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MELNIKOV TRANSFORMS, BERNOULLI BUNDLES,
AND ALMOST PERIODIC PERTURBATIONS

KENNETH R. MEYER AND GEORGE R. SELL

ABSTRACT. In this paper we study nonlinear time-varying perturbations of an
autonomous vector field in the plane R?2. We assume that the unperturbed
equation, i.e. the given vector field has a homoclinic orbit and we present a gen-
eralization of the Melnikov method which allows us to show that the perturbed
equation has a transversal homoclinic trajectory. The key to our generalization
is the concept of the Melnikov transform, which is a linear transformation on
the space of perturbation functions.

The appropriate dynamical setting for studying these perturbation is the
concept of a skew product flow. The concept of transversality we require is best
understood in this context. Under conditions whereby the perturbed equation
admits a transversal homoclinic trajectory, we also study the dynamics of the
perturbed vector field in the vicinity of this trajectory in the skew product flow.
We show the dynamics near this trajectory can have the exotic behavior of the
Bernoulli shift. The exact description of this dynamical phenomenon is in terms
of a flow on a fiber bundle, which we call, the Bernoulli bundle. We allow all
perturbations which are bounded and uniformly continuous in time. Thus our
theory includes the classical periodic perturbations studied by Melnikov, quasi
periodic and almost periodic perturbations, as well as toroidal perturbations
which are close to quasi periodic perturbations.

I. INTRODUCTION

In a seminal paper Smale (1963) introduced a very interesting geometric con-
struction for showing that certain diffeomorphisms have infinitely many periodic
points. The basic idea in this construction was to show that the existence of a
certain “horseshoe” region implied that a full Bernoulli shift could be imbed-
ded into the dynamics of the diffeomorphism. This horseshoe construction has
since become an important technique in the study of dynamical systems, see
for example Devaney (1986). While the horseshoe construction has many nice
features, it is not without shortcomings. For example, in some problems the
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location of a horseshoe region is not always obvious, and sometimes requires
extensive argumentation simply to show its existence.

More recently Palmer (1984) used the Lyapunov-Perron method (of integral
equations) and the theory of exponential dichotomies to develop an analytical
approach, which when combined with the Melnikov method, has several very
attractive features. It avoids completely the need for constructing a horseshoe
region while at the same time gives a transparent and elementary proof of the
imbedding of the Bernoulli shift flow. Also, as we shall see, it is the appropriate
point of view for studying almost periodic perturbations of systems containing
homoclinic orbits.

By extending Palmer’s ideas, we present here a framework for generalizing the
Bernoulli imbedding of Smale (1963) and the method of detecting transversal
homoclinic orbits of Melnikov (1963) to almost periodic systems of differential
equations. The key to this generalization is to use the M)'(I{er (1965) and Sell
(1967) construction of a skew product flow over the hull of an almost periodic
function. In this way the nonautonomous equations define a dynamical system
whose structure reflects the geometry and spectra of the almost periodic forcing
term. The main results of this paper were announced in Meyer and Sell (1986).

Within the context of this skew product dynamical system we provide the
appropriate generalizations of the following concepts: hyperbolic invariant sets,
the stable and unstable manifolds, transversal homoclinic orbits, and shift au-
tomorphisms on a symbol space. This last object we call a Bernoulli bundle
because it is a fiber bundle with fiber maps which are Bernoulli automorphisms.
We then proceed to prove generalizations of (i) the Melnikov theorem for de-
tecting homoclinic orbits, (ii) the shadowing lemma and (iii) Smale’s theorem
on the existence of a Bernoulli shift in the flow. One of the key ingredients for
these generalizations is the Melnikov transform, which we introduce in this pa-
per. In the context of almost periodic functions the Melnikov transform is a flow
preserving mapping of the hull of one almost periodic function onto the hull of
another. As we shall see, certain properties of the Melnikov transform will de-
termine respective dynamical properties of the perturbed differential equation.

We first consider a basic model equation of the form

(1.1) x=F(x)+ef(t,x)

where x € Rz,t €R, - =d/dt,F: R* = R? is smooth and f e P. Here
& P is the collection of all functions g: R x R* = R* where g is almost
periodic in ¢, uniformly for x, in compact subsets of R’. The space &/ F
has the compact open topology, i.e. the topology of uniform convergence on
compact subsets of R x R?. We assume that the autonomous unperturbed
system, when ¢ = 0, has a nondegenerate saddle point v, and a homoclinic
orbit (saddle connection) u° as pictured in Figure 1. Instead of just considering
one function, we take f € H C &/ & where H = H(g) is the hull of an almost
periodic function g. Recall that if g: R X R’ — R? is almost periodic and
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FiGure 1. Duffing’s flow: The unperturbed phase por-
trait

T € R, the t-translate of g is g (¢,x) = g(t+7,x) and H(g) is the closure,
in the compact open topology, of the set of all translates of g.
The translational flow on & & is defined by

TRXxAP AP (1,f)—f,.

For any g € &/ &, the hull H(g) is a compact invariant minimal set. When
g is quasi periodic H turns out to be homeomorphic to a torus and this flow
is equivalent to the standard irrational twist flow. When g is limit periodic,
H is homeomorphic to a standard solenoid and the flow is equivalent to the
suspension of the classical adding machine map. §2 contains background ma-
terial on almost periodic functions, the flow on their hull, cross sections to this
flow and the general construction of the Bernoulli bundles. Two prototypical
examples of a quasi periodic and a limit periodic function will be introduced
in §2 and used to illustrate our theory throughout this paper.

For ¢ fixed we let ¢(¢, x,, f) denote the solution of (1.1) which goes through
X, atepoch ¢ =0 and assume that ¢ is globally defined. Then the skew product
flow defined by (1.1) is the flow

I: Rx (R x H) = R* x H: (t,(xy, ) = ($(t, %0, 1) /)

Note the action on the second factor H is just the translational flow n, which
we refer to as the base flow. Properties of this skew product flow are discussed
in a greater detail in §2, however a few observations are useful at this point.
For ¢ = 0, IT decouples into a product flow and so the saddle point v,
and the product of its stable and unstable manifolds with H become important
invariant sets for IT. Classical theorems on almost periodic differential equa-
tions establish the existence of similar invariant sets for I1 when ¢ # 0 but
small. Of course these invariant sets for ¢ # 0 need not be product spaces,
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but they do reflect the dynamics for ¢ = 0, see Sacker and Sell (1977) and
Sell (1978). For example, the saddle point {v,} x H becomes an invariant set
for the skew product flow which is a 1-fold covering of H and is flow equiv-
alent to the translation flow on H when 0 < |¢] < 1. These concepts and
the generalization of transversal homoclinic orbit are given in §3. Interestingly,
the Melnikov transform finds its natural domain of definition on the hull H,
and its zero set oftentimes defines a global cross section for the flow = on H.
Thus the Melnikov transform defines a cross section which in turn determines
a time (the first return time), or a clock, which we use to describe the dynamics
of the Bernoulli bundles. This clock is intimately connected with the spectrum
of the almost periodic function g and replaces the period in periodic systems.
The main result of §3 is that if the Melnikov transform has a simple zero set
then there exists a normally hyperbolic homoclinic bundle which, together with
a suitable Shadowing Lemma, will beget the Bernoulli bundle.

§4 contains the generalization of hyperbolic invariant set for skew product
flows and a simple proof of a generalization of the shadowing lemma based on
the functional analytic proof given in Meyer and Sell (1987). The shadowing
lemma is the main tool we use to prove the existence of the Bernoulli bundle
invariant set. For this purpose we follow Palmer (1984), who used the shad-
owing lemma to establish the existence of an invariant set in periodic systems
which has a cross section map equivalent to the Bernoulli shift automorphism
on a Cantor set. This idea avoids the problem of generalizing the geometric
construction of the horseshoe region of Smale (1963). If the Melnikov trans-
form has a simple zero set, then it is shown that IT has a hyperbolic invariant
set, which is simply the closure of this homoclinic set. The shadowing lemma
then establishes the existence of orbits which are close to the homoclinic orbit
for long periods but can take arbitrary small jumps from time to time. These
theorems along with some examples are given in §5.

While our primary interest is studying equation (1.1) when the perturbation
term f(¢,x) is almost periodic in ¢, uniformly for x in compact subsets of
R? , the theory we present here is has broader applications. By using the theory
of skew product flows as developed in Sell (1967) and Sacker and Sell (1977)
one can handle perturbations where f(¢,x) need not be almost periodic in ¢.
For example, if f(¢,x) is uniformly continuous on sets of the form R x K,
where K is compact in R? , then the hull is still a compact invariant set. An
illustration of our theorems is given in §6 where we study the perturbed Duffing

equation with negative linear stiffness
(1.2) u"=u—u3+alf(u,u',0,8],82),
6' =  + &,h(0) +t:lg(u,u',6',t:l 1 €5) 5

where 0 = (6,,0,) € T? , the 2-torus, and w = (w,, w,) is a constant vector.
If g=0 and 4 =0, then (1.2) is equivalent to an almost periodic perturbation

n 3 /
U =u—u+ef(u,u,wit wt,e,eg)
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of Duffing’s equation. However for generic choices for g and # this perturba-
tion is not almost periodic. What we show is that there is a very large class of
perturbations for which (1.2) generates a Bernoulli bundle flow (along with the
associated chaotic dynamics). For example, if

f(u,u',0,0) =a,cosf, +a,cosb,

where a,,a, are constants, then for a large open set in the parameter space
{(a,,a,,w,,w,)} (see§IIL5) and for all g and A, (1.2) has a Bernoulli bundle
flow for 0 < |¢;| < ¢,, i =1,2, where ¢, is positive and depends on the size
of f,g and A.

While we shall not do it here, one can also study perturbations f(¢,x) of
(1.1) which are discontinuous in ¢, by using the generalizations as developed
in Miller and Sell (1970), Artstein (1977) and Schwabik (1985). The key to all
these considerations is the skew product dynamics which we present in §3.

Homoclinic orbits and their implications for autonomous and periodic sys-
tems have been investigated since their introduction by Poincaré and therefore
have a vast literature. The classics in the subject are Poincaré (1892), Birkhoff
(1932), Cartwright and Littlewood (1945), Melnikov (1963), and Smale (1963).
Our work uses many of the ideas of Palmer (1984). The reader is referred to
Chow and Hale (1982) and Guckenheimer and Holmes (1983) for a detailed
discussion of and historical remarks on the autonomous and periodic literature.

Recently some related work has appeared on almost periodic systems. In
Wiggens (1986b) the dynamical behavior of the Bernoulli bundle is described
in the quasi periodic case. However, Wiggins (1968a) does not develop the
connection with the Melnikov transform which we present here. Scheurle (1986)
considers a system of almost periodic equations similar to ours, but considers
only one equation and not a whole class of equations based on the hull of an
almost periodic function. He uses the theory of exponential dichotomies, as
extended by Palmer (1984), to find particular solutions which have a random
structure. By not looking at the skew product flow defined by the equation he
loses compactness and thus the uniformity needed to see the whole picture.

In another direction Ercolani, Forest and McLaughlin (1987) have shown
that chaotic behavior can develop when one introduces arbitrarily small periodic
forcing (with dissipation) to the sine-Gordon equation

U,—u, +smnu =0.

We believe that a straightforward extension of the theory we develop here can
be used to explain this behavior. This problem is addressed in a sequel to this
paper, Meyer and Sell (1988).

We express our appreciation to Clark Robinson who suggested the use of
subshifts of finite type to describe our results. We also express our appreciation
to the referee who pointed out some inaccuracies in an earlier version of this
paper and made some other very helpful suggestions.
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II. THE HULL, CROSS SECTIONS AND BERNOULLI BUNDLES

Throughout this paper almost periodic will be in the sense of the founder of
the subject, Bohr (1925ab, 1926, 1959); Besicovitch (1932) and others say that
f is uniformly almost periodic. Our function f will depend on parameters,
x € R", and so the uniformity we speak of is with respect to these parameters.
In this section we review some basic definitions and theorems so that we can
develop the definition of the complicated flow on the spaces we call Bernoulli
bundles. Basic references on almost periodic functions are Besicovitch (1932),
Favard (1933), Bohr (1959), Corduneanu (1968), Sell (1971), Fink (1974), and
Levitan and Zhikov (1982).

II.1 Almost periodic functions. A set 7 C R = R' is relatively dense if there
is an L > 0 such that any interval in R of length L contains a point of
T. Let f:RxR" = R" (or Rx C" — C") be continuous and let K be
a compact set in R” (or C"). An (e, K)-period for f is a number 7 such
that ||f(t+t,x)— f(¢,x)|| <€ forall (¢,x) € Rx K. f is almost periodic,
uniformly for x in compact sets, if it is bounded and for every ¢ > 0 and every
compact set K in R" (or C"), the set of (&, K)-periodic for f is relatively
dense.

The spectral theory of an almost periodic function is based on the fact that
the mean value

1 T —iws
MASY) = Jim 5z [ (s 0™ ds

exists, and for only a countable number of real numbers @ does one have
M, {f} #0. The set~ {w: M_{f} # O} is called the set of exponents or fre-
quencies of f. We write

(2.1) flt,x)~ Zak(x)eiwk'

where a,(x) = M, {f}(x). This series is called the Fourier series of f. In
general, the series given above does not converge to f except in the mean square
sense, i.e.,

M {II£(t,%) = pp(t, 0"} =0

where py(t,X) = X <y & ()™ ", Consider the real numbers R as a vector
space over the rational numbers Q. The smallest subspace S C R which
contains the set of exponents of f is called the modulus of f .

In the case when S is one dimensional, i.e. w, = r,a, where a is a real
number and r, € Q, the function f is said to be limit periodic, because in this
case the partial sums p, of the Fourier series given above are periodic. Also,
it can be shown that f is limit periodic if and only if it is the uniform limit of
periodic functions (not necessarily the partial sums p, ). The example we use
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throughout this paper is
oo
; k
E(t) — Z akezZn(t/z )
0

(or its real part) where the a, are constants chosen so that the series converges
rapidly. The Nth partial sum of / is 2N -periodic.

If the modulus S is a finite module over the integers, i.e., there exists a finite
set A;,...,4 € R such that w, = Y a4, with g, integers, then f is said
to be quasi periodic. Equivalently, f is quasi periodic if and only if there is a
continuous function F(6,, ... ,0,), thatis periodic in each argument, and real
numbers 4,,...,A; such that f(¢) = F(A,t,...,A). Our standard example
of a quasi periodic function will be

iwgt iwat

q(t)=ae”" +a,e

(or its real part) where the ratio w,/w, is irrational. Let € = #(R x R",R")
(or Z(R x C",C") be the space of continuous functions from R to R" (or
C") with the topology of uniform convergence on compact sets (the compact
open topology). Translations define a flow on % as follows

T:RxE —-%:(1,f)—f,

where f (t,x) = f(t+1,x). Forany f € C the orbit closure of f is called
the hull of f and is denoted by H(f). Thatis H(f) = Cl{g,: T € R}, where
the closure is taken in the compact open topology. Clearly H(f) is invariant,
but the hull of an almost periodic function is more. The following result can
be found in Nemytskii and Stepanov (1960).

Theorem. If f is almost periodic, then H(f) is a compact minimal set. Fur-
thermore, each element of H(f) is almost periodic, the restriction m|y . is
equicontinuous, and H(f) can be given a compact, connected, Abelian group
structure.

The group structure + is defined as follows: First define f. + f, = £,
Then if f — a and f — b select a subsequence, if necessary, and deﬁne
a+b=1lim ft s, . It is not difficult to show that this is a well-defined Abelian
group operation. The mapping 7 — f, is a homomorphism of R onto a dense
subgroup of H(f) and so H(f) is a compactification of R. One can also use
the space & & of almost periodic functions with supremum norm. The above
results hold in this space as well.

If f is almost periodic with a Fourier series f ~ ) a,e " then the translate

f, has the Fourier series f, ~ Y a,e'™*”. For g € H(f) we obtain the
Fourier series as follows: Let fr — g. By using the Cantor diagonalization
procedure to select a subsequence, if necessary, we can assume that

iwgt

1, — ¢, mod2n/w, forall k,as n—oo.



70 K. R. MEYER AND G. R. SELL

Then the Fourier coefficients of ftn converge to the Fourier coefficients of g or

(2.2) g~ ae

Thus if g € H(f) the phases ¢, are defined mod 27/w, such that (2.2) holds.
As shown in the next paragraph, the converse is not true, i.e., one cannot choose
¢, mod 27 /w, arbitrarily and find a function g € H(f) such that (2.2) holds.
Let p(t) = e +e™ so p is 2n periodic. It is easy to see that the hull of p
is precisely . .
H(p) = { +?*: 0 < a < 21},

which does not contain e’ + '™V for example. It is easy to see that the map

a — " 4 (%) 5 a topological homeomorphism and a continuous group
isomorphism of S = R/(2nZ) onto H(p). In general the hull of a periodic
function is homeomorphic to a circle.

Let us now introduce the two prototypical examples which we will use to
illustrate various aspects of our theory. The first is the quasi periodic function

(QP) q(t) = a, e + a e’

where a,,a, are nonzero. We will be generally interested in the case where
w,/w, is irrational. The second example is the limit periodic function

oo
(LP) ()= g

k=0
where the a,’s are nonzero and are chosen so that the series in (LP) converges
uniformly and absolutely.

For (QP) assume that w,/w, is irrational. By Kronecker’s theorem, ! for
any pair of real numbers o, and «, and any ¢ > 0 there are integers N, and
N, and a real number 7 such that |tw; — 22N, — o;| < &. Consequently the
translate g,

_ iw; (t+7) iw, (t+7)
q,(t)=aye +a,e

_ alei(w.t+a.+f.) + azei(wzt+az+{z)
where |¢;| < &. By taking ¢ = 1/n and finding the corresponding 7 = 7,, one

obtains

i(wt+a)) ei(a)zt+a2)

qtn(t) —ae +a,
and so
H(q) = {a,e" "™ 4 a,¢'“***): o are defined mod 27} .

By the uniqueness theorem for the Fourier series of an almost periodic function,
distinct ;s mod 27 give rise to distinct elements in H(g) . Thus the map

h: T2 — H(q): (0‘1 9a2) - alei(w|t+a|) +a2ei(wzt+az)

I See Fink (1974; p. 58).
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is continuous, 1-1 and onto and thus a homeomorphism of topological spaces.
Also it carries the orbits of the dynamical system

T* x R — T*: (a;,a,),1) = () + @, a, + W,1)
onto the orbits of the translational flow and is an isomorphism of the topological

groups. The function g corresponds to (0,0) € T2 and the orbit of q,{q,:7€

R}, corresponds to the dense line {(w,t,w,t):t € R} on T?. See Figure 2.
In general the hull of a quasi periodic function is an s-torus where s is the
dimension of the module S over the integers I, see Pontryagin (1966).

FIGURE 2. Quasi periodic hull: A torus

An interesting extreme case related to the above occurs when the frequencies
{w,} are independent over the rationals and not finite. Bohr (1959) calls this
the disharmonic case, and he proves that the Fourier series converges uniformly
to the function. The hull in this case is homeomorphic to a countably infinite
dimensional torus, i.e. a countable product of circles with the product topology.

Let us turn next to the limit periodic example (LP). We shall give several
characterizations of the hull H(¢). Let 7, be a sequence such that £, — e
uniformly where

(2.3) Z*(t) _ iakei2ﬂ(1+¢k)/2k .
0

k k+l
We may assume that 7, — ¢, mod 2° as n — oo and so 7, — ¢, ,, mod 2 -,

or
(2.4) $, = ¢,,, mod 2.

We claim that the hull of ¢ is precisely the set of functions ¢ as given in
(2.3) where the ¢, are defined mod 2% and satisfy (2.4). Select representatives
so that 0 < ¢, < 2k , then condition (2.4) becomes ¢, ., = &, + ak2k where
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o, =0 or 1. Hence

by =0y +0,+02 +- +ay_ 2"

Let ¢ > 0 be given and chose N so large that Z;f“ la,| < €. Then the translate
¢, takes on the form

2n(t+dnN)
e, (1) = Zak rentren +éN(t)

N
Z P2mr(t+¢i)/ 2% +§N(t)
k=0

where |£,(¢)| < e. Thus ¢, (1) — £ (¢) uniformly, consequently the hull of ¢
is the set of all £* of the form (2.3) with (2.4) holding.

By the uniqueness theorem for the Fourier series of an almost periodic func-
tion, distinct ¢, satisfying (2.4) give rise to distinct functions. Let ¢ denote
another function in the hull of ¢ with phase angles {¢,}. Let ¢ > 0 and N
be given and define

U(",N,e)={LeH{):|¢,—¢,|<efork=1,...,N}.

This set forms a base for the neighborhood system of £* in H(¢) since it is clear
that if N is large and ¢ is small then ¢* and ¢ will be uniformly close. This
suggests a coordinate system for H(¢) as an infinite product ><,‘:‘;OS1 where
st = {em: 0 < 0 < 2z} is the unit circle in the complex plane and the product
has the usual product topology. We set Ok =2n¢, /2% s0 by (2.4) 0,=20,.,,
mod 27z and we set z, = e so zk = zk +1- Then 2" is given the coordinate

{zo, z,...} €S. Since z, = zk ,; the coordinates of ¢ are in the inverse
limit system
(2.5) S, S'ES'ES
This is the classical coordinate system for the 2-solenoid as given in Hockmg
and Young (1961).
Let T, be a solid torus in a standard embedding in R? as given by rotating

a meridional disk D(0) = {(x,0,z): (x — 10)2 +28 < 1} about the z axis as
illustrated in Figure 3. (In Figure 3, D(0) is shaded.) Let ¢, be the polar
angle in the (x,y) plane normalized so that ¢, is defined mod 1 and let
D(¢,) be the image of D(0) after being rotated by ¢,. Let T, be a solid
torus lying within the interior of T, longitudinally encircling 7;, twice and
with meridional radius 1/4 as illustrated in Figure 3. Let ¢, be an angular
variable on 7, which measures longitudinal displacement in 7, and is defined
mod 1. As ¢, traverses [0,2] the meridional disk D(¢,) in T, encircles the

z-axis twice. Note that T, intersects D(¢,) in two disks D(¢|) and D(4))

1
where ¢, = ¢, = ¢ mod L.
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FIGURE 3. Limit periodic hull: A solenoid

Continue in this fashion to define 7, , encircling the torus T twice with
meridional diameter 1 /4k+l with longitudinal angular coordinate ¢, ., defined
mod 2%*'. The 2-solenoid >, is simply the intersection }_, = ﬂz';o T, which
is a nonempty, connected, compact, one-dimensional subspace of R® and so
is a "Klosed Kurve” in the sense of Menger. However, }_, is not locally con-
nected and hence cannot be a topological manifold. It is clear from the above
construction that H(¢), the inverse limit system (2.5), and }_, are all homeo-
morphic.

There is a standard minimal flow on }_, which corresponds to the translation
flow restricted to H(¢). The flow is defined by

P(iyzps.n)=(nn, 2 exp(i2mt/2°), ..0)

t

which corresponds to uniform rotation about the z-axis in the solenoid ), as
in Figure 3. The solenoid obtains a continuous Abelian group structure by com-
ponent multiplication in the inverse limit representation, and this corresponds
to the general Abelian group structure on the hull of any almost periodic func-
tion. The reader is referred to Nemytskii and Stepanov (1960; p. 392) for a
careful presentation of the minimal solenoid flow. These examples illustrate the
general fact that compact Abelian groups are inverse limits of tori, see Pontrya-
gin (1966).

The solenoid }_, constructed above is the simplest of an uncountable number
of solenoids which occur naturally in dynamical systems. This simple solenoid
can be viewed as the Feigenbaum limit of a period doubling sequence. In the
general construction of a solenoid the 7, , solid torus encircles the torus 7
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an arbitrary number of times, giving rise to uncountably many topologically
distinct sets. Each of these solenoids carry a minimal flow, which Markus and
Meyer (1980) show occur generically in Hamiltonian systems.

I1.2 Cross sections and Poincaré mappings. Let 4: D — D be any homeomor-
phism of a compact metric space D. Then h defines a discrete dynamical
system and let T: D — R be positive and continuous. The parallel flow
y:(DXR)xR—DxR:((d,1),t) — (d,t+t) can be dropped to the quotient
space (Dx R)/ ~ when ~ is the equivalence relation (d,t+7(d)) ~ (h(d),?).
The flow on this quotient space is called the suspension of h, see Figure 4.

FIGURE 4. Suspension of a diffeomorphism A

Aflow n: X xR — X, where X is a compact metric space, admits a (global)
cross section Z if (i) Z is a closed subset of X (ii) all trajectories meet Z and
(iii) there is a positive continuous function 7: Z — R such that n(z,T(z)) €
Z and n(z,t) ¢ Z forall ze€ Z and 0 < 7 < T(z). The function T
is called the first return time. The Poincaré map (or section map) is the map
n:Z — Z:z — n(z,T(z)), which is a homeomorphism of Z and defines
a discrete dynamical system associated with the flow n. Flows that admit
global cross sections are precisely suspensions of discrete dynamical systems.
See Ikegami (1969) and Neumann (1976) for more properties of cross sections.

A global cross section for a flow need not be connected. For example, if X
is a nontrivial periodic orbit, then any nonempty finite subset of X is a global
cross section.

The first return time 7: Z — R is a continuous function defined on Z.
By changing the time-scale, one can construct an equivalent flow II where
T(z) = 1. While this fact is known, we present the basic ideas here. For z € Z
and an integer k define 7#(z,k) = nk(z) where 7 is the Poincaré map. Next
for 7€ R let k be an integer with T = k + ¢ where o € [0, 1) and define

#(z,1) = n(n(2), T(n"(2))0), zeZ.
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One can then show that #(z,t) is well defined and that for any integer ¢ and
any 7 € R one has

f(z, £ +1)=7(7(z,¢),1), zeZ.

Since Z is a global cross section, it follows that for each x € X, there is a
unique z, € Z and ¢ _€(0,1) with x =7(z,¢,). For x € X and o € R one
defines

fi(x,0) =w(f(z,,t),0)=#(z,,t +0).

A

It is not difficult now to show that # is a flow on X and that Z is a cross
section with first return time 7 = 1 and with Poincaré map 7.

The translational flow on the hull of a nonconstant almost periodic function
always admits a cross section. Let f be almost periodic and have a Fourier series
asin (2.1). Then g € H(f) has a Fourier series (2.2) and

g‘r(t) ~ Zakeiwk(l+¢k+‘t) N Zakeiwk((bkﬂ)eiwk, .

Thus the Fourier coefficient corresponding to the frequency w, is
sk(gt) = M(gr(t)e—iwkt) _ akeiwk(¢k+1) ,

which has a constantly changing argument as t varies, provided a, # 0 and
w, # 0. Since g is nonconstant there isa k with g, # 0 and w, # 0. We
restrict now to one such k. Thus a cross section to this translational flow is
given by

Z={geH(f): args,(g) =0 or¢, =0mod 27n/w,}.

In this case the first return time T'(z) = 2z/w, is constant. Thus cross sections
and their first return times are intimately connected with the Fourier spectrum
of g.

Returning to the quasi periodic example (QP) we note that ¢* € H(q) if
and only if ¢*(¢) = a,e"“'""* + a,e'***?) _ Hence one cross section is a, = 0
and the first return time is 27/w,. The angle a, is a coordinate on Z, i.e.
Z is a circle in the torus. The Poincaré map in this coordinate system is
n:a, = a, + (w,/w,)2n which is an irrational rotation of the circle.

For the limit periodic example (LP), let ¢* € H(£) be given by (2.3). As
in the previous example we can define a cross section by requiring that the
argument of one of the Fourier coefficients of £* be zero or equivalently that
#, = 0mod 2, for some fixed k. Consider the cross section Z defined by
¢, = Omod 1 (the shaded disk in Figure 3), so the first return time is 1.
Clearly the intersection of this disk and ), is a Cantor set. However the
associated Poincaré map is more easily understood in the coordinates given by
the inverse limit system S, in (2.5). In that case (z;,z,,...) € Z C S, if and
only if z, = 1. Thus

k

w0, 2 .

zoe{l,-1},...,z,€e
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The Poincaré map 7: Z — Z is
.. k P k
(2.6) n: (., s (LTI,

b b b b

In the kth position the free index j ranges over 0 < j < 2k , which suggest
using binary notation for j with k binary digits. That is in the kth position one
has j=b.b,_,---b, . where bj =0 or 1. From (2.6) we see that the Poincaré

map 7 is just addition mod 2% in the kth position. Thus passing to the limit
gives Z = x;:llz with the usual product topology, where I, is a set consisting
of two points and which is convenient to label as I, = {1,2}. Then z € Z
can be used as an infinite binary number z = ---b;b,b, , where (bj +1)el,.
The Poincaré map is just binary addition in this coordinate system and so is
equivalent to the classical “adding machine” of dynamical systems. The adding
machine is one of the simplest examples of a discrete almost periodic dynamical
system.

I1.3 Bernoulli bundles. For n > 2, let I, = {1,2,...,n}. Define B, =

x,;“;_ooln , i.e., B, is collection of all infinite bisequences on the symbols
se€l,. Thusif g € B, then ¢ = (...,9_,,4,,4,...) or more simply writ-
ten ¢ =...9_,4,.9, ... , where the zeroth position is to the left of the decimal
point. Let 4: B, — B, be the shift map or shift automorphism defined by
A(q); = g;,, 1.e., A shifts the decimal point one place to the right. This is a
classical dynamical system (see Morse (1921)) which has found many applica-
tions in contemporary dynamical systems, see for example Smale (1963) and
Devaney (1986). The discrete dynamical system (B, , 4) is sometimes referred
to as the Bernoulli shift, or the full shift on n symbols. There are other invari-
ant subshifts which arise naturally in our theory, these are the subsets of finite
type, which we define next. \

A transition matrix is an n x n matrix K = {k;;} with entries which are
either 0 or 1. For any transition matrix K we define a subset B, (K) of B,
by

B, (K)={q€B,: kq,-q.-+1 =1 for all i}.
In other words adjacent pairs of entries in a sequence ¢ € B, determine a
location in the matrix K, the g,g,., position. Also the sequence ¢ is in

B,(K) if and only if k =1 for every i. Notice that B, (K) is A-invariant,
ie. 4B,(K)=B,(K). The set B, (K) is referred to as a subshlft of finite type.
Clearly Bn(K ) is a closed mvanant subset of B, .

The transition matrix K serves as a litany of which values g; may follow a
given value g, for g € B,(K) in the sense that one can have g, , following g,
if and only if kq,- o =1 which we write as ¢; — g,,, for short. If one thinks of
the digits {1,2,...,n} as representing states in a finite state automata and X
as being its transition matrix, then ¢; — ¢, , illustrates the possible state jumps
in B,(K). Alternatively the zeros in the transition matrix K rules out certain
adjacent pairs in a sequence ¢ € B,(K). For example if K is a transition
matrix where every entry is 1, then (B, (K), A) is the full shift on n symbols.
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We will be primarily interested in a specific » x n matrix given by

01 000O0..000
00100 0 0O
00010 0 0O
0 00O01 0 0O
(2.7) K= . o
000O0O0S...010
000O0O0S..00
1 00O0O0 00 IJ
That is K has 1’s on the first super—dlagonal and at the (n,1) and (n,n)
positions. Thusonehas 1 -2, 2—-3, ..., n—1—-n,n—n,and n— 1,

see Figure 5.

»
N

3

FIGURE 5. State transitions for K given by (2.7)

Let an overbar on a symbol, or on a sequence of symbols, mean that it is
to be repeated infinitely often, so 1.1231 = ...11.12311.... The restriction
of 4 to B,(K), which we denote by A4, has a unique fixed point vt =nn.
Furthermore the point u* = 7.12345...n7% in B, (K) is doubly asymptotic, or
homoclinic to v*, i.e., A'u" — v* as |t| —» co. A point of period 7 is given
by ¢ = 12...n.12.. . n. Periodic points of period p > n can be obtained by
replacing the single n in 12...7.12...7 by a finite sequence of (p+1—n)n’s.
Thus (B, ,A4) contains periodic points of every period > n.
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Since B,(K) is invariant under 4, it is also invariant under various powers
of A. One can readily compute the transition matrices for A , A , etc. For
example if K is given by (2.7) with n = 4, then every entry in the transition
matrix for A% is 1. In other words, (B4(K),A6) is a full shift on 4 symbols.
More generally one can show that (B, (K) ,AZ"”Z) is a full shift on n symbols
when K is given by (2.7).

The Bernoulli shift flow on B, is the prototypical example of chaotic behav-
ior. Even though this is a completely deterministic dynamical event, it contains
important features of randomness. The simplest way to see this is to take the
view point of an observer who is able to watch a single coordinate of ¢ € B, ,
say g, , the entry to the left of the decimal point. After applying 4 to g the
observer sees g, . Since the observer does not know which ¢ € B, the shift
mapping A is operating on, the entry g, which appears after applying 4 seems
to be completely random. This form of randomness can be made more precise
and we refer the reader to Sinai (1973), Alekseev (1976), Holmes (1980), Corn-
feld, Fomin and Sinai (1982), and Marsden (1984) for further information.

Our next objective is to define a Bernoulli bundle &, for n > 2. This will
be a fiber bundle over a space X where the fibers are B, . More precisely let 7
be a flow on X with section Z, and let n: Z — Z denote the Poincaré map
with first return time T: Z — R. Let K be the (nxn) transition matrix (2.7).
The product of 4 and 7 is simply

(28)  Axn:B,(K)xZ —B,(K)xZ:(q,2) — (4(g),1(2)),
The Bernoulli bundle %,(K) is formed by projecting the parallel flow
(2.9) ¥: (B, (K)xZxR)xR— B, (K)xZ xR
1((g,2,7),0) > (g,z,T+1)
onto the quotient space
%,(K)=B,(K)xZ xR/~

where (q,z,t+T(z)) ~ (4(q),1(2),1).
The flow on the Bernoulli bundle %, (K) is given by (2.9) and we shall write

(2.10) B,(K)=B,(K)®X.

and denote the flow itself by 4 ® n. The notation in (2.10) emphasizes that
(#,(K),A®n) is a skew product flow over (X ,n) and that the mapping

PZ: (q,Z,T)—'n(Z,T)

is a flow homomorphism, 2 see Figure 6. Let S C B,(K) and M C X, and
define

S®M={(s,m,1)€B,(K):s€S,meM,teR}.
Then S ® M denotes the orbit in %, (K) generated by (S, M).

2 Most of the conclusions in the remainder of this section follow from Sacker and Sell (1977).
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Z,(K)~B,(K)®Z

FIGURE 6. The Bernoulli bundle flow

If g, € B,(K) is a fixed point of 4, ie, if g, = 7.7, then {g,} x X is
a l-cover of X . More generally if g, € B, (K) is a periodic point of 4 of
minimal period p, then {g,} ® X is a p-cover of X . If, in addition, X is an
almost periodic minimal set in the flow 7, then {g,} ® X is an almost periodic
minimal set in the flow ¥ on %, (K).

The Bernoulli shift space B, is metrizable. More specifically if p,g € B,
then

dp, 9= Y 27"p, - q,l
m=—00

is a metric on B, . The shift flow 4 on B, is uniformly distal (or expan-
sive). Indeed if p,q € B, with p # g then there is an integer k such that

d(Akp,Akq) > 1. As a result the flow 4 ® 7 on the Bernoulli bundle %, (K)
is distal whenever the flow 7 on X is distal.

One interesting application of the distality property occurs when X is an
almost periodic minimal set. In this case, if M is a closed invariant set in
% (K) with the property that for some x € X the fiber Pz'l(x) in &, (K) is

n
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finite, then M is the union of a finite number of almost periodic minimal sets,
each of which is a finite covering space of X .

III. THE MELNIKOV TRANSFORM FOR ALMOST PERIODIC SYSTEMS

II1.1 The induced skew product flow. Consider the differential equation
(3.1 x=F(x)+ef(t,x)

where x € R?, and F: R? = R? is smooth and f € £. Here & denotes the
collection of all functions f: R X R* = R? with the property that for every
compact set K C R?, (i) the function f is uniformly continuous on R x K
and (ii) there is a constant k such that

(3.2) |f(£,x) = ft, ) <klx-yl, teR,x,yekK.

For many of our applications we will assume that f € & %, where & &
consists of those functions from & which are almost periodic in ¢ uniformly
for x in compact sets in R%.

On Z we shall use the compact open topology, which means that a sequence
{f,} converges to f if and only if f, — f uniformly compact subsets of
R x R?. As before the translation of a function f € & is given f(t,x) =
f(t+1t,x) and the hull H(f) is

H(f)=CI{f,: T€R}.

One can show that if f € £ then H(f) is a compact invariant set and H(f) C
Z, cf. Sell (1967).

The unperturbed system when & = 0 is assumed to be Hamiltonian, and
consequently, the trace of the Jacobian of F is identically zero. (As a result
the flow for the unperturbed equation is area-preserving in R? .) Furthermore,
the unperturbed system is assumed to have a nondegenerate saddle point at
v, € R? and an orbit uo(t) homoclinic to v, i.e. uo(t) — v, as ¢ — *oo.
Thus the stable and unstable manifolds of v, intersect along the orbit of u.
See Figure 1.

Let K be a large closed disk in R* which contains v, and the orbit uo(t)
in its interior. For £, > 0 we define

Z={feZ:|f(t,x)|<¢,, forte R,x €K}.

Let 0 < ¢, be given. For |¢| < &, we let ¢(¢,x;, f,¢) be the solution of (3.1)
that satisfies ¢(0,x,, f,¢) = x,. We consider F as fixed and so suppress the
dependence of the solution ¢ on F for simplicity. However f will be taken
from a translation invariant compact subset H C ., which oftentimes will be
the hull of some almost periodic function.

In order to better understand the underlying geometry of (3.1) it is useful to
introduce the concept of a skew product flow. Let H be a translation invariant



MELNIKOV TRANSFORMS, BERNOULLI BUNDLES 81

subset of .. Assume, for simplicity, that the solution 3 #(t,xy, f,¢€) of (3.1)
is defined for all ¢ when |¢| < g, and f € H. The skew product flow on
R*x H is given by

I: Rx (R x H) — (R* x H): (1, %), f) = (8(t, %, £ ,€), f),

see Miller (1965) and Sell (1967)
The next theorem, which is a classical result, describes how the hyperbolic
fixed point v, behaves when ¢ becomes nonzero.

Theorem 0. Thereis an ¢,, 0 <&, < 1, such that for all fe 2, |¢| <¢, there
is a unique bounded solution v(t, f,€) of (3.1) that satisfies

sup sup|v(t, f,e) —vy| =0, ase—0.
feX teR

Furthermore, v satisfies
(3.3) u(t, f,e)=v(t+1,f,e)=v(t, f,e), t,T€ER.

In particular, one has v(t, f,&) =v(0, f, ,¢). Also the mapping f — v(-, f,¢€)
is a continuous mapping of & into € (R,R"), where the latter space has the
compact open topology. If fe€ & P, then v(t, f,€) is also almost periodic in
t, and the frequency module of v is contained in the frequency module of f .

Proof. The proof of the existence of v(¢, f,¢) and the continuity in f and e
follows from the Lyapunov-Perron method using integral equations and involv-
ing exponential dichotomies, see Coppel (1965) or Hale (1969) for example.
The proof of (3.3) is an immediate consequence of the uniqueness of v. In-
deed both v(z, f,,¢&) and v(t+1, f,¢) are bounded solutions of the translated
equation

x' = F(x) +ef (t,x).

The conclusion on the almost periodic behavior follows from Sacker and Sell
(1977). O

With X(f,e) = v(0,f,¢) one has ¢(¢t,X(f,¢),f,e) = v(t,f,e). Next
define V = {(x(f,¢),f) e R*xH: f € H}, where H is a translation invariant
subset of .. The identity (3.3) shows that V' is an invariant set for the flow
IT since

¢(t’f(f’8)9f98)=’U(t’f9£)=v(0’f;’8)=f('f;’8)‘

The mapping Q: H - V: f — (X(f,¢), f) is a flow homomorphism by (3.3)
also. In other words, the skew product flow defined by (3.1) has for small ¢ an
invariant set ' which is flow homomorphic to the translation flow on H .

3 Since we shall only be interested in the behavior of solutions of (3.1) in the compact set K ,
there is no loss in generality in assuming the solutions of (3.1) to be defined for all ¢ € R. If this
were not the case one could modify F and f near x = oo, to accomplish this global existence
property.
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II1.2 The stable and unstable bundles. Hale (1969) and Sell (1978) establish
the local stable and unstable manifold theorem for (3.1). We will consider the
global stable and unstable manifolds as well, since we are assuming the global
existence of solutions of (3.1). The global version is obtained from the local
version by the standard argument of backward and forward integration under
the assumption that the solutions of (3.1) are defined for all ¢. (See for example
Palis and de Melo (1980) for a discussion of using backward integration to
obtain the global stable manifold from the local stable manifold for autonomous
equations.) Since this argument has a straightforward extension to the skew
product flows we consider here, we will apply it without further comment to
our case.

Recall that the global stable manifold W’(f,¢) is defined as
(3.4) W'(f.e)={xo: ll9(t, %, f,€) —v(t, f,e)| = 0as t — +oo}.

The local stable manifold theorem states that there is a sufficiently small 6 > 0
such that

(3.5) Wpe(f.6) & {x, € W'(f.8): 16(2,%,. 1, 8) —v(t, f &) < & for t > 0}
is a smooth one-dimensional manifold. In particular, there is a smooth function
wy.: (—6,8) X H x (—¢,,8) — R

such that
Wiee(f-8) = {wy, (0, f,8): 0 € (=6,8)} = Graph wp (-, f,e),
and for fixed (f,¢) € H x (—¢,,¢,) the map
2
wiyoc(.’f’s): (—596) - R
is an embedding of the interval (-J,d) into R’?. The function wlsoc is smooth
in all its arguments. By backward integration wlsoc can be extended to
w': Rx H x (—¢,,¢)) = R’
where the restriction of w to (-J,d) x H x (—¢, ,ao) is wloc and so that the
global stable manifold W*(f,e) is the graph of w’, i.e.,
W(f.e)={w'(a,f,¢): 0 GR}-
For fixed (f,e¢) the map
w'(-, f,€): R — R’

is an immersion of the line. For the skew product flow we define the stable
bundle by

V(e)={W'(f.e)./): f€H}.

As was done in (3.3) one can establish that

Pt W' (f.8),f,8) =W (f,,e),
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ie, Z7(e) is an invariant set for the skew product flow II. Furthermore,
% (¢) which is characterized by the formula

(3.6) Pe)={peR xH:TI(t,p) — V as t — +0o}.
W, , W' and % are called respectively the local stable manifold, the stable

loc ?
manifold and the stable bundle. By replacing ¢ > 0 by ¢ < 0 in (3.5) and
t — 400 by t = —oo in (3.4) and (3.6) one defines the corresponding unstable
sets W, W*, #'*.

Let p=(x,,f) € #(e) . We define the (partial) tangent space by
ow’
(37) o= {510

where x, = ws(a0 , f»€) . That is we consider only the component of the tangent
space which lies in the plane R?.

If pe #°(e)n#"(¢) then we say p is a homoclinic point (homoclinic to V')
and {II(z,p): t € R} is a homoclinic orbit. Thus Il(¢,p) = V as t — xoo. If
pEX (e)n¥ " (e) and TpR2 =R’= T, %" (e)+ T, 7 (¢), then we say #"(e)
and #“(e) intersect transversally at p. If at each point p € #”°(e) N Z *(¢),
#7°(¢) and #*(¢) intersect transversally at p, then we say #°(¢) and Z“(e)
intersect transversally and write %7°°(e)h% ™" (e) .

II1.3 The Melnikov transform. The Melnikov functional gives a criterion for the
existence of transversal homoclinic orbits. At a point % = uO(O) on the homo-
clinic orbit of the unperturbed system we construct a normal line » perpendicu-
lar to F(#) and measure the separation of the stable and unstable manifolds on
this normal, see Figures 1 and 7. We differ from the presentation in Melnikov
(1963), Guckenheimer and Holmes (1983) and others by fixing the normal »
and measuring the separation at the epoch ¢ = 0. While this may appear to
be restrictive, we will see that this is the correct approach for generalizing the
Melnikov method to nonperiodic perturbations. It is important to note that we
allow f to vary over the compact invariant set H .
For f € H and ¢ small there are unique solutions

u,(t, f,8) = u'(t) + euy(t, ) + O,

u,(t,f,e)= £2(t) + wi(t,f) + 0%
such that

ul(t,f,e)—v(t,f,e) ast— +oo,

u,(t,f,e)—v(t,f,e) ast— —oo,

u, (0,f,e)€n and u, (0, f,e) €n. Thus u, and u, are the unique solutions
on the stable and unstable manifold which at ¢ = 0 lie on the normal n, cf.
Figure 7.
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w*

FIGURE 7. Stable manifold coordinates

We define the separation of the stable and unstable manifold on # to be
d(f,e)=1u0,r,e)—u, 0,1, el
where |- || denotes the Euclidean norm on R*. Equivalently one has
d(f,e)=distW’(f,e)nn,W'(f,e)nn).
By the standard argument, * one finds that

d(f,e) = evM(f) + O(e”)

1

where v = |F(u)|~ is constant, and M is the Melnikov functional

(3.8) M= [ T FWW) A £, 60) dt.

Since M(f) is linear in f, it is differentiable in f € & . By the standard
argument one can show that the function d(f,¢) is also differentiable in f € &
and ¢ € (—¢,,¢,) Thatis,

d: Hx(-¢y,¢,) — R

isa C'-function. Let D,d be the partial of d with respect to its first argument
SO

D,d(f,e)(g) = evM(g) + O(”) .

4 Melnikov (1963) and Guckenheimer and Holmes (1983) are good references to the classical
Melnikov theory used in this section.
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In the usual development in the periodic case the Melnikov functional de-
pends on a real parameter. To see how our definition is the natural extension,
let H={p_.:7€ R} be the hull of a periodic function p. The restriction of
M to H is

o= [ T W) Ap(t—)dt,

which is the usual Melnikov function in the periodic case. By allowing f to
vary over H , we see that our formulation includes the traditional version.

Since F (uo(t)) tends to zero exponentially fast as ¢ — +oo, we see that
M:% — R as a bounded linear functional, which we call the Melnikov func-
tional. Given f € &, we define the composition .#Z(f)(t) = M(f}), to be the
Melnikov transform of f. Note that

L)) / FO(s) A f(s + 1, u(s)) ds
(3.9)

/ Fu(o =) A f(a,u’(c 1)) do.

Since .# is a composition, it follows that if f is almost periodic, then .#Z(f)
is also almost periodic.

In order to prove that the stable and unstable bundles intersect transversally
we will require a sign change near some (f,&). This can be accomplished for
small ¢ by studying the zero set of the Melnikov functional M, which we
define to be

(3.10) Z={feH: M(f)=0}.

We will say that the compact invariant set H admits a simple Melnikov zero
set Z ,if Z is nonempty and

(3.11) & M)y #0

for all f € Z. By (3.9) this is equivalent to the Melnikov transform of f
having a simple zero at zero. Also by the second part of (3.9) it is clear that the
derivative in (3.11) exists even if the original function f is differentiable in x
but only continuous in ¢.

Later in this paper we will derive our main result which asserts that if H
admits a simple Melnikov zero set Z , then the skew product flow generated by
(3.1) for f € H, contains a Bernoulli bundle &, (K) for every n sufficiently
large and for every small ¢. However we first want to derive an important
consequence of the existence of a simple zero set.

Theorem 1. Let H be a compact invariant set in & . Assume that H is a
minimal set and that H admits a simple (nonempty) zero set Z . Then Z is a
global cross section to the flow on H .

Proof. Since H is compact and the Melnikov functional M: H — R is con-
tinuous, it follows that Z is closed and therefore compact. By (3.11) if fe Z
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there isa d > 0 such that f, ¢ Z for 0 < |t| < J, and by the compactness
of Z, & can be chosen independentof f€ Z. Let f€Z and g € H. By
the above there is a 6 > 0 such that M(f_;) and M(f;) are of opposite sign.
Since the orbit of g is dense in H there is a time 7 such that g_ is arbitrary
close to f. In particular we can find 7 so that M(g,_;) and M(g, 5) are
of opposite sign. Therefore for some 7, € (1 —J,7 +J), one has g, € Z.

This proves that all orbits meet Z .’ For f € Z define T(f) > 0 to be the
least time of return. The above argument also shows that T is a continuous
mapping, and thus Z is a global cross section. 0O

The fact that the zero set Z is a global cross section to the flow on H
means that the Melnikov functional prescribes a synchronization—or internal
clock—for the flow on H .

I11.4 Proper Melnikov perturbations: One of the main objectives in developing
dynamical systems is to seek a theories which have some degree of robustness.
In other words, one would like to develop a theory which will persist under an
appropriate set of perturbations. Not all dynamical theories have this property,
however many of the dynamical features we study in this work do. In order to
do this it is necessary to present the concept of a proper Melnikov perturbation.
Before doing this though let us look at an illustrative example.
Consider the equation

(3.12) x'=F(x)+ef(x,0), 6 =o,

where x € R? , 0 € T? (the 2-dimensional forms), F: R> 5 R? and f: R x
T2 — R? are smooth functions, F satisfies the conditions stated in §III.1 and
o = (w,,w,) is constant with @, /w, irrational. This is an example of a quasi
periodic perturbation of x' = F(x), and the theory we describe below will
apply in this case.

Let us now introduce a small change in (3.12) by perturbing the 6-equation
to obtain

(3.13) x' =F(x)+ef(x,0), 6 =w+eg(x,0)

where g: R*xT? > T? is smooth. The perturbation theory given in §§II1.1 and
II1.2 still apply in this case, see Hale (1969). In particular the invariant torus
Hy = {yy} x T? for the unperturbed equation (¢ = 0) becomes an invariant
torus H, for the perturbed equation when & is small and nonzero. However
the flow on M, need not be quasi periodic. In fact it is generally not quasi
periodic for & # 0 because one expects a locking-in to occur and that the flow
on the torus H, will contain stable and unstable periodic orbits. Even though
this example is not minimal, it is evident that the flow on H, still has a global
cross section.

5 By using the Birkhoff recurrence property for minimal sets, we see that every orbit meets Z
infinitely often.
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Because of Theorem 1 and the considerations of the last paragraph we make
the following definition: Consider equation (3.1) for f € H, where H is a
compact invariant set in & . Let M: H — R be the Melnikov functional given
by (3.8). We shall say that H is a proper Melnikov perturbation if there is a
global cross section Z to H such that Z ¢ M~ '(0), i.e., Z lies in the zero-set
of the Melnikov functional, and for each f € Z, inequality (3.11) is valid.

The following proposition shows that the property that compact invariant set
H C Z be a proper Melnikov perturbation is an open property in the class of
compact invariant sets in & . We shall use the symbol B;(H) to denote an
J-neighborhood of H in & .

Proposition. Let H be a compact invariant set in & which is a proper Melnikov
perturbation. *Then there is an 6 > 0 with the property that every compact
invariant set H satisfying

(3.14) HcCBy(H), HcByH)
is also a proper Melnikov perturbation.

The proof of this is straightforward application of the Implicit Function
Theorem and we omit the details.

In the case of equation (3.13) one can show that for ¢ sufficiently small that
(3.14) is valid where H = H, and H= H, . A special case of this is discussed
in §VL

I11.5 Duffing’s equation. Let us consider one of the standard examples in this
subject, Duffing’s equation with negative linear stiffness and almost periodic
forcing:

(3.15) X, =X, )‘c2=xl—xl3+sf(t),

where x = (x,,x,), F(x) = (x,,x, - xf’) and f: R — R is almost periodic.
Here we assume that f is independent of x, i.e., f does not add dissipation
to Duffing’s equation. In §6 we shall consider a more complicated perturbation
of Duffing’s equation.

When ¢ = 0 this system has centers at (+1,0) and a nondegenerate saddle
at the origin. The system is Hamiltonian with H = %(xz2 —)c12)+x;1 /4 and so the
phase portrait is easy to analyze, see Figure 1. There are two orbits homoclinic
to the origin v, = (0,0). The homoclinic orbits which cross the x,-axis at
epoch ¢ =0 are +(v/2 secht, —v/2 sechttanht). Choose the right homoclinic
orbit by taking the plus sign above. Since the Melnikov functional is linear in
f we need only compute it on sines and cosines. Residue calculus yields

(3.16) M(cos(wt + a)) = V27 sech(nw/2)sina.

Return to the example (QP) we let H be the hull of the quasi periodic
function

q(t) = a,cosw,t + a, cos w,!
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where a,,a, are nonzero and ®,/w, is irrational. Then by the results of the
last section, the hull of f is H = {a, cos(w,t+ ¢,) + a, cos(w,t + ¢,)} , which
is homeomorphic to T? = R*/(2nZ)*. By (3.16) one has

M(a, cos(wt + ¢,) + a, cos(w,t + ¢,)) = A, sinp, + 4,sin ¢,

where

A, = a,.\/iwisech (%’-) .
For fixed w, ,w, # 0, it is clear that we can prescribe 4, and 4, and uniquely
determine a, and a,. Thus we can first choose the Melnikov function and
hence its zero set and then find the function f, i.e., we can invert the Melnikov
transform. Thus the zero set Z is defined by A4,sin¢, + 4,sin¢, = 0 and
condition (3.11) becomes w, A4, cos¢, + w,A4,cosd, # 0.

This example is instructive since one can give explicit conditions for the zero
set to be simple. We are interested in the nontrivial case where the parameters
are nonzero, so we introduce the dimensionless parameters 4 = 4,/4, and
® = w,/w,. In this case, the zero set is always nonempty, so let us assume
that there is a point where the condition (3.11) is not satisfied. One then has
sing, = —Asin¢, and wcos$, = —Acos¢,. Squaring these equations and
eliminating the cosines gives

_sin’g, = (@ - ) /(@' - 1), sin’¢, = (0 - 4%) /A (0" - 1).
From these formulas we see that M has a nonsimple zero if and only if w’ <
A <lorl< A? < ®®. On the boundary of this region, i.e., when A =1
or @’ = A%, the zero set of M contains a global cross section to the flow
on T?. In the 4 , @ parameter space, the set W of parameter values which
give rise to a simple zero set is precisely the set where A > max(1 ,wz) or
A < min(1, wz) . W is a large open set which is not dense.

Next turn to the limit periodic example (LP) and let H be the hull of

(3.17) o) = iak cos2m(t/2").
k=1

Thus H consists of all functions of the form

(3.18) e (1) =§:ak cos 2x((t + ,)/2")
k=1

with ¢, = ¢,,, mod 2* . Now by (3.16) one has

(3.19) M) = iAk sin27(¢, /2°)
k=1

where
A, = \/Enak sech(n22k) .
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Here we cannot prescribe the A, ’s completely arbitrary as before, but is clear
that we can choose nonzero 4, ’s such that the series (3.17), (3.18) and (3.19)
all converge rapidly. By (3.16) one has

(3.20) gn) ¥ M) = iAk sin27((t + ¢,)/2"),
k=1

i.e., g is a limit periodic function and the Melnikov transform of ¢*. From
(3.20) we see that ¢* € Z if and only if g(0) = 0. Furthermore the first return
time for ¢ is the first positive zero of g. The condition (3.11) reduces to the
assertion that the Melnikov transform g have simple zeros for every ¢* € H .

By taking 4, = 1 and the remaining A’s small, it is clear that one can con-
struct a limit periodic function g of the form (3.20) such that it and everything
in its hull has simple zeros. Moreover, the 4’s can be chosen so small that the
corresponding series (3.17) converges uniformly so that ¢ is a limit periodic
function.

I11.6 Transversal intersections. If Z C H is a cross section for the translational
flow m on H with first return time 7:Z — R, then S = R* x Z is a cross
section for the skew product flow IT on R%x H with the same first return time,
and with Poincaré map given by

(321) - ¥=(y,n):S—S: (X, 1) = (W(xg, f1€),n(),
where

W(xo, f18) = $(T(1), %0, f18)s 1) = frpy-

Note that ¥ is a discrete skew product dynamical system on R> x Z for le] <
€y -

When ¢ = 0 the solutions of (3.1) do not depend on f and the skew product
becomes an ordinary product. For example if f is quasi periodic in ¢, then
the flow IT is the product of the irrational twist flow on the torus, as pictured
in Figure 2, and the Duffing flow as pictured in Figure 1. In the limit periodic
case the flow IT is the product of the solenoidal flow and the Duffing flow.

An alternate view is given by the Poincaré map (3.21). First consider the
Example (QP) with f =g when & = 0. The cross section of the translational
flow is a circle, for example the diagonal of Figure 2, and the Poincaré map
on H is an irrational rotation of the circle with return time 7. Now integrate
Duffing’s equation for a time 7 to obtain a map of the plane as shown in
Figure 1. Figure 8 tries to illustrate the product map (3.21) at ¢ = 0. The
a-axis coming out of the plane of the paper is an angular variable and should
be identified mod 27 since the space is R*x S'. The map carries a plane
perpendicular to the «-axis into another such plane. (This is true for small
¢ # 0 also since the second term in (3.21) is always the translational flow). The
a-axis is an invariant circle for the Poincaré map ¥, and its stable and unstable
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X

FiGURE 8. The unperturbed dynamics

manifolds are the products of the figure eight and a circle. One of the two loops
of the figure eight is illustrated in Figure 8.

For the limit periodic example (LP) with f = ¢ and ¢ = 0, one must
use some imagination. Think of a Cantor set along the a-axis in Figure 8.
The Poincaré map W is similar to the above except the Cantor set of planes
perpendicular to the a-axis are shuffled by the adding machine map.

The main result of this section is the following:

Theorem 2. Let (3.1) be given where f € H and H is a minimal set in & that
admits a simple zero set Z = M _1(0). Then there is an ¢, such that for every
€ with |¢| < ¢, and for each f € Z there is a unique point

&(f,e)=u+0() e R’

such that (£(f,¢€),f) € W7 (e)N# () for 0 < |e| < &,. The function & is
continuous. Moreover, if E° = {&(f,e),f): feZ} and i ‘I’k(EO), then
A=VuU {U‘fooEk} is a compact invariant set for the Poincaré map ¥ . For

e # 0, each point of = isa point of transversal intersection of the stable and
unstable manifolds of V .

The same conclusions hold if H is a compact invariant set in & that is a
proper Melnikov perturbation, and Z Cc M _1(0) is a global cross section to the
translational flow on H, where (3.11) is valid for every f€ Z .
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Proof. As described in §III.3, the separation of the stable and unstable manifold
in the normal direction n is

d(f,£) = ||us(0,f,8) - uu(O,f,8)||
= evM(f) + O(e%)

where v is a nonzero constant. We define a coordinate system near # in R?
as follows: Consider the map (a, f) — u/a,f,e)+pn, where n is now a unit
normal vector to F (%), see Figure 7. This map takes a neighborhood of the
origin in R? onto a neighborhood of %. Note that «a is a coordinate along the
stable manifold (essentially the time parameter) and g is a coordinate in the
unit normal direction. By taking the Jacobian of this map when a=f=¢=0
and using the fact that n is normal to F (%), one sees that the Jacobian is
nonsingular and (a,f) constitutes a valid coordinate system near % when &
is small.

In this coordinate system the stable manifold has coordinates (a,0). The
unstable manifold

ua,f,e)=ula,f,e)xd(f, , e)n

(3.22) 2
=ua, f,e) £evM(f)+ O(e")

has coordinates (o, xevM(f))+ 0(82)) .% In these coordinates an intersection
of the stable and unstable manifold is obtained when evM(f ) + 0(82) =0,
that is when G(a, f,&) =0 where G(a, f,&) = M(f) £ O(e) . By assumption
one has

G0O,f,00)=M(f)=0, and D G(0,f,0)#0

when f € Z . Thus by the Implicit Function Theorem there is an ¢, > 0 such
that one can find a solution a =a(f,¢) of G(a, f,&) =0 for f€ Z and |¢| <
¢, - In these coordinates the intersection of the stable and unstable manifold is
precisely (a,a(f,e)), which we define to be &(f,¢). The intersection is clearly
transversal since the zeros of M(f,) are simple for f€ Z

Since (&(f,¢€),f) lies in both the stable and unstable bundles for V', one
has

YEE(f,e), )=V ask — too.

Since (&(f,¢€), f) is a typical point in Z° this shows that A = VU {Ure oo Ek}
is closed and hence compact. Clearly A is invariant. Since &(f,€,),f) € =°
is a point of transversal intersection of the stable and unstable manifolds for
V, and since the Poincaré mapping ¥ preserves this property, we see that each
point of = isa point of transversal intersection of the stable and unstable
manifolds of V.

The argument for a compact invariant set H , which is a proper Melnikov
perturbation, is identical. O

6 The sign in (3.22) is + if the inner product (n, [u4(0, f,€)—us(0, f,€)]) is positive, otherwise
the sign is minus.
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Remark. A related construction of homoclinic orbits can be found in Chow,
Hale and Mallet-Paret (1980).

IV. HYPERBOLIC SETS AND THE SHADOWING LEMMA

In this section we shall concentrate on the Poincaré map considered as a
discrete skew product dynamical system and develop the skew product analogs
of hyperbolic sets and the Shadowing Lemma, see Bowen (1970) and Conley
(1978). Also in this section the notation of the last section will be used in
a slightly more general setting, since we will take the second factor to be an
arbitrary discrete dynamical system. Let

41) . ¥=W. R XZ—-R"XZ:(x,/) =W, N),n)

define a discrete skew product dynamical system, where Z is an arbitrary com-
pact Hausdorff space. This means that both ¥ and # are homeomorphisms.
Furthermore, assume that ¥ and y are smooth in their first argument, i.e.,
D, y(x, f) is defined and continuous for all (x, f) € R" x Z . For each integer
k we define ¥(x, f,k): R" xZ — R" by

Y (x, ) = (F(x, £, k), 1" ().
Since one has
W(x, f,k+28)=¥¥(x, [ k)0 (),

for all k, a simple induction argument shows that the derivative DY¥(x, f,k)
exists and is continuous for all (x,f)eR"x Z.

IV.1 Skew hyperbolic sets and exponential dichotomies. The derivative operator
defines a linear skew product flow (the variational flow) associated with the flow
(4.1). In this section and the next, the variable f € Z will be considered as a
parameter, but no derivatives will be taken with respect to this parameter (Note
that the space Z need not be a manifold.) Let p = (x,f) denote a typical
point in R" x Z, k an integer, and set ¢ = (y,g) = ‘I’k(p). Define ®(p,k)
to be the linear mapping

O(p,k)u=®(x, f,k)u=D¥(x,f,k)u,

so ®(p,k): TpR” — TqR" . Here we label the tangent space with the param-

eter f € Z also. We often identify TpR" with R", conforming to the usual
mathematical practice. The mapping

(4.2) M(u,p, k) = (D, k)u, ¥ (p))
defines a linear skew product flow on the tangent bundle of R” x Z, which
we identify with R" x R" x Z, see Sacker and Sell (1974, 1976). Note that
O(x,f,1)=Dy(x,f).

Let A C R" x Z be a compact invariant set for the mapping ¥. We say that
® admits an exponential dichotomy over A, or that A is a skew hyperbolic set
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for ¥, if there exist constants K and u, with 0 < 4 < 1, and a continuous
mapping’ P: A —» Z(R",R") such that P(p) is a linear projection operator
which satisfies

(4.3) P(¥(0))®(p, k) = D(p, k)P(p)
and

I, k) - PP <Ku™ , peAk<o.
If one defines
Z(p) = Range P(p) and % (p) = Null Space P(p),

then there is a continuous splitting of the tangent bundle TA given by T pA =
& (p)®%(p). Formula (4.3) says that the linear map ®(p,k) =D ¥(x, f,k)
preserves this splitting, so ®(p,k): F(p) — F(q) and ®(p,k): Z(p) —
%q).

Since P is continuous on A, this implies that for every ¢ > 0 there is an
a = a(g) > 0 such that

(4.5) IP(x,,f) - P(x,, Nl <&,

whenever |x, —x,| <a and (x,f),(x,,f) €A.
The following lemma will be useful for our proof. It asserts that the constant
K appearing in (4.4) can be chosen to be 1.

Lemma. Let A be a skew hyperbolic invariant set for Y. Then there is a norm
-1, on R", p € A, with the property that

46) { |9, K)PO)I, < 1", k>0,
1@, K - PO, <u™ . k<0,
where q =¥ (p).

Proof. For any (w,p) € R" x A we have a unique decomposition w = u +
v where u € Range(P(p)) and v € Null space(P(p)). Now define ||w||‘!7 =
max{|[u]| ,, ||v]|,} where
-1 k
lull, = sup{K ™' " |®(p , k)ul|: k > 0},
-1 k
[vll, =sup{K " [|®(p,k)v|: k <0}.

The verification that (4.6) holds is straightforward and we omit the details. 8
O

In order to simplify our notation we shall drop the subscript ¢ on the norms
in (4.6). The context will make it clear which subscript is appropriate.

7 This mapping is referred to as a projector in Sacker and Sell (1974).
8 See Proposition 4.2 in Shub (1987).
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Inequality (4.6) implies that
|D(x, f kul < Wb,  k>0,ueF(x,f),
G, £ k| > u ™ ],  k>0,ve¥(x,f)

provided that (x,f) € A. Inequality (4.7) says that ® contracts in . and
expands in #Z as k — +o0.

Let us now return to the invariant set A =V U {U> 2F} described in the
last section.

(4.7)

Theorem 3. Assume that the hypotheses of Theorem 2 are satisfied, i.e., H is a
minimal set in € that admits a simple zero set Z = M~'(0). Let A be given
by Theorem 2. Let ¥ = (y,n) be the Poincaré map induced on the section
S =R*xZ andlet ® be the variational flow given by (4.3). Then A is a skew
hyperbolic invariant set for ¥ .

The same conclusion is valid if H is a compact invariant set in & that is a
proper Melnikov perturbation, and Z c M -'(0) is a global cross section to the
translational flow on H where (3.11) is valid for every f€ Z.

Proof. This proof is somewhat standard so we will refer the reader to the lit-
erature at several points. Using the notation of §III, let ¢(¢,x,,f,¢) be the
solution of (3.1) which satisfies ¢(0,x,,f,&) = x,; let Z C H be the cross
section of the translation flow defined by Z = M _'(O) ;let T: Z — R the first
return’ time; let w(x,, f,&) = &(T(f),X,,f,¢); and let

Y=(y,n:SxI-S: (xo,f,f-)“’('/’(xoaf,ﬁ),'l(f)),

where I =(—¢,,¢)) and S = R*xZ.

By Theorem 2 of the previous section, at each point p € =* the stable and
unstable manifolds intersect transversally; that is, if we define E; =T, 7 (e)nS
and E; =T #“(¢)NS as in formula (3.7), then by the definition of transver-

sality TpR2 =R'= E; + E;‘ and the splitting is continuous by the smoothness
of the stable and unstable manifolds. If p € ¥'NS, then by the same definition
and the local stable manifold theorem as given for example in Hale (1969) one
has T,R* = E} + E. .

The estimates in (4.4) follow at once from the general properties of expo-
nential dichotomies as given in Coppel (1978) and as explicitly shown in the
proof of Proposition 2.2 of Palmer (1984) for the periodic case. We note that
the results given in Coppel (1978) do not require the system to be periodic and
so Palmer’s argument holds in the present case as well. O

IV.2 Orbits and pseudo orbits. Our next objective is to introduce the space of
(skew) pseudo orbits and to study some of the dynamical properties of this
space.

For fye€ Z welet f = (..,f_|,fy,f,..) denote the n-orbit through f,
ie, f; and f are related by f;,, = n(f;). The collection of all n-orbits
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S will be denoted by 3. Thus each point f in 3 is an infinite bisequence.
Furthermore, 3 is a compact invariant set under the shift flow f — o(f),
where a(f), = f,,,, and one has

Oy S Sy froe) = Cosn(f2))  m(fy) s m(f) 5 00)
forall fy € Z. Nextlet M = £, be the Banach space of bounded bisequences
X =(coe s X5 Xgs X 5 -0 )5 xieR",

with the supremum norm ||x|| = sup,|x;|. The shift flow on 9 is given by
S(x);=x and the flow on 9 x 3 is given by

(x, /) = Sxa(x, /) € (S(x),a(f)).
For (x,, f;) € R" x Z we define the orbit selection mapping
(x,.1) E x5, £y]
to be the ordered pair of infinite bisequences (x, f) € 9 x 3 with .

(4.8) X =vy(x;,f), foralli.

i+1

i+1°

A Y-orbit is defined to be an ordered pair (x, f) € M x 3 with the property
that (4.8) is valid. The orbit selection mapping is the mapping of an initial
condition (X, f;) into the Y-orbit passing through (x,, f;). It is easily seen
that if (x, f) =[x,, f;], then

(S(x),a(f)) = [w(xy, So) » n(Sp)]-

In other words, the orbit selection mapping is a flow isomorphic mapping of
R"x Z into M x 3.

Let A C R" x Z be a compact invariant set for ¥. A point (x,f) e
M x 3 is said to be a (skew) a-pseudo orbit for ¥|, if (x,,f) € A and
lw(x;,f}) = x;, | <a forall i, where a > 0. Let

B, déf{(x,f) €M x 3: (x, f) is an a-pseudo orbit for ¥ |, } .

For an a-pseudo orbit, x; , may jump (by at most o) from w(x,, f;), but f
is an n-orbit, i.e., no jumps in f;. A Y-orbit (y,g) is said to be a B-shadow
of an a-pseudo orbit (x, f) if g=f and |x,—y,|< B forall i.

One should view 9 x 3 as a family of Banach spaces parameterized by
f € 3. The tangent bundle to M x 3 is € = M x M x 3. Let us now return
to the skew hyperbolic invariant set A C R” x Z. By using the splitting of
¥ over A one obtains a corresponding splitting of € over P, in the form
€(B,) = G U where

6(X,f)= ® y(xi’f;')’ ’J(X,f)= ® %(xi’f;')

i=—o00 i=—o00
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and (x,f) € PB,. What this means is that if (x,f) € P, and w € M, then
there is a unique decomposition w = u+v with v € &(x, f) and v € U(x, f).
Indeed one has '
u,=P(x,, f)w,, and v,=[I-P(x;,f)lw,.

4

Since the projector P is uniformly bounded on the compact set A, this means

that
def

lwlll = llull + llvll
is a norm on 9 which is equivalent to the norm |Jw| . For w € €(x, f) the
norm |||w|| can also be written in the form

(4.9) llwlll = sup |P(x;, f)w,| + sup|[] — P(x;, f;)]w,].
1 1

The equivalence of the two norms means that there is a constant K; > 0 such
that

-1
(4.10) Ky llwlll < flwll < Ky f{wl]l -

IV.3 The Skew Shadowing Lemma. In this section we will prove the following
result.

Theorem 4 (The Skew Shadowing Lemma). Let A be a compact, skew hyperbolic
invariant set for ¥: R" x Z — R" x Z. Then for every B > O there is an
a > 0 such that every a-pseudo orbit (x, f) for Y|, thereis a B-shadow orbit
(v, f). Moreover, there is a B, > 0 such that if 0 < B < B, then the Y-orbit
(¥, f) given above is uniquely determined by the a-pseudo orbit (x, f), and the
mapping (x,f) — (v, f) is continuous on B, .

Proof. This is a slight extension of the proof found in Meyer and Sell (1987),
and corrects an error in that proof. By modifying the functions F and f
outside a compact neighborhood of the invariant set A, if necessary, we may
assume that all orbits of ¥ are bounded.

Define amap & : M x 3 — N by

(g(xaf))i = (W(x,'_l af;‘_l))

and consider f as a parameter. With f fixed, x is a fixed point of this map
if and only if x; = y(x,_,,f,_,) forall i, ie., (x,f) is a W-orbit. Also
(x,f) €Mx 3 is an a-pseudo orbit if and only if ||F (x,f) — x| < a. The
Y-orbit (y,g) is a B-shadow for an a-pseudo orbit (x,f) if and only if
FW,f)=y, g=f,and ||x —y|| < B. (Recall that the f-shadow and the
a-pseudo orbit must have the same n-orbit f).

The main conclusion of the Skew Shadowing Lemma can then be reformu-
lated to read: For every B > 0 there is an a > 0 such thatif || (x, f)—x| <
a, then & has a fixed point y in an S-neighborhood of x . This formulation
suggest the use of the Inverse Function Theorem, which we will describe later.
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For simplicity define the function £ (x, f) = & (x,f) — x. We then seek
a zero of & for fixed f. The function & is continuously differentiable with
respect to its first argument with the derivative given by D & (x, f) where
(4.11)

(D Z (x, Nw); = Dyy(x;_y s fiJwi_y —w; = B(x,_y, fiy, Dwy_y —w,.

We claim that there are constants a, >0 and K, such that
-1
(4.12) ||D1?(x,f)|| <K, and ID,Z(x,f) I < K,

for all (x,f) € B, -

The first estimate in (4.12) is elementary since D,y is uniformly bounded
on the compact set A. In order to verify the second estimate, it suffices to
show that D, & (x, f) has a uniform lower bound for (x, f) € B, > for some
a, > 0. We will verify this lower bound in terms of the equivalent norm
lwlll = llull + llv] -

The first step is to show that there is an a > 0 such that
allull <D, & (x, flull, uebd(x,[),
a”v”S ”D]’?('x’f)v”’ vGﬂ(X,f),
provided that (x, f) € B, ,a > 0. Recall that |lu|| = sup,|u;|. Using (4.7) and
(4.11) with (x,f) € P, and ue F(x,f) we get

I(D,& (x, Nu);l = 1®Cx;_ 5 fiys Dy — gl 2 | = 1@(x,_y 5 [y Dy

> u| — plu_y| 2w — pllull.

Hence |(D,Z(x, f)u);| + ullull > |u,|, which implies that ||D,&(x, ful| >
(1 — w)|lu|| . Similarly if v € Y(x, f) one has

(D, (x, fHv)| = 1®(x,_, fio s Doy = v 2@,y fin s, Dy = oy

-1 -1
2p oyl = vl 2 u oy =lvll

(4.13)

Hence |(D,Z(x, f)v),|+|lv|l > ,u“l|v,._1| , which implies that ||D & (x, f)v|| >
(™' = 1)|jv|| and completes the proof of (4.13).

The next step is to show that there is a constant K, such that for every ¢ > 0
there is an a > 0 satisfying

(4.14)  IDZ(x, Null + D, (x, vl < ID, & (x, Nrwlll + K,ell|lwlll

for all (x,f) € P,. For ¢ > 0 let a = a(e) > 0 be chosen so that (4.5) is
valid. If (x,f) € B,, then |y(x,_,,f,_,) — x;] < « for all i. Consequently
one has

(4.15) IP(¥(x,_,,fi_,)) - P(x;, /)l <e, foralli.

Let (x,f) €P, and set w =u+v € M, where u € &(x, f) and v € U(x, f).
Then one has P(x;, f)w, = u; and [I — P(x;, f;)Jw; = v,. Furthermore from
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(4.8) and (4.11) one has

(D& (x, Nu); = P(x;_ > fr_y» Dy — 4
=®(x;_, fiiy s DP(x,_y s fi)w;_y — Plx;, fw,
= P(P(x;_, i NO(x,_ s fimys Dwi_y — P(x;, fw,
= P(x;, I,y fimy s Dw_y —w)]
+[P(¥(x,_y fi)) = PO, IR(x,_ iy, Dw,_y
= P(x;, f;)(D, & (x, fHw),
+[P(¥(x,_y, fimy)) = POx, SIR(x,_y» fi s Dwy_y -
Consequently from (4.13) one has

ID,& (x, flull < sup |P(x;, f)(D, & (x, HHw),| + Kelw|,

where K, = sup{||®(x,, f,, Dll: (x,, f;) € A}. Similarly one obtains
1D, & (x, full < sup|lI - P(x; D, E (x, Hiw),| + Kyellw.
By adding the last two inequalities and using (4.9) and (4.10), we obtain (4.14)
with K, = 2K,K, . Inequalities (4.13) and (4.14) imply that
alllwlll < 1D, & (x, Hwlll + K, ell|w]]| -
By ﬁ);ing ¢ so that 0 < K,& < a and setting ) = a(¢) one obtains
(@-Kellwll <ND,E(x, Nwll,  (x,/) €B,,>

which completes the proof of (4.12).

Because of the continuity of D, and D& ~! inequality (4.12) can be
extended to hold in some neighborhood of B, In particular, there is a J, > 0
and a K, such that

(4.16) ID,.Z(x,NII<K, and |D,&(x,0) <K,

for all (x,f) € M x 3 with the property that dist ((x, ), B, ) < J;.
The following version of the Inverse Function Theorem with estimate can be
found in Hartman (1964).

Inverse Function Theorem. Let X be a Banach space, B 5(x0) the ball of radius

8 about x° € X, and G: Bs(xo) —-XacC' Sfunction with y0 = G(xo). Assume
that DG(x) has a bounded inverse with

IDG(x)| <K and |DG”'(x)| <K

forall x € Bé(xo), where K is a constant. Let p = §/K2 and 0 =3 /K, then
there exists a domain Q, with B p(xo) cQc Ba(xo) and such that G is one-to-

one on Q. Moreover, Ba(yo) C G(Q). In particular, for every y € Ba(yo) there
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is a unique x € Q with y = G(x), and the mapping x = G'l(y) is continuous
0
on B (y").

Apply this version of the inverse function theorem to the function G(x) =
Z(x,f) and consider f € Z as a parameter. For f > 0 we define

— min ( £- — mi
a = min (2K1 ,a0> , 6 = min(,4,).

Let (x,f) be any fixed a-pseudo orbit and set yo = G(x). Then ||y°|| =
IG(x)|l < a. If % € Bs(x), then ||% — x|| < 6 < §,. Hence (4.16) holds for
all (x,f) where %X € Bg(x). Let 0 = /K, be given by the Inverse Function
Theorem. Then ¢ = 2o, and consequently one has 0 € B, (yo) . By the Inverse
Function Theorem there is a y € By(x) with G(y) = 0, i.e, (¥,f) is an
W-orbit. Furthermore, ||y — x| <Jd < B,s0 (v, f) is a B-shadow of (x,f).

If we take B, = 6,/K 12 then the inverse function theorem yields that G is
one-to-one on Bﬂo(x) for x € PB,, - Thus the distance between zeros of G is
at least f, and this proves the uniqueness part of the Shadowing Lemma. O
Remark. By the uniformity of the estimates given above the W-orbits con-
structed here have a form of distality. That is, if (x, f) and (X, f) are W-orbits
constructed above with x # X then |lx —X|| > B, so for some i,

e, = %1 = 1w’ (%, o) = W' (%o S)I > By -

V. THE SHADOWING LEMMA ESTABLISHES BERNOULLI BUNDLES

Henceforth, assume that H is a compact invariant set in & and that H is
a proper Melnikov perturbation with global cross section Z C M _1(0) CH,
where every f € Z satisfies (3.11). Thus for small ¢, A = V u{U> =k,
as defined in Theorems 2 and 3, is a skew hyperbolic invariant set for the
Poincaré map ¥ = (y,#n). Let K be the transition matrix given by (2.7)
and 4: B,(K) — B,(K) the subshift of finite type which is defined by K.
(The size n of K will be given within the proof of Theorem 5 below.) Let
Axn:B,(K)xZ — B,(K) x Z be the product map defined by (2.8) and let
A®n denote the induced flow on the Bernoulli bundle B, (K)® Z .

Theorem 5. Let the above assumptions be satisfied. There is an €, > 0 such that
Jor every & with 0 < |e| < &, there is an integer n, such that for all n > n,,

there is a compact invariant set Q, C R*xZ for the Poincaré map ¥ such that
the restriction ¥ |Q" is equivalent to the product map A x 1.

Proof. Assume that ¢, > 0 is so small that the conclusions of Theorems 2
and 3 hold for 0 < |¢| < ¢,. Hence A =V U{U>_ Ek} is a compact skew
hyperbolic set for the Poincaré map W: R*xZ - R*xZ. Let B < B, be
as given in the uniqueness part of the Shadowing Lemma. We assume g is
small enough that dist(EO,Ei) > 4B for i # 0; and let a be determined by
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the Skew Shadowing Lemma. Further restrict ¢, so that by Theorem 0 for all
0 < |e| < &, the invariant set V' is within «/4 of {0} x Z. Since EF v oas

k — too there is a ¥ > 0 such that dist(Ek ,V)< a/4 when |k| > k. Let N
be the §-neighborhood of V.

FIGURE 9. A portion of the hyperbolic set A

In order to simplify the proof somewhat we will relabel some of the = with
subscripts as follows: As stated above =~ * lies inside the neighborhood N .
Since it will represent our starting point let it be denoted by =, and, in general,
let = 4—'-1" L= 1)—: =1 for 1 < i< n, where ny =2k + 1. Also by the
above forall n>ny, & is in N. The Poincaré map takes the set Z, which
isin N, to the set Z,, then to the set =, etc. until it taken to Z,, which is
again back in N . See Figure 9. ’ (In the periodic case the Poincaré map is just
a diffeomorphism of the plane and the sets Z; are just points as illustrated in
Figure 9.) By the choice of the neighborhood N of V' any jump within N is
allowed in an a-pseudo orbit and in particular remaining at =, is allowed.

Let n > n, be fixed. We will now describe the a-pseudo orbits for (3.1)
which are of particular interest here. As always an a-pseudo orbit is a bise-
quence (x,f) with f,,, = n(f}) and |y(x;, f}) — x| < a forall i, however
we require more. In addition we ask that for each i thereisan r with 1 <r<n
and such that (x,,f;) € E,. Furthermore we require that if (x,,f;) € E, then
one can have (x,,,,f;,,) € g onlyif k=1, where k  is the rs-term in
the transition matrix K given by (2.7). Finally with the exception of the case
where (x,, f;) € E, we require that x| = y(x,, f).

9 Compare Figures 5 and 9.
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We wish to write a code for these a-pseudo orbits. In particular we shall
parameterize them by ¢ where ¢ € B,(K), the Bernoulli space. For each
feZ and 1 <¢ < n, where n > n, , there is a unique point &,(f,¢) in R?
with (¢,(f,¢€),f) € E, by Theorem 2. Let g € B,(K) and let z, = ni(f) be
an n-orbit. Then {(& ,(2;,€),2,)} is an a-pseudo orbit. By the Skew Shadow
Lemma there is a point p € R* such that {'-I’i(p, f)} is PB-shadow for this
a-pseudo orbit. Define a map Y: B, (K) x Z — R*x Z by T(g,f)=(,f)
where p is defined by the process given above. T is continuous by the Skew
Shadowing Lemma.

To see that T is one-to-one let Y(q, f) = (p, f) and Y(7,f) = (P, f) where
q # q. The Y-orbits through (p,f) and (p,f) are B-shadows of different
pseudo-orbits and, since dist (EO , Ei) > 4p for i # 0, these pseudo-orbits differ
by at least 48 in one entry, say the kth. Since the actual orbits S-shadow these
pseudo orbits dist(¥*(p, ), ¥*(P, f)) > 2B and these W-orbits are different.
Thus T is a continuous, one-to-one mapping of a compact Hausdorff space,
and so it is a homeomorphism onto its image €2, C R*xZ.

Let (q,/) € B,(K)x Z , (r,8) = (4(a),n(f)), Y(q, f) (p,f) T( g)
= (s, g). By the above construction the W-orbits through ¥(p, f) and (s, g)
are f-shadows of each other. By uniqueness ‘I"“(p , H="(s,g) o

) YoT(q,f)=To(4dxn)a,f).

Consequently ‘¥ |, is equivalent to A4 x 7. In other words, the diagram

AXn
B(K)xZ > B (K)xZ

o I

Q Y. q

n n

1S commutative. O

The set €, is an invariant set for the Poincaré map ‘¥'. This generates an
invariant set [ ] in the skew product flow generated by (3.1). As a matter
of fact ([Q,],II) is the suspension of the discrete flow (Q,,¥) and Q, isa
global cross section for [€2,]. Since (B,(K)xZ ,A"n) and (Q,,A®n) are flow
isomorphic, it follows that the continuous flows (%, (K),¥) and ([Q,],II) are
flow isomorphic. We have thus proved the following result:

Theorem 6. Let H be a compact invariant set in & which is a proper Melnikov
perturbation. Then there is an ¢, > O such that for every & with 0 < [¢] < g,
there is an integer n, such that for every n > n, the skew product flow generated
by (3.1) has an invariant set [Q,] which is flow isomorphic to the flow on the
Bernoulli bundle %, (K)=B,(K)® H .
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VI. AN ILLUSTRATIVE EXAMPLE

We return to Duffing’s equation but now with a different perturbation. In
particular consider the coupled 2-parameter equation

Xy =Xy,
(6.1) Xy=x - X +&f(x,0,),
0=w+e,h(0)+eg(x,0,¢)

on R?x T? where f,g and h are smooth, x = (x,,x,) € R’ , 0=(0,,0,) €

T , ® = (w,,w,) is constant, and ¢ = (¢,,¢,) is the bifurcation parameter.
To be more specific assume that

(6.2) f(x,6,0) =a, cos8, +a,cos8, L EO),

where a, ,a, are nonzero constants. (Note that E(6) does not depend on x.)

Let x°(¢) = x°(t,x,,6,) and 6°(¢) = 6°(t,x,,0,) denote the solution of
(6.1) with initial condition x*(0) = x, and 6°(0) = 6, . At &, = 0,x**)(t)=0
is a hyperbolic fixed point for (6.1). Furthermore there is homoclinic orbit for
(6.1) whenever g, = 0. If ¢ # 0, then the solution of the 6-equation is
generally not almost periodic. One expects to find locking-in when &, # 0.

Even though the system (6.1) is given in a special form, i.e., the function
h is independent of x, we believe that the properties described in the last
paragraph are generic among 2-parameter perturbations of Duffing’s equation
which are close to a quasi periodic perturbation, see Section 11.3 in Chow
and Hale (1982). In particular, for generic 2-parameter perturbations, with
perturbation parameter & = (¢, ,¢,) , and which reduce to

3 .
X, =Xy, X=X —X, 6=w

at ¢ = 0, one expects to be find a 1-dimensional curve I' in the parameter

space with 0 € I' and such that the perturbed system has a homoclinic orbit

for ¢ € I'. One should view (6.2) as an added simplifying assumption which is

used for illustrative purposes only.

As shown in §IIL.5, the Melnikov transform M(E (00(-))) has a simple zero
set Z2cCH=T" at ¢ = 0, for a large open set W in the parameter space
{(a,,a,,0,,w,)}. Furthermore Z % is also a global cross section for the flow
6° on T?. Let (a,,a,,0,,w,) be a fixed element of W .

Since 6% (1) —» 6°9(r) as ¢, — 0, uniformly for ¢ in compact sets in
R,Z%isa global cross section for the flow 6 on T? for ¢, small and
nonzero. If 6, € Z°, then M (E (00(1 ++))) has a simple zero at some 7. By
continuity, for &, small the perturbed Melnikov function has a simple zero at
90 near 6. The collection Z°*? of all such éo forms another global cross
section to the flow 6% on T?.

In this way the system (6.1) reduces to a 1-parameter family (the parameter
being ¢, ) where the hypotheses of Theorem 5 are satisfied. Note that for e, #0



MELNIKOV TRANSFORMS, BERNOULLI BUNDLES 103

the flow 6% on T? is generally not almost periodic. Because of Theorem 5,
we see that there is an ¢; > 0 such that for 0 < [¢,| < ¢, and 0 < |¢,| < ¢,

the full system (6.1) contains a Bernoulli bundle flow [Q, ]~ B"(K)® T?. The
bundle [Q,], as well as the induced flow on [Q,], varies continuously in the
various parameters: a,,4d,,®,,®,,¢ and &,.

In the case where w,/w, is rational, (6.1) reduces to a periodic perturba-
tion of Duffing’s equation. By using the classical Melnikov construction, which
applies in this case, one can prove the existence of a Bernoulli shift in (6.1).
However even in this setting, our methods give more information. The Bernoulli
bundle &, (K) = B, (K)® T2 which we construct is a bundle over the torus T°.

The classical Melnikov construction would lead only to a bundle B, (K)® S !
over the circle S’ .

An addendum. After this paper was completed we learned of the related work
of Daniel M. Stoffer, Some geometric and numerical methods for perturbed
integrable systems, Dissertation, ETH, Ziirich, 1987. Also see the new book
S. Wiggins, Global bifurcations and chaos, Appl. Math. Sci., No. 73, Springer-
Verlag, New York, 1988. ,
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