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RESUME

On considére un systéme d’équations de la forme eu = A(#) u pour lequel la ma-
trice A(t) de dimension 2n est réelle et hamiltonienne ; quel que soit ¢ dans I’intervalle
[— oo, + 0], les valeurs propres de A(f) sont supposées distinctes et imaginaires ; enfin,
pour tout j =1, d’ A/dt/ appartient & Iespace fonctionnel L, (— oo, + o).

Dans ces conditions, on peut choisir les vecteurs propres d,(f), ..., d,(t) de A(¢)
de facon lisse, c’est-a-dire de maniére que d, = d,,, pour i = 1, 2,..., n et que lasuite
(d,(t),...,d,,(t)) constitue une base symplectique de C" en tout point ¢. Moyennant
quoi, les n fonctions L;(¢,u) = <d,(t),u><d;,,(t),u> (1 <i<n) sont indépen-
dantes et forment un systéme en involution. Les fonctions I,,..., I, constituent des
invariants adiabatiques du systéeme e# = A(f)u au sens que voici. Soient (7, ,u,) des
constantes et ¢(r,€) la solution du systeme ez = A(f)u qui satisfait la condition ini-
tiale u(t,) = u, ; posons J,(f ,€) = [(t,¢ (t,€)). 1l en résulte que

*F (o, €) =T, (=, €) = 0(e)

lorsque € tend vers O* par valeurs positives, et cela pour tout n = 1, 2,... . Ce résul-

tat est la généralisation naturelle d’une théoreme de Littlewoods qui caractérise les inva-
riants adiabatiques d’un systéme linéaire a un degré de liberté.

INTRODUCTION

This paper is a shortened version of [5]. In the classical literature a
conservative dynamical system of n degrees of freedom was considered
solved when n independent integrals in involution were found. One need
only look at the chapters in Whittaker [9] titled “The soluble problems of
particle dynamics” and “The soluble problems of rigid dynamics™ to see
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the importance of n integrals in involution. Almost every example is ana-
lyzed by such integrals.

In systems which vary slowly with time, integrals must be replaced
by quantities which also vary slowly with time, i.e., with adiabatic inva-
riants. Of course the knowledge of n independent adiabatic invariants in
involution for a dynamical system does not imply that the system is

“solved” as it does in the conservative case. However, a great deal of ma-
thematical and physical information can be obtained from adiabatic inva-
riants [3], [4], [1].

In order to illustrate our theorem consider the system

1= A d (1.1)
u=~Au ; -=— .
dt

where « is a 2n dimensional column vector and A is a constant 21 X 2n
real Hamiltonian matrix with distinct pure imaginary eigenvalues A, . . . A
Let the eigenvalues be ordered so that A,, = — A, = A, for s = 1 Ce, L
If ¢;,...,c,, are row eigenvectors of A correspondmg to Ap,... ,)\2n
(i, A = A,c,) which satisfy the reality condition Copp = Cgy § = 1 , N
then the n real functions I (1) = (ciu) (cgpp,u) = Ic ul2 s =1, , N

form a set of n independent integrals in involution for 1. 1).

If the matrix A were now allowed to vary slowly with ¢, then one
would expect that there would exist # functions close to I,..., I, which
also vary slowly with ¢. This is the general content of our result

In order to be precise we must make some definitions. A function
A)

d
[ (=0 ,) = R or Cwill be gentle if dt{

€L, (=, fors=0,1,2,...
N

d
If f or even d—];is gentle then lim L s =0, 1, 2,...exists and so we may

f>+te
consider f and, all its derivatives as defined and continuous on [— oo, 0]

The assumption that a system varies slowly with ¢ is expressed by conside-
dering a system of the form

eu=Au (1.2)

dA
where A is a 2n x 2n real matrix such that each entry of-C-Z? is gentle and
€ is a small positive parameter. This assumption is more easily understood

du
when one uses the parameter 7 = €~ !¢ so that 1.2) becomeszi———~ A(eT) u.
T

Furthermore the system 1.2) is assumed to be Hamiltonian. Thus
the matrix S(¢) = — JA(¢) is symmetric where J is the usual 21 x 2n matrix
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0 I
of Hamiltonian- mechanics given by J = ( I” (; > The system 1.2)

. ) n n
is then written in the Hamiltonian form

oH
u=7J]— (1.3)
ou

where

1
H=—uT"S(t)u. (1.4)
2€

Let ¥(¢,¢,,u,,¢€) be the solution of (1.2) which satisfies
Yty , 2ty , Ug,€) = U,.
A function I(u, ¢) will be an adiabatic invariant of 1.2) if
J(eo, tg,ug,€) —I(—,t,,uy,€) =0(e°) as e~ 0

foralls =0,1,2,... where J(¢,2,,uy,€) =1(W(t, ty,,uy,€),1).

Let I,,...,I, be € functions of (u,?) € R2"*! The Poisson bracket
of I, and I, {I, , L} is defined by

oI ol

{L,1}) =—+L71=— 1.5

Y ou Ju (1.5

The set of functions I,, .. ., I, are said to be in involution if {I, , I.} = 0 for

1 <s,r<Q The set of functions I,,...,I, are said tc be independant
al ol

if a—l, c é—Q are independent vectors for all (u, t) except for a subset
u u

+ = 5 s
of R?*""! with no interior.

We can now state our main result.

Theorem 1. Let the eigen values of A(t) be distinct and pure imaginary for

each te [— oo, ). Then the system (1.2) admits n independant adiabatic
invariants in involution.

In fact the adiabatic invariants are constructed as follows. Let
Ry (8); » = = 5.0, (F)
be the eigenvalues of A (#) with the order such that
Nws O =—N@ =N,() for s=1,...,n

Let ¢,(?),...,c,(f) be the eigenvectors of A(#) of unit length corres-
ponding to A, (?),..., A, (f). The ¢, are determined uniquely up to * Cs
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dc
and it will be shown that the entries Ofd—ts are gentle. Indeed any smooth

dc —
choice of eigenvectors with d—; gentle will work. Let c,,, =7¢, for

s=1,...,n so thatc,,...,c,, are a full set of eigenvectors of A, Here
as before we take the ¢, to be row eigenvectors so ¢ (£) A(#) = A (1) ¢(2).
Then the n adiabatic invariants of theorem 1 are

L(u, D) = le,(0) Ty, (D171 (e w) (cgpp () 1)
= lc, () JeL (O le () ul? (1.6)

fors =1,...!n

In order to compare our theorem with similar results in the literature
consider the equation

€2f + ¢2(1) £ = 0. (1.7)

d
where ¢ is a positive function of ¢ such thatd—d)is gentle and ¢ (o) > 0,

¢(— =) > 0. The equation (1.7) can be written as a system in the form
(1.2) by introducing € = n. In this case the matrix A turns out to be

0 1
( 52 0) which satisfies the hypothesis of our theorem. The eigenva-

lues of A are * i¢p(#) and the eigenvectors are (% i¢, 1). The quantity
lc, (2) JcsT+n(t)! in this case is 2¢ and so the adiabatic invariant is

RS : R PP

I 2¢(z¢£+n)( 9§ + 1) 2¢(¢ £+ %)
This complete -result was first obtained by Littlewood [6] and the reader
is referred to this paper for a discussion of earlier partial results. Recently
Wasow [7] has given an eloquent proof of Littlewood’s theorem by fully
describing the form of the fundamental matrix solution of equation (1.7).
Wasow has even obtained the precise asymptotic order of the adiabatic
invariant under further mild assymptions on ¢ by using turning point
theory [8]. Indeed the present authors were first stimulated by the results
of Professor Wasow and wish to thank him for several enlightening conver-
sations on the subject of adiabatic invariants.

2. OUTLINE OF THE PROOF

Here we shall give a brief outline of the proof of the main theorem.
For details see [5].
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Lemma 1. Let A, (?), ..., \,, () be the eigenvalues of A(¢) and
€y () m = 5 515,17}

the corresponding smooth row eigenvectors of unit length. Then 5\3 (1)
and the entries of ¢ (¢) are gentle for s = 1,...,2n.

Proof : The proof of this lemma is elementary.

With the information from lemma I we shall construct a symplectic
change of variables. Let the ordering be such that A, (£) = — A (¢) = A, (7)
and-g.z A1) = e (1) tors = 1; ..+ 7.

Since A is Hamiltonian AJ + JAT = 0 so
N Jel = ¢, AlcT = — ¢, JAT¢T = — A\ ¢ JcT.

Thus ¢, Jc; = 0 unless A, + A\, =0 or |r —s|=n. Since ¢, JcI = 0 for
all s is impossible we have that ¢ Jel # 0 when |r — s| = n. Now let
ISrs<sn

¢ e, =cJef =c el =c, 1 e T =—¢ 1T,
and so c,Jan is pure imaginary. By interchanging A\,, A,,, and c,, c,,,, if
necessary we may assume c,Jcl,, = ai with @ > 0. Now define
d, (1) = lc, (1) Je, ., (DT 1M? ¢, () for r=1,...,n
and d,,, (1) = d,(t) forr = 1,...,n. Thus we have d JdT = O for |r — s|#n

and d,Jd,,, = + i

Remark : Note that the adiabatic invariants defined in the introduction are
just Lz, u) = (du) (d, ., u).

Let P(#) be the 2n x 2n matrix whose " row is d,. Then from the
above P(#) JP(£)T = iJ and
P(1) A(t) P7H(0) = A () = diag (\, (D), ..., N, (D).

Note that by lemma 1 the matrix P has gentle entries. It will be important
in the argument that follows to keep track of the fact that the equations
I
" ) . Now
0

n

0]
are real. Let Q be the 2n x 2n matrix defined by Q = (I "
by construction P = QP and so QA,Q = A,.

We are now ready to make the change of variables x = P(f) u in
equation (1.2) to get

ex = (A (1) + €A (1) x (2.1)

where
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Ay (1) = P(t) A(D) P(n)? (2.2)
A () =P PTL(1). (2.3)

Since PJPT =iJ and |det P(#)| = 1, A (?) is gentle. A, and A, satisfy
the reality condition QA,Q = A, s =0, 1. The change of variables
x = P(#)u is a symplectic change of variables with multiplier i and so
equation (2.1) is Hamiltonian.

The new Hamiltonian is of the form

e ' {Hy(x,?) + eH, (x, 1} (2.4)

1 1
where H,(x,t) = - xT Sy(Hx, Hy(x, ) = ) xT S, (#)x. Here, both the

matrices S, = — JA, and S; = — JPP™' are symmetric, because PJPT = iJ.
Since QJ = —JQ one sees that S, and S; satisfy the reality condition
QS,Q = —S§,, s = 0,1.

Remark. In the new coordinates the adiabatic invariants of our theorem
now take the simple form I (x, ) = x,x,,,. Thus it is clear that they
are independant and in involution.

The above lemma shows how to diagonalize the equations of motion
to first order. Now we proceed to formally diagonalize the equations to
all orders. In order to do this we shall deal with a class of functions which
we shall now define. A function K (x, #) will be called a GR function if
K, ) =xTS(#)x where S(#) isa 21 x 2n symmetric matrix with gentle
entries which satisfies the reality condition S = — QSQ.

Lemma 2 : Consider a Hamiltonian of the form

° e
e Hx, f,e) = e Y = H (x, 1) (2.5)
= 7l

J=0

where Hy(x , 1) = Y, A (2) XXsins Hy is @ GR function for j =1 and

s=1
the above series is a -formal expansion in €. Then there exists a formal
linear symplectic change of variables

% = }j (j—:) (1) y (2.6)

Jj=0

which transforms (2.5) and hence (2.4) to the Hamiltonian
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. v
e K(y,t,e)=et Y (7) K' (3, 1) 2.7)
j=0

where K® = H, and for j <1

K(y,0= Y a®)y,Vein» (2.8)

s=1
and K/ are GR functions. In (2.6), ®°(y) = I the identity and ),j= 1,
is a 2m x 2n matrix with gentle entries.

The proof of this lemma is carried out with the aid of the Lie trans -
form formulas found in [2]. Now all that remains are some standard
estimates.

By the remark above it is enough to prove that I[(x) = xx,, 1
an adiabatic invariant for the system (2.1) fors=1,...,n. Let m be a
positive integer and consider the truncated change of variables

m j )
x =§ Y (%) <I>’(t)§ v (2.9)
AVERA

(c.f. equation 2.6). Then equation 2.1) becomes

S‘ ( )Af(r) + et Dt e)v (2.10)

where A/ = diag (afl, ...,al,—aj, ..., —dl), af are gentle and pure

imaginary and D(t,€) is a 2n x 2n matrix with gentle entries such that

f ID(t,e)lldt <B for 0<e<e¢,, €, a sufficiently small number.

Now consider ‘the truncated system

ew —g X (—) A’(t)% (2.11)
j=0

Because all the matrices A’ are diagonal with pure imaginary entries the
fundamental matrix solution of (2.11) which is the identity at £ = O
is uniformly bounded for te [— o ,] and € € (0, 1]. Moreover the

functions ww_,,, s = 1,...,n are integrals for 2.11).

Let x, be fixed and v,(e) be computed from

m j
- % D (%) o (0)% v,(€) 50 vy(0) = x,.
FANT
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Let x(¢) = x(¢,€,x,) be the solution of (2.1) satisfying x(0) = x, and let
v(t) =v(t,e,vy(e)) and w(t, €, v,(€))

be the solutions of (2.10) and (2.1 1) respectively which are equal to v, (e)
when t = 0.

Thus x(#) is carried into v(¢) by (2.9) and since ®° =1, ¥/ (£ ) =
for j = 1 we have x (£ =) = v(x ). Represent v in (2.10) by the variation
of parameters formula, with em*1D (¢, €) v as the inhomogeneous term.
Then, by a standard Gronwall inequality estimate we have

v(t) — w(t) = 0(e™),
uniformly for ¢ € [— o, °]. Thus
X, (99) X g4 (0) — X (= ) Xy, (= 00) =
0,(29) Vgp, (2°) — V(= ) vy, (= ) =
W(9) Wiy (9) — Wy(— 0) Wy, (= o) + 0(e™) = 0(e™).  (2.12)

~

Since m is arbitrary we have shown that
X, (%) Xy, (00) — x (= ) X4y (=)

is asymptotic to zero as € = 0* and so I, = x,x,,, is an adiabatic inva-
riant for (2.1).
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DISCUSSION

Pr. Voros — What similar statements can be made for the adiabatic invariants
of an analogous system where A(f) is now taken to be a periodic function of ¢ ?

Pr. Meyer — [ do not know if the periodic case has been considered separately in
the literature. However, I can comment on what our procedure would vield for perio-
dic systems. If A(#) were T-periodic instead of having a gentle derivative then all of the
changes of variables discussed in section 2 would be T-periodic also. Thus the system
could be diagonalized by a formal, T-periodic, symplectic change of variables. The esti-
mates of this section would all be carried out in the same way with say O replacing —
and T replacing + o=, Only at the last step would a difficulty occur. Since & (£ =) = 0
for all j > 0 we were able to conclude that x (* ) = v (* «). Thus the first equality in
(2.12) would no longer hold. However, the second and third would still hold. This would
mean that an adiabatic invariant could be constructed order by order but would depend
on € in the periodic case.



