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ARE HAMILTONIAN FLOWS GEODESIC FLOWS?

CHRISTOPHER MCCORD, KENNETH R. MEYER, AND DANIEL OFFIN

Abstract. When a Hamiltonian system has a “Kinetic + Potential” struc-
ture, the resulting flow is locally a geodesic flow. But there may be singularities
of the geodesic structure; so the local structure does not always imply that the
flow is globally a geodesic flow. In order for a flow to be a geodesic flow, the
underlying manifold must have the structure of a unit tangent bundle. We
develop homological conditions for a manifold to have such a structure.

We apply these criteria to several classical examples: a particle in a po-
tential well, the double spherical pendulum, the Kovalevskaya top, and the
N-body problem. We show that the flow of the reduced planar N-body prob-
lem and the reduced spatial 3-body are never geodesic flows except when the
angular momentum is zero and the energy is positive.

1. Introduction

Geodesic flows are always Hamiltonian. That is, given a Riemannian manifold
M , the metric G can be considered as a function on either the tangent bundle or the
cotangent bundle T ∗M . The cotangent bundle has a natural symplectic structure,
and so the function G considered as a Hamiltonian defines a Hamiltonian flow on
T ∗M . This flow is the same as the geodesic flow defined by the metric G when it
is transferred to the cotangent bundle [1].

In this paper we begin the study of the inverse problem [10] and ask when is
a Hamiltonian flow a geodesic flow, or more generally a reparameterization of a
geodesic flow. There are important classical results along these lines.

• A collection of holonomic constraints on a mechanical system defines a
configuration manifold M as a submanifold of some Euclidean space, and
hence M inherits a Riemannian structure. In the absence of any external
forces, the mechanical systems evolve by the geodesic flow on M [30]. (A
pea sliding on a surface without friction and under no external forces moves
along a geodesic of the surface.)
• The flow of a classical mechanical system is locally a reparameterization

of a geodesic flow. If the system has sufficient energy, its flow is globally
a geodesic flow. A classical mechanical system has a Hamiltonian of the
form H = K + V , where V : M → R is a smooth potential function on the
configuration manifold M and K is the kinetic energy. K can be considered
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as a Riemannian metric on M , and H as a Hamiltonian on the symplectic
manifold T ∗M . The Jacobi metric is G = (h− V )−1K, with h a constant.
It is a well-defined metric at those points of M where V < h. The geodesic
flow on G = 1 is a reparameterization of the Hamiltonian flow on H = h
[1], [30]. (The flow of the spherical pendulum on an energy level sufficiently
high that the bob can go over the top is a reparameterization of a geodesic
flow on the unit sphere bundles of the 2-sphere.)
• Belbruno and Osipov [3], [4], [26] showed that the flow of the Kepler prob-

lem in Rn on an energy level E is equivalent to a reparameterization of the
geodesic flow on the unit tangent bundle of a manifold of constant curvature
−E with one point removed. Their theorem extends the work of Conley
and Moser [24], who showed that the flow of the Kepler problem with nega-
tive energy is equivalent to the geodesic flow on the unit tangent bundle of
the n-sphere with the north pole removed. Also see Milnor’s survey article
[23].

In [17] we gave some homological necessary conditions for a flow to admit a cross
section. In this paper we shall in a similar manner give some necessary homological
conditions for the flow to be a reparameterization of a geodesic flow. Our necessary
conditions follow from the simple observation that such a flow lives on the unit
tangent bundle of the base manifold, and this in turn places natural restrictions
on the homology. Henceforth, a geodesic flow shall mean a geodesic flow or a
reparameterization thereof. As illustrative examples we will consider in § 3 three
problems: a particle moving in a potential well; the double spherical pendulum;
and a special case of the Kovalevskaya top. In these examples, we typically find
that either there is enough energy for the system to be geodesic with respect to
the Jacobi metric, or our criteria show that the flow on the energy level is not a
geodesic flow.

In a series of papers [16], [17], [18], [19] we have computed the homology of the
integral manifolds of the various versions of the three-body and N -body problem.
In § 4, we apply our geodesic criteria to the reduced integral manifolds. We find
that the flows on the reduced integral manifolds are almost never geodesic flows.
That is, in all cases except that of zero angular momentum and positive energy, the
integral manifolds of the planar N -body problem and of the spatial 3-body problem
are not geodesic flows. In § 5, we show that the flow of the planar N -body problem
is a geodesic flow for zero angular momentum and positive energy.

2. Necessary Conditions

Given an odd-dimensional manifold P with a flow, a necessary condition for the
flow to be a geodesic flow is that the underlying manifold P must be a unit tangent
bundle. That is, if dim(P ) = 2n− 1, there must be an n-dimensional manifold M
such that P is the unit tangent bundle T0M of M . If P is the unit tangent bundle
of some manifold, this will put restrictions on the homology of P , which can be
viewed as necessary conditions for P to admit a geodesic flow. We formulate and
apply these conditions in this section, and give their proofs in Section 6.

Unless otherwise indicated, H∗(P ) will denote the homology of P with integer
coefficients. When the homology groups Hk(P ) are finitely generated, they have
a unique decomposition Hk(P ) = Fk(P ) ⊕ Tk(P ) where Fk(P ) is torsion-free and
Tk(P ) is a finite group. As a free group, Fk(P ) = Zβk , where βk (sometimes written
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βk(P ) for emphasis) is known as the kth Betti number of P . The Betti numbers
βk(P ) and the torsion groups Tk(P ) will provide the necessary information about
P .

There will be various cases to consider, depending on whether or not the base
manifold is compact or non-compact, and whether it is orientable or non-orientable.
Before generating necessary conditions for each, we need to be able to distinguish
these four cases, using only information from the space P and its homology. The
first result shows that this is possible. With only one possible ambiguity, we can
distinguish each possible combination of orientability and compactness from the
homology of P .

Theorem 2.1. Suppose P is a connected manifold of dimension 2n− 1. Then the
following are necessary conditions for P to be the unit tangent bundle T0M of an
n-manifold M :

• If M is compact and orientable, then β2n−1(P ) = 1 and Tn−1(P ) is cyclic
or trivial.
• If M is compact and non-orientable, then β2n−1(P ) = 1 and Tn−1(P ) has

order 4.
• If M is non-compact and orientable, then β2n−1(P ) = 0 and Tn−1(P ) is

trivial.
• If M is non-compact and non-orientable, then β2n−1(P ) = 0 and Tn−1(P )

has order 2.
Moreover, in all cases, P must be orientable as a manifold, and H2n−1(P ) and
H2n−2(P ) must be torsion-free.

Note that the four cases are distinct, except when P is compact with β2n−1(P ) =
1 and Tn−1(P ) = Z4. In that exceptional case, the orientability of the base manifold
M cannot be determined. When the orientability of the base manifold can be
guaranteed (i.e., when P is compact and Tn−1(P ) 6= Z4, or when P is non-compact
and Tn−1(P ) = 0), there are additional necessary conditions that can be applied.
If the orientability of the base manifold cannot be guaranteed, then the conditions
that follow are not valid. Analogous necessary conditions can be formulated in the
non-orientable case by using homology with Z2 coefficients. However, since most
naturally occurring examples are orientable, we will simplify the presentation and
describe only the orientable case here.

Theorem 2.2. Suppose P is a connected orientable non-compact manifold of di-
mension 2n− 1, with Tk(P ) = 0 for k = n− 1, 2n− 2 and 2n− 1. Then necessary
conditions for P to be the unit tangent bundle of some orientable n-manifold M
are:

(1) β0(P ) = 1;
(2) β2n−1(P ) = 0;
(3) βk(P ) = βk+n−1(P ) for all 1 ≤ k ≤ n− 2; and
(4) βn−1(P ) = β2n−2(P ) + 1.

In particular, there is one Betti number that must be non-zero:

Corollary 2.1. If P is a non-compact connected orientable manifold of dimension
2n−1, a necessary condition for P to be the unit tangent bundle of some orientable
n-manifold M is βn−1(P ) 6= 0.
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When P is compact, the situation is rather different. Corollary 2.1 no longer
holds, but there are other, stronger conditions that do apply. To simplify the
formulation of the general result, the low-dimensional case n = 2 will be considered
separately in Theorem 3.1.

Theorem 2.3. If P is a compact connected orientable manifold of dimension 2n−1
with n > 2 and Tn−1(P ) cyclic or trivial, then necessary conditions for P to be the
unit tangent bundle of some orientable n-manifold M are:

(1) β2n−1(P ) = 1;
(2) βk(P ) = βk+n−1(P ) for all 2 ≤ k ≤ n− 2;
(3) 0 ≤ βn−1(P )− β2n−2(P ) = βn(P )− β1(P ) ≤ 1.
(4) If the torsion subgroup Tn−1(P ) is non-trivial, then∣∣∣∣∣

n−2∑
i=0

(−1)iβi + (−1)n (1− β2n−2)

∣∣∣∣∣ = |Tn−1(P )| .

If Tn−1(P ) = 0, then∣∣∣∣∣
n−2∑
i=0

(−1)iβi + (−1)n (1− β2n−2)

∣∣∣∣∣+ βn(P )− β1(P ) = 1.

The last condition is easily computed, and will be the most important condition
in applications. For emphasis, we reformulate the most important case:

Corollary 2.2. If P is a compact, connected orientable manifold of dimension
2n− 1, n > 2, and Tn−1(P ) trivial, then a necessary condition for P to be the unit
tangent bundle of some orientable n-manifold is

(1)

∣∣∣∣∣
n−2∑
i=0

(−1)iβi + (−1)n (1− β2n−2)

∣∣∣∣∣ = 1 + β1(P )− βn(P ).

3. Illustrative Examples

The results of Section 2, in particular Corollaries 2.1 and 2.2, can be applied to
several simple classical systems.

Particle in a potential well. Consider a classical Hamiltonian H = K(p)+V (q)
where (q, p) ∈ Rn × Rn, n ≥ 2. Assume the kinetic energy K(p) is a positive
definite quadratic form in the momenta, p; that the potential energy V : Rn → R
has a unique critical point at q = 0 which is a non-degenerate minimum; and that
V → ∞ as ‖q‖ → ∞. Then Morse theory [22] implies that H−1(h), h > V (0), is
a (2n − 1)-sphere. Lemma 3.1 will show that no sphere satisfies the condition of
Corollary 2.2. Thus the flow on an energy surface is not geodesic.

Lemma 3.1. The (2n − 1)-dimensional sphere is not homeomorphic to the unit
tangent bundle of an n-manifold.

Proof. The (2n − 1)-sphere has torsion-free homology with Betti numbers β0 =
β2n−1 = 1, βi = 0, 2 ≤ i ≤ 2n − 2. The spheres satisfy all of the hypotheses
of Corollary 2.2; so to admit a unit tangent structure, S2n−1 must satisfy the
condition in (1). Inserting the Betti numbers of a sphere, we obtain the condition
1 + (−1)n = 1, which is clearly never satisfied. �
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Table 1. The table of Betti numbers for the double pendulum

βp 0 1 2 3 4 5 6 7
−5 < h < −3 1 0 0 0 0 0 0 1
−3 < h < 3 1 0 1 0 0 1 0 1
3 < h < 5 1 0 2 0 0 2 0 1

5 < h 1 0 2 0 0 2 0 1

Double spherical pendulum. By the double spherical pendulum we mean the
mechanical system consisting of two coupled spherical pendula in a constant gravi-
tational field. To be specific, let the position vectors of the two pendula be q1 and
q2 with fixed lengths l1 = 2 and l2 = 1 and with masses m1 = m2 = 1. Assume
the acceleration due to gravity is g = 1. The configuration space is S2 × S2, the
product of a sphere of radius 2 and a sphere of radius 1. The energy of the system
is

E(q, q̇) =
1
2
‖q̇1‖+

1
2
‖q̇2‖+ (2q1 + q2) · k,

where k = (0, 0, 1). For any energy level h > −5, the energy level set

M(h) =
{

(q, q̇) ∈ T (S2 × S2)|E(q, q̇) = h
}

projects onto C(h) =
{
q ∈ S2 × S2|V (q) ≤ h/2

}
. For any q ∈ C(h), the preimage

of the projection φ : M(h) → C(h) is φ−1 =
{
p ∈ R3|p2 = h− 2V (q)

}
. This is a

3-sphere if V (q) < h/2, and a point if V (q) = h/2. That is, since {V (q) = h/2}
is precisely the boundary of C(h) in S2 × S2, we can describe M(h) as a 3-sphere
bundle over C(h), with the spheres collapsing to points on the zero velocity set
∂C(h).

From this description, we can detect the energy levels at which bifurcations in the
manifolds M(h) occur, and can compute the homology of M(h) in each parameter
interval. Clearly the topology of M(h) can only change when the topology of
C(h) changes. As a sub-level set of the potential function, this can only occur
at the bifurcation values of the potential function. The potential has four critical
points with critical values −5 (both pendula down), −3 (long pendulum down,
short pendulum up), +3 (long pendulum up, short pendulum down), and 5 (both
pendula up). Thus, there are four distinct energy ranges for the structure of the
manifold M(h). The Betti numbers of M(h) for each range are listed in Table 1.

Note that when h > 5 there are no restrictions on the configuration of the
pendulum, and for each q ∈ S2 × S2, the fiber φ−1(q) is a sphere in Tq(S2 × S2).
That is, M(h) is (up to a rescaling) the unit tangent bundle of S2 × S2. In fact,
the flow is the geodesic flow of the Jacobi metric. In all the other cases, the torsion
subgroup T3(M(h)) = 0. So Corollary 2.2 would require the identity

|β0 − β1 + β2 + 1− β6| = 1 + β1 − β4.

In all cases, β0 = 1 and β1 = β4 = β6 = 0; so the identity simplifies to |2 + β2| = 1.
Since β2 is non-negative, this equality is clearly never satisfied. Thus, for h < 5,
the flow is not a geodesic flow.

Kovalevskaya top. In his classic paper, Iacob [12] classifies the integral manifolds
of a Kovalevskaya top. This three-degree-of-freedom problem has a symmetry and
the integrals of energy and angular momentum. Fixing energy equal to h and
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Table 2. The table of Betti numbers for the Kovalevskaya top

βp 0 1 2 3
S3 1 0 0 1

S1 × S2 1 1 1 1
(S1 × S2)#(S1 × S2) 1 2 2 1

RP 3 1 0 0 1

the magnitude of angular momentum equal to p 6= 0 defines a four-dimensional
invariant subset of the phase space Ih,p. Ih,p is invariant under SO2 action that
leaves the angular momentum integral fixed. The quotient space Ĩh,p = Ih,p/SO2

is in general a three-dimensional manifold. A collection of curves (the bifurcation
set) divides the (h, p)-parameter space into four open domains where Ĩh,p is of
constant topological type. The four types are S3, S1 × S2, (S1 × S2)#(S1 × S2)
(the connected sum), and RP 3 (real projective 3-space). Table 2 lists the Betti
numbers of these four topological types.

The unit circle bundle of S2 is topologically RP 3. This is the case where there
is sufficient energy for the Jacobi metric to be globally defined, and the flow of
the top is a geodesic flow. In the other three cases, the torsion group T1 = 0.
So if the space is to be the unit tangent bundle of a surface, that surface must
be orientable. Theorem 3.1 below will show that the only 3-manifold that can be
the unit tangent bundle of a compact, connected orientable surface is the 3-torus
T 3. The Betti number table shows that none of the remaining three manifolds is
homeomorphic to T 3; so none of these can admit a geodesic structure. That is, the
flow is a geodesic flow if and only if Ĩh,p = RP 3.

There is a vast literature on the motion of a rigid body, and many special cases
have the same or similar types of integral manifolds – see for example [9], [13], [25]
and the references therein.

Theorem 3.1. If P is a compact connected orientable 3-manifold, then for P to
be the unit tangent bundle of an orientable surface, either the homology of P must
be that of the three-dimensional torus,

Hk(P ) =


Z3, k = 1, 2,
Z, k = 0, 3,
0, k > 3,

or there must be a g > 1 such that

Hk(P ) =


Z2g, k = 2,
Z2g ⊕ Z2−2g, k = 1,
Z, k = 0, 3,
0, k > 3.

The proof is given in § 6.3. Note that the theorem shows that there is only
one compact 3-manifold with torsion-free homology which can be the unit tangent
bundle of an orientable surface: the 3-torus, which is the unit tangent bundle of
the 2-torus.
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4. Geodesic Flows in the N-Body Problem

The N -body problem refers to the motion of N point masses under their mutual
gravitational attraction. When the masses move in R3, the problem is referred
to as the spatial N -body problem; when they are all restricted to a single plane,
it is known as the planar N -body problem. In the N -body problem, the integral
manifolds are the level sets of center of mass, linear momentum, angular momentum
~c and energy h. We denote the integral manifolds for the planar problem by m(c, h)
and the integral manifolds for the spatial problem by M(c, h) (where c = |~c|). The
topology of these manifolds varies as ~c and h vary. When c 6= 0, the topology of
the integral manifolds depends only on the quantity ν = −hc2.

There are also rotational symmetries. In the planar problem, there is a natural
SO2 symmetry. In the spatial problem, the cases of zero and non-zero angular mo-
mentum are distinct. With non-zero angular momentum, the angular momentum
vector ~c creates a preferred direction, and the only symmetry is the SO2 symmetry
of rotations about the angular momentum vector. For zero angular momentum,
there is a full SO3 symmetry. In each case, the quotient space of the integral mani-
fold is known as the reduced integral manifold, and represents the lowest-dimensional
set on which the dynamics of the N -body problem is displayed. The reduced inte-
gral manifolds are denoted by MR(c, h) and mR(c, h), and have dimensions

dim (mR(c, h)) = 4N − 7,

dim (MR(c, h)) =
{

6N − 11, c 6= 0,
6N − 13, c = 0.

When the action is free, the reduced spaces are manifolds. The planar action
is always free, as is the SO2 action in the spatial problem with non-zero angular
momentum. But in the spatial problem with zero angular momentum, those con-
figurations with all position and momentum vectors parallel have S1 isotropy, while
all other configurations have trivial isotropy. The presence of two different isotropy
groups means that the reduced space is not a manifold. We will exclude this case
from consideration.

In all other cases, the reduced integral manifolds are all odd-dimensional man-
ifolds, while the integral manifolds themselves are all even-dimensional. So it is
on the reduced manifolds that we might look for geodesic structures. Combining
the topological and homological results of [6], [7], [16], [19] with the results of this
paper, we can determine whether or not the N -body flow on the reduced integral
manifolds is a geodesic flow in the following cases: (i) the planar N -body problem
for all N , c and h, (ii) the spatial 3-body problem for non-zero c and all h, (iii) the
spatial N -body problem with hc2 positive.

The two remaining cases are the spatial N -body problem with N ≥ 4, negative
energy and non-zero angular momentum, and the spatial N -body problem with
zero angular momentum. In both cases, we conjecture that the integral manifolds
do not admit a geodesic structure. But there is at present no topological or homo-
logical description of these manifolds sufficiently detailed to allow the question to
be decided. In all of the other cases, the results are as follows:

Theorem 4.1. In the planar N -body problem, the flow on the reduced integral
manifold mR(c, h) is a geodesic flow if and only if c = 0 and h ≥ 0.
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In the spatial N -body problem with non-negative energy and non-zero angular
momentum, the flow on the reduced integral manifold MR(c, h) is not a geodesic
flow.

In the spatial 3-body problem with h < 0 and c 6= 0, the flow on the reduced
integral manifold MR(c, h) is not a geodesic flow.

Proof. With the exception of the planar problem with c = 0 and h ≥ 0, the re-
sults are all negative. All of the negative results are obtained by applying Corol-
lary 2.1. The relevant homology group is H2N−4 (mR(c, h)) in the planar prob-
lem; H3N−7 (MR(0, h)) in the spatial problem with zero angular momentum; and
H3N−6 (MR(c, h)) in the spatial problem with non-zero angular momentum.

We will analyze the various cases by considering the different combinations of
angular momentum (zero vs. non-zero) and energy (negative vs. non-negative) for
both the spatial and planar problems.

Case c = 0, h ≥ 0: In the planar problem, the SO2 action is free, and we shall
show in Proposition 5.1 that the flow on mR(0, h) is a classical system. Since h ≥ 0,
the Jacobi metric is globally defined, and so the flow is geodesic.

Case c = 0, h < 0: In the planar problem, Smale [27] showed that mR(0, h) ∼=(
CPN−2 \∆

)
×R2N−3, where ∆ denotes the collision set. The homology of mR(0, h)

is the same as that of CPN−2\∆. As an open (2N−4)-manifold, it has no homology
in dimension 2N − 4, violating Corollary 2.1.

Case c 6= 0, h ≥ 0: In the planar problem, the same result of Smale [27] applies:
mR(0, h) ∼=

(
CPN−2 \∆

)
× R2N−3. In the spatial case, Cabral and McCord [7]

show that the non-zero Betti numbers of MR(c, h) are strictly increasing, which
violates the requirement βk = βk+n−1 of Theorem 2.2.

Case c 6= 0, h < 0: In this range, there are no homology calculations for MR(c, h)
for four or more bodies. For the 3-body problem, the cohomology groups are
computed in [19].1 In the spatial 3-body problem, it is β3 that must be non-zero.
But an inspection of the tables in [19] or [17] shows that β3 = 0 for all energy levels.

In the planar N -body problem, we need to show that β2N−4 = 0. Applying the
homology formula of [16, Theorem 1.3] to dimension 2N − 4, we obtain

H2N−4 (mR(c, h)) ∼= H2N−4 (rR(ν))⊕H−1 (rR(ν), bR(ν))
= H2N−4 (rR(ν)) ,

where rR(ν) and rR(ν) are superlevel- and level-sets of the potential function V on
the reduced configuration space CPN−2 \∆. That is,

rR(ν) = {q ∈ CPN−2 \∆|V (q) ≥
√
ν} and bR(ν) = V −1(

√
ν).

At a regular value, bR(ν) has a tubular neighborhood in rR(ν), and

rR(ν) ' rR(ν) \ bR(ν).

Thus, rR(ν) has the homology of a non-compact (2N−4)-manifold, and, by Propo-
sition 6.3,

H2N−4 (mR(ν)) ∼= H2N−4 (rR(ν)) ∼= 0.

�

1The table in [19] contains a mistake. The cohomology groups for positive energy are given
incorrectly, and are corrected in [17].
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5. Zero Angular Momentum

As we have seen, the homology considerations are useful in identifying cases in
which the reduced manifold does not have a geodesic structure. In contrast, there
is one case when the flow of the N -body problem on the reduced space is a geodesic
flow.

The following observations are implicit in [2], [14], and we include them to com-
plete our discussion of the N -body problem. Refer to [1], [14] for background and
additional details. A classical Hamiltonian system with symmetry is a Hamiltonian
of the form H = K + U where H : T ∗M → R, Kq(pq) = 1

2‖pq‖2q is the kinetic
energy, U(q) is the potential energy, and additionally there is a Lie group action
G×M →M which leaves U invariant and whose lift to the cotangent bundle is a
symplectic action on T ∗M which leaves H invariant. Let g∗ be the dual of the Lie
algebra of G, and let 〈α, β〉 = α(β) when α ∈ g∗ and β ∈ g.

The equivariant momentum map J : T ∗M → g∗ is given by

〈J(pq), ξ〉 = 〈pq, ξM (q)〉

where ξM denotes the infinitesimal generator of ξ on M . Noether’s theorem asserts
that J is an integral of the motion.

Let µ ∈ g∗ be a regular value, Gµ = {g ∈ G : g · µ = µ}, Qµ = J−1(µ)/Gµ. In
this situation the Meyer [20], Marsden-Weinstein [15] reduction theorem states that
if the G-action is free and proper, then Qµ is a smooth symplectic manifold and
the flow defined by H drops naturally to a Hamiltonian flow on Qµ. However, in
general Qµ is not a cotangent bundle and the reduced Hamiltonian is not the sum
of kinetic energy plus potential energy. The next Proposition states that in case
the momentum is zero, however, the reduced space is always a cotangent bundle.

Proposition 5.1. Let µ = 0 be a regular value and let the G-action on M be free
and proper, so that the quotient space M/G is a smooth manifold. Then Q0 =
J−1(0)/G is the cotangent bundle of M/G, and the reduced Hamiltonian system
is a sum of a kinetic energy and a potential term. That is, if µ = 0, the reduced
system is a classical system.

Remark. Since in this case the system is a classical system, the Jacobi metric is
locally defined on H = h. The Jacobi metric will be globally defined provided
M ⊂ U−1((−∞, h]).

Proof. There are several ways to prove this. The simplest observation is that when
µ = 0 the amended potential is just the potential on the quotient space and from
the equivariance everything drops down to the quotient space nicely — see the
discussion in [14] for background.

For a direct approach, first observe that, by the equivariance, G0 = G. We will
describe the reduced spaceQ0 = J−1(0)/G, by showing how to project along certain
directions in the fiber to get the reduction to the zero momentum set. Define the
following subspaces for a point q ∈M :

Wq = {ξM (q) ∈ TqM : ξM is the infinitesimal generator of ξ ∈ g},

Hq = W 0
q = {pq ∈ T ∗qM : 〈pq, w〉 = 0, w ∈Wq},

Vq = H⊥q = {aq ∈ T ∗qM : Kq(aq, pq) = 0, ∀pq ∈ Hq}.
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Wq is tangent to the G-orbit at q, Hq is the annihilator of Wq, and Vq is the K-
orthogonal complement of Hq. Thus, T ∗q = Hq⊕Vq. The key observation is that the
horizontal space Hq can be identified with the zero momentum level over q ∈M .

By the equivarance U is constant on G orbits, and so we can define the reduced
potential energy function Ũ : M/G→ R by Ũ([q]) = U(q).

Since we have separated out the zero momentum level Hq of the fiber over q ∈M ,
we now can project along the orthogonal complement Vq to get the reduced space.
However, as noted above, the vertical space Vq is tangent to the group orbits at every
point. Therefore, we can identify

⋃
qHq with T ∗(M/G). Define K̃ as the restriction

of the metric K to the subspace Hq. If pq ∈ J−1(0), then 0 = 〈J(pq), g〉 = 〈pq,Wq〉
or pq ∈ W 0

q = Hq; so if pq ∈ J−1(0), then K(pq) = K̃(pq). Thus, the Hamiltonian
on the reduced space is H̃ = K̃ + Ũ . �

6. Homology of Tangent Bundles

This section develops the proofs of the results presented in § 2. To develop nec-
essary conditions for a manifold to have the structure of a unit tangent bundle, we
start with such a structure, and work out its homological consequences. To under-
stand the homology of T0M , we will need to consider two features: compactness
and orientability.

Proposition 6.1. If M is a manifold, and T0M is its unit tangent bundle, then
M is compact if and only if T0M is compact.

Proposition 6.2. For any manifold M , T0M is an orientable manifold.

Proof. For any manifold M , its tangent bundle TM is orientable. The sphere
bundle is a codimension 1 subbundle that separates the tangent bundle; so it too
is orientable. �

That is, T0M is orientable, even when M is not. However, the orientability of M
is tied to a different notion of orientability of T0M – that of T0M as a bundle over
M . In fact, the requirement that p : T0M →M be orientable is one way of defining
the orientability of M . This is equivalent to requiring that π1(M) acts trivially on
the homology of the fiber H∗(Sn−1).

To investigate the homology of manifolds, these two properties of compactness
and orientability are fundamental. Of course, it is the combination of compactness
and orientability that guarantees duality. More useful for our purposes are the
following properties [8]:

Proposition 6.3. If M is an n-manifold, and H∗(M) is the homology of M with
integer coefficients, then

(1) Hp(M) = 0 for p > n.

(2) Hn(M) ∼=
{
Z if M is compact and orientable,
0 otherwise.

(3) The torsion subgroup of Hn−1(M) is

Tn−1(M) ∼=
{
Z2 if M is compact and non-orientable,
0 otherwise.

Note that those parts of Theorem 2.1 which do not depend on the orientability
or compactness of the base manifold (i.e., that T0M is always orientable, and that
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H2n−2(T0M) and H2n−1(T0M) are always torsion-free) follow immediately from
these results. All of the other results of Section 2 will depend on the Gysin sequence
[11], [29]. Given a sphere bundle Sn−1 → E → B, there is an exact sequence

. . .→ Hk−n+1(B;Z)→ Hk(E)→ Hk(B)→ Hk−n(B;Z)→ . . . ,

where H∗(B;Z) indicates the homology of B with twisted coefficients. If π1(B)
acts trivially on Hn−1(Sn−1), then H∗(B;Z) = H∗(B); but if the action is non-
orientable, H∗(B;Z) may be very difficult to compute. We will consider the two
cases separately.

6.1. Non-orientable bundles. If the bundle is non-orientable, we cannot give as
complete a description, but there are a few useful pieces of information that can be
extracted.

First, if M is a non-orientable manifold, then Proposition 6.3 guarantees that
Hn(M) = 0 and Hn−1(M) = Fn−1(M)⊕Tn−1(M), with Fn−1(M) free abelian and
Tn−1 equal to Z2 if M is compact and trivial if it is not. The other useful result is
that the homology with twisted coefficients has H0(M ;Z) ∼= Z2 [29].

Since Hk(M) = 0 for all k < 0 and all k ≥ n, there are no non-trivial boundary
maps in the Gysin sequence, and for all k we have

0→ Hk−n+1(M ;Z)→ Hk(T0M)→ Hk(M)→ 0.

In particular, in dimension n− 1 we have

0→ Z2 → Hn−1(T0M)→ Fn−1(M)⊕ Tn−1(M)→ 0;

so the torsion subgroup of Hn−1(T0M) satisfies

0→ Z2 → Tn−1(T0M)→ Tn−1(M)→ 0.

That is, the torsion group is Z2 if M is non-compact, and has order four if M is
compact.

6.2. Orientable bundles. For an orientable manifold M , the Gysin sequence of
the unit tangent bundle simplifies to

. . .→ Hk−n+1(M)→ Hk(T0M)→ Hk(M)→ Hk−n(M)→ . . . .

The boundary map Hk(M) → Hk−n(M) can only be non-trivial if Hk(M) and
Hk−n(M) are non-trivial. From Proposition 6.3, we see that this can only occur
when k = n and M is compact.

The Gysin sequence thus splits into the following sequences:

0→ Hk(T0M)→ Hk(M)→ 0

for 0 ≤ k ≤ n− 2,

0→ H1(M)→ Hn(T0M)→ Hn(M) ∂→ H0(M)→ Hn−1(T0M)→ Hn−1(M)→ 0,

and
0→ Hk−n+1(M)→ Hk(T0M)→ 0

for n+ 1 ≤ k ≤ 2n− 1.
We can replace all of the groups Hk(M) in these sequences, and obtain a set

of relations between the various homology groups of T0M . We consider the cases
when M is compact and non-compact separately.
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First, suppose M is non-compact. Then Hn(M) = 0, and the sequence simplifies
to

0→ Hk(T0M)→ Hk(M)→ 0

for 0 ≤ k ≤ n− 2,

0→ Z→ Hn−1(T0M)→ Hn−1(M)→ 0,

and
0→ Hk−n+1(M)→ Hk(T0M)→ 0

for n ≤ k ≤ 2n − 1. Combining these, we obtain the following relations between
the homology groups of T0M :

• H0(T0M) = Z,
• H2n−1(T0M) = 0,
• Hk(T0M) ∼= Hk+n−1(T0M) for 1 ≤ k ≤ n− 2,
• 0→ Z→ Hn−1(T0M)→ H2n−2(T0M)→ 0.

Since H2n−2(T0M) is torsion-free, it follows from the exact sequence that
Hn−1(T0M) is likewise. Thus the non-compact, orientable condition of Theorem 6.2
follows from these relations, as does Theorem 2.2.

Now, suppose M is compact. The only difference lies in the boundary map
Hn(M) ∂→ H0(M). If M is compact, connected and orientable, then Hn(M) ∼=
H0(M) ∼= Z. The boundary map is a homomorphism Z → Z, which can also be
thought of as multiplication by an integer. In fact, that integer is simply the Euler
characteristic of M , χ(M) =

∑n
i=0 βi(M) [11]. The non-trivial portion of the Gysin

sequence becomes

0→ H1(M)→ Hn(T0M)→ Z χ(M)−→ Z→ Hn−1(T0M)→ Hn−1(M)→ 0.

Combining this with Hk(T0M) ∼= Hk(M) for 0 ≤ k ≤ n − 2 and Hk−n+1(M) ∼=
Hk(T0M) for n+ 1 ≤ k ≤ 2n− 1, we have

• H0(T0M) ∼= H2n−1(T0M) ∼= Z,
• Hk(T0M) ∼= Hk+n−1(T0M) for 2 ≤ k ≤ n− 2, and
• there is an exact sequence

0→ H1(T0M)→ Hn(T0M)→ Z χ(M)−→ Z→ Hn−1(T0M)→ H2n−2(T0M)→ 0.

Since H2n−2(T0M) is torsion-free, the torsion subgroup of Hn−1(T0M) is the
cokernel Z/χ(M)Z of χ(M) : Z → Z. That is, Tn−1(T0M) must be cyclic, with
|Tn−1(T0M)| = |χ(M)|. This completes the proof of Theorem 2.1. The Betti
number relations of Theorem 2.3 also follow immediately. The only element of the
theorem requiring further discussion is the formula

n−2∑
i=0

(−1)iβi(T0M) + (−1)n(1− β2n−2(T0M)) = |Tn−1(T0M)|.

Having established that |Tn−1(T0M)| = |χ(M)|, it remains only to show that

χ(M) =
n−2∑
i=0

(−1)iβi(T0M) + (−1)n(1− β2n−2(T0M)).
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The identities Hk(T0M) ∼= Hk(M) for 0 ≤ k ≤ n− 2 and Hk−n+1(M) ∼= Hk(T0M)
for n+ 1 ≤ k ≤ 2n− 1 imply that

βi(M) =
{
βi(T0M), 0 ≤ i ≤ n− 2,
βi+n−1(T0M), 2 ≤ i ≤ n.

Inserting these, and observing that βn(M) = β2n−1(T0M) = 1, provides the result.

6.3. Tangent bundles of surfaces. We close with the proof of Theorem 3.1.

Proof. From the classification of surfaces, we know that a compact orientable sur-
face is characterized by its genus. The genus g surface has homology

Hk(Sg) =


Z2g, k = 1,
Z, k = 0, 2,
0, k > 2,

and Euler characteristic χ(Sg) = 2 − 2g. The unit tangent bundle, as a compact,
connected orientable 3-manifold, has H0(T0Sg) ∼= H3(T0Sg) ∼= Z. To determine H1

and H2, we turn to the Gysin sequence

0→ H1(Sg)→ H2(T0Sg)→ H2(Sg)→ H0(Sg)→ H1(T0Sg)→ H1(Sg)→ 0.

Inserting the known values for H∗(Sg), this becomes

0→ Z2g → H2(T0Sg)→ Z 2−2g−→ Z→ H1(T0Sg)→ Z2g → 0.

When g = 1 (i.e., when the surface is the torus), the map 2 − 2g = 0 and
H2(T0Sg) ∼= H1(T0Sg) ∼= Z3. In all other cases, multiplication by 2 − 2g produces
the torsion subgroup Z2−2g in H1(T0Sg). �
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