depend on ¢ they can be ana-
lyzed separately. Also the first two equations in (5) are autonomous so the
classical phase plane analysis method can be used.

These equations have critical points at ¢ =0, r =Yy +a and ¢y =17 ,
r=+y/v - a . Linearizing about these critical points gives that the critical

points are of the following types:



a saddle
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=0, r=-Yv+a 1is a source
=7 ,r=+yYv-qo s a sink

< < < <
|

=71 ,r==-yYv -q is a saddle.

In the above v s assumed large enough that the square roots are real and non-
zero. The critical points along v = 0 undergo a saddle-node bifurcation when
v = -a , Whereas the critical points along v =7 undergo a saddle-node
bifurcation when v = +a¢ . Also note that the rays ¢ =0 and 1 are
invariant and that the flow along these rays are as shown in figure la) when

v >+ a . When referring to the figures la)b)c)d) recall that r = 0 is not
the origin in the plane but the circle P =Py -

When v > 4o all four critical points exist, r is decreasing on the
circle r=%2yv+a, and r is increasing along the circle r = 0 .
Consider the half of the unstahle manifold of the saddle point at ¢ =0 ,
r=+yv +a which lies in the upper half plane. It is trapped in the semi-

annular ring 0 <r< 2/v+aq,0c< v <7 . There are no critical points in the

interior of this ring and ¢ 1is increasina. Thus this unstahle manifold must

approach the sink at ¢y =n1 , r=++/y -q as t + o ., The same is true for
the other half of the unstable manifold of the critical point at ¢ =0 ,
r=+Yv+a. Thus the first two equations in (5) have an invariant circle for
v > +a which consists of the saddle point at y =0, r = + /3 ¥ & and its
unstable manifold plus the sink at V=7 ,r=+yyv +aq. Asimilar analysis
(by reversing time) shows that when v > +q there is another invariant circle
consisting of the saddle y =r , r=-y/v -q and its stable manifold plus

the source at vy =0, r =/v + ¢ . See figure la). There invariant curves are

smooth except possible at the source and sink where they may have a kink.,
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The same type of analysis can be carried out when v = +a to show that
these first two equations in 5a) have an invariant set which consists of two
circles which meet at ¢ == , r = 0 as shown in fiqure 1b). A similar analy-
sis yields fiqure 1c) when o > v > -a  and fiqure 1d) when v < -a .

I claim that these fiqures la)b)c)d) also represents a picture of the sec-
tion map for the full set of equation in (5) where the surface of section is
taken as o = 0 . Let r(t,ro,wo),w(t,ro,wo) . o(t,ro,wo) be the solution of
equations (5) which pass through r = Fos ¥ = Vg 0 = 0 when t =0 . Clearly
o(t,ro,wo) =t/q + 0(e) so we may apply the implicit function theorem to the
equation o(t,ro,wo) = 2r to yield the existence of a smooth function
T(ro,wo) = 2rq + 0(e) which is the first return time to the o = 0 section.
The section map is then the map (ro,¢o) > (r(T(ro,wo),ro,wo),w(T(ro,wo),ro,wo)) .
Thus the section map is obtained by following the flow of the first two
equations in (5) by a time T = 2rq + 0(e) .

Going back to the full three dimensional problem one sees that the equation
(5) and hence equations (3) and (2) have two invariant tori when yu > +a which
contain two periodic solutions per torus. As 1y approaches +a from above
these tori aproach each other alone one circle and at pu = +a the equations
admit an invariant set which consists of two tori which have a circle in common.
When +a > u > -a the equations still have two periodic solutions but there
unstable manifolds no longer form tori. As u » -a from above the two

remaining periodic solutions undergo a saddle-node bifurcation and disappear.

Remark: The figures la)b)c)d) do not represent the period map for
equations (2) or (3) . The surface o = 0 mod 2nr corresponds to
ag + bt = 0 mod 2r in the original variables. The picture of the period map
can be obtained from these pictures by cutting anyone of these figures along the

ray ¢ = 0 and then linearly contracting the cut plane in the anqular direction
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until it fits in a wedge of angular width 2n/q. Now fill out the fiqure by
duplicating the drawing in the wedge in each of the q wedges

j2r <8< (j 4121, 3 =0,000,q - 1.

Example 2: A Hopf bifurcation.

This example was suggested by Professor George Sell and should be considered
as an example which proves the necessity of the non-resonance condition in his
paper [3]. The example is a perturbation of an autonomous three dimensional
system which depends on a parameter yu . The unperturbed autonomous system has
a limit cycle for all values of the parameter u , but for . =0 it undergoes
a Hopf bifurcation, i.e. an invariant two torus bifurcates from the limit cycle as

the 1imit cycle changes stability. The unperturbed equation is

° 3

r=ur -r
(1) 8 = w

$ =2

Here (r,6,¢) are coordinates for a solid torus, i.e. (r,5) are polar coor-
dinates in R? and ¢ is a coordinate on S (see figure 2c)). (A completely
different interpretation of this example can be given when (r,¢) are the polar
coordinates in R® and o is a coordinate in S! .) Both & and ¢ are anqu-
lar variables defined modulo 2r and r > 0 . The equations (1) admit a limit
cycle r = 0 for all values of u which is asymptotically stable when p <0

and unstable when u > 0 . For p > 0 this 1imit cycle is encircled by a
stable invariant torus r = vy , 6 and ¢ arbitrary and the flow on this

invariant torus is the linear flow 6 = w , ¢ = X .
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Add to (1) a small non-autonomous, but periodic, perturbation which is 1in
resonance with one of the frequencies, say A . If equation (1) is artifically
considered as a T-periodic system then the 1imit cycle becomes an invariant
2-torus and the invariant 2-torus becomes an invariant 3-torus in the space-time
(r,6,6,t) where t is an angular variable modulo T . As in the previous
example, the perturbation terms are choosen as the simplest non-trivial terms as

predicted by the theory of normal forms.

Let the perturbed equations be

"

ur - r2 4 e? cos (a6 - pt)

w + 62 f(ag - pt)

.
N
S~
o @° 3
"

p/q + ¢° sin (a4 - pt)

where f is an arbitrary, smooth, 2w-periodic function whose precise form is
unimportant. In order to investigate what happens when u and r are small
scale by r +er , pu > ezu . As before introduce <t and change coordinates by

p =g - pt , o =a¢ + bt where agb +ap =1. The equations become

; = ez{ur - r3 + r cos y}
0 = u + e f(y)
(3) ° 2 .
Yy =€ p siny
; =1/q + eza sin ¢ .

For the moment ignore the 6 and o equations and call the remaining equations

for r and y equations (3'). These equations have three critical points:

r=0; r= Vyu+1,yp=03and r= Vpy-1,¢p=0. When u > -1 the
critical point at r=v/u + 1, p = 0 1is a saddle and when p > 1 the critical
point at r= Vp -1, ¢ =m is a sink. When u > +1 all three critical

points exist, r 1is decreasing on large circle and r 1is increasing on small
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circles. Thus the unstable manifold of the saddle must approach the sink at

r= Yu-1,9=mn as shown in figure 2a).

As u + +1 from above the sink approaches the critical point at the origin

and at 1y 1 only the saddle and the critical point at the origin presist.

For all u , r 1is decreasing on large circles and so for 1 » p > -1 the
unstable manifold of the saddle approaches the critical point at the origin as
shown in figure 2b). As u > -1 from above the saddle approaches the origin
and for u < -1 there is only the critical point at the origin which is a sink.

Thus for u > +1 equation (3') have an invariant circle which is made up
of the unstable manifold of the saddle and the sink and which is smooth except
possible at the sink. Also for u > +1 there is a source at the origin. As
u > +1 from above the invariant circle approaches the critical point at the
origin and at yu = +1 the invariant circle attaches to the critical point at
the origin. For 1 >y > -1 there invariant circle is attached to the origin
but as p > -1 the invariant circle approaches the origin. For u < -1 the
origin is a sink.

Now return to the full set of equations in (3). If e is sufficiently
small 6 and o are always increasing since w >0, 1/g > 0 . Recall that
(r,8) are polar coordinates in R? while v and o are angular varialbes in
gt « Thus r =0 corresponds to a 2 dimensional torus. Since r =0 is
invariant equations (3) always admit an invarint two torus. But for u > +1
the equations (3') also admit an additional invariant circle and so equations
(3) admit an invariant three torus. As p >+l from above the invariant three
torus approaches the two torus. For 1 > p > -1 the invariant two torus
remains but there is also an invariant set which is a 3 torus with one circle

identified to a point. As u » -1 from above this pinched 3 torus approaches

the two torus and disappears. For p < -1 the two torus is a sink.
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In order to picture the above bifurcation consider the o = 0 section map.
This map will have the circle r =0 as invariant. For -1 >y > 1 this sec-
tion map will have an invariant set which is a pinched two torus as shown in
fiqures 2c) and 2d).

It is important to note that the equations (2) have the D'Alembert character

with respect to r , 6 and so represent analytic equations.

Example 3: Loss of Smoothness

Aronson, Chory, Hall and McGehee [1] made numerous computer studies of the
evolution of invariant circles for a mapping of the plane. They discovered
various ways in which an invariant curve can lose its smoothness and this expli-
cit example illustrates one of the phenomena that they observed. In order for
an invariant curve or torus to lose its smoothness it is necessary that the per-
turbation be of the same order of magnitude as the normal contraction to the
invariant object. For this reason we shall not present the present example as a

small perturbation of a very simple system, but simply give the equation as

-
I

e{-r - u sin(qe - pt)}
(1)

D
]

p/q + (e/q){r + sin(as - pt)} .

Here r = 0 corresponds to a circle of radius o > 0 and so (r,8) are coor-
dinates in an annular region. As in the previous examples, introduce <t and

let ¢ =qo - pt , o = ae + br where gb +pa =1 . The equations become then

r=ce{-r - pusin y}
(2) v = e{r + sin y}
o = 1/q + (ea/q){r + sin ¢} .
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Consider the first two equatioés in (2) and call them equations (2'). For small
u  these equations have two critical points at r = 0 sV =0 or 7. The cri-
tical point at ¢ = 0 1is a saddle for all small u  whereas the critical point
at y =7 is a stable mode for yu > 0, a stable degenerate mode for u = 0
and a stable sprial for ; < 0.

First consider the case when u =0. Then the circle r =0 is invariant
for equations (2') and consists of the unstable manifold plus the sink. Since
the Tocal structure of a flow near a hyperbolic critical point in the plane is
C1 equivalent to the linearized flow, the degenerate node at r = 0 s P =7
look (approximately) as shown in figure 3a).

For u 4% 0 but small, r is decreasing for r > 0 and increasing for
r <0 . Thus the unstable manifold of the saddle point is trapped in an annular
ring about r = 0 and so must tend to the sink at r=0, ¢ =n. Thus for
small u the equations (2') admit an invariant circle consisting of the
unstable manifold of the saddle plus the sink.

When u < 0 the sink at r =0 > ¥ =7 1is a focus so even though the
equations admit an invariant circle it is not even Lipschitzian. See fiqure
3b). When u > 0 the sink at r = 0 > ¥ =7m 1is a node. It is difficult to
determine in which direction the unstable manifold approaches the sink. But
since the direction of approach to a node always has a limit it is clear that
the invariant circle is at least Lipschitzian. As 1y increases the curve must
become smoother and smoother. (see figure 3c).

As in the previous examples the figures 3a)b)c) represent the picture of

the cross section of the o4 = 0 section,
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