SUBHARMONICS IN HAMILTONIAN SYSTEMS

by
K. R. Meyer

I. Introduction:

In this note we shall discuss the existence and nature of subharmonic periodi.
solutions of an ordinary differential equation without damping. Except for the example
the results discussed here have been given in [5] and [6] in greater detail. In order
explain our problem consider the equation

) X+x+ 6x3=ep(wt) or
1

X=y , ¥= -x-5x3+ep(wt)
where all the variables and parameters are real scalors and p dis a smooth 2n
periodic function. We note that 1) is a special case of Duffing's equation with no
damping and therefore can be considered as a 2n/w periodic Hamiltonian system of one !
of freedom.

We shall be interested in the existence of k2m/w periodic solutions of 1)
(subharmonics) whgn w 1is near the integer k,k >4 , and ¢ 1is small. Particular att
will be placed on the dependence of these solutions on the parameter w .

When e=0 the origin, x = y=0 , can be considered as a 2Tr/w periodic solu
of 1) with charaéteristic multipliers exp (+2mi/w) . Since the characteristic
multipliers are not +1 for w>1 the usual implicit function theorem argument yields
existence of an eo(w) such that for each e , Ogegeo(w) » the equation 1) has a
2n/w periodic solution ®(t,w,e) with -0 as e—-0 . Moreover this periodic solut
is locelly unique in the sense that there exists a neighborhood of ¢ that contains no
other 2m/b periodic solutions for fixed w and e . We shall call ¢ the harmonic
solution of 1).

If e0and w=k then the characteristic multipliers of ¢ are kth
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roots of unity and so one can not conclude from the first approximation whether or not

there are periodic solutions of period k2m/w

(subharmonics of order -k ) near ®
when w dis near k .

It is the existence and nature of such solutions that we wish to
discuss here.

In particular we discuss two cases under which one can conclude the existence
of subharmonic solutions. In the first case (lemma 2 ) a great deal of computation is

necessary but very precise information is given about the nature of the subharmonics.

The lemma 2 describes the generic case if one considers the class of all such differential
equations depending on a parameter. See [5] for a precise definition of "generic"
and for a complete discussion of generic bifurcation. We shall not prove lemma 2 here

but state that the proof is based on the usual small parameter methods of bifurcation theory
Goincare‘é continuation method).

In the second case (lemma 3) very little computation is necessary to establish
the existence of the subharmonics but the precise number and nature of these subharmonics

is not give. This lemma is applied to 1) to establish the existence of subharmonics of
all orders k , k>5 . This lemma is established by using a modification of a fixed point
theorem of Birkhoff [1] . It was first used in its present form by J. Palmore and the

author in [6] to establish the existence of a new class of periodic solutions in the

restricted three body problem.

The history of subharmonics is extensive. An early reference is [7] where
subharmonics are called periodic solutions of the second type. More resent references are
[2] and [4] where further bibliographic information can be found.

Subharmonics for
Duffing's equation are discussed in [3] and [8] .

II. Birkhoff's Normal Form:

In order to discuss subharmonics of 1) we shall investigate the period map P

defined by 1) . Let x(t,xo,yo) , y(t,xo,yo) be the solution of 1) such that

X(o,xo,yo) =x_ and y(o,xb,yb) =y, ‘then P is defined by P(xo,yo) =

(X(Qﬂ/@,xb,yo) > y(2n/u,x ;7)) . It is easy to verify that P defines a global area
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preserving diffeomorphism of the plane into itself which depends smoothly on the
parameters 08,e¢, and w . The map P is area preserving since there is no damping term
in 1) . We also note that a fixed point of P corresponds to a periodic solution of
1) of period 2m/u and a fixed point of X (a periodic point of period k )
corresponds to a periodic solution of 1) of period k2m/w . We shall discuss the
particular period map P in section V and discuss the general case here and in the
next two sections. For the present we shall discuss a mapping depending on only one
parameter (essentially N=w-k ) and suppress the other parameters.

Let ¢ : Nx(-7,T) ~%° be a smooth mep where N 1is an open neighborhood of y

the origin in R® such that for each M€(-T,T) the map yn=vC,m) N-R° is area

preserving and \lrn(o) =o . Since wn is area preserving the Jacobian determinant of \,l:n
at the origin is 1 . Thus the eigen values )\l, and )\2 of the Jacobian matrix
at the origin are either real and A= ()\2) -1 or complex and 7\1 =), =_):2 =

In the first case we shall call the origin a hyperbolic fixed point of ¥ and in the

second use we shall call the origin an elliptic fixed point of ¢ .
Henceforth we shall assume that for 1T =o the eigen values of the Jacobian
matrix of wn at o are exp (-t2n 1i/k) where 4 and k are relatively prime

integers o<4<k . Thus the origin is an elliptic fixed point for ¢ and the eigen

values of the Jacobian matrix are kt’h roots of unity for T=o .

For area preserving diffeomorphisms there exists a special theory of coordinate

transformations and canonial forms. These are discussed in detail in [1] In particular

a minor modification of the normalization proceed [1] pages 71 - 74 yields the following:

Lemma. 1. There exists an area preserving change of variables which is well defined in

N'CN for all T7é€(- Tl,'rl) s O <Tl<T s> such that the map wn in the new coordinates

maps (q,p) = (Q,P) where

q:rl/2 cos 8, p=r1/2 sin O
QZR1/2 cos ® , P=r 1/2 sin @
®@=0+214/k+ a'ﬂ+2§1 ;3jrj +vy(cos k H) r(k-z)/z +@

1
R=r+2y (sin k 9) rk/e+R1
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@ZO(r(k'l)/Q)

) R=0(r(k+1)/2)

as r=o

as T~o0o

m=[(k-2)/2]

1/2
®l and B’_I. are smooth functions of 6 , p=r/ and 1T and 2n periodic in

6. Also aq, B; and vy are_smooth functions of T .

At first sight the formulas in the above lemma are quite formidable. The
following remarks will clarify the lemma.
1. Note that there really are two changes of variables in this lemma. First a change of
variables to rectangular variables gq,p .and then a change of variables to polar variables

r,0 . Also note that r is the square of the usual polar radius p . This choice of

‘r is made so that the area preserving nature of the problem is kept.

2. @l and Rl are simply error terms that are higher order in r than any other

indicated term.

3. The linearized equation is in these coordinates just ®=0+21 4/k+ al

R=r . The eigen values of this linear mep are just exp+ (2nd/k+afl . Thus if
a(o) #o then the eigen values of the linearized equation move along the unit circle and

cross the kth root of unity at T=o .

4. Observe that if k=3 the term containing vy dominates the term Blm in the

expression for ® . If k=4 this term containing Yy may or may not dominate the

term Blr_ . For this reason we shall discuss only the case when k>5". The case
when k=3 and 4 are discussed in [5] .

5. In the usual Birkhoff normalization as discussed in [1] and other places the
eigin values of the linear part are assumed not to be kth roots of unity. In this case
the term containing vy does not occur.

Thus the term containing +v arrises from the

fact that we are investigating the case when the characteristic multipliers are kth
roots of unity.

6. The second approximation to the map for T=o is ®=-6+ 2nff//k+ Blr, R=r . Thus
to this approximation circles are carried into circles and if Bl #o the amount of
rotation on each circle varies with the radius. Thus the assumption that (o) $o
‘is the usual twist assumption found in the theory of small divisors and the invariant
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curve theorem of Moser et al.

IIT The Generic Case:

In general one would not expect all the coefficients in the normal form of
lemma 1 to be zero. In [5] we define precisely the mean of "in the general case" or
"the generic case" by use of Baire category theory and show that indeed a(o):#o B
51(0) o and vy(o) $o in general.~

Under the assumptions that these coefficients are not zero it is an easy task
to analyze the map for the existence of periodic points of period k . One simply uses
the usual tricks of small parameter perturbation theory and the implicit function theorem.
We shall not analyze this case here but refer the reader to lemma 1.18 of [5] for a

proof of lemma 2 given below.

Let ¥ be as in section II and chose coordinates as indicated in lemma 1.
Lemma 2: Let a(o) %o , Bl(o) =0 , y(o) o and k>5 . Then there exists an 1,20 .
and smooth functions z- and . s 1=1,2,..., k , from (o,ﬂo)g;(-no,o)
into N' such that ﬁzi(ﬂ) is_the orbit of an elliptic periodic point of least period k

k. 1
for ¥ and Us (7)) is the orbit of a hyperbolic periodic point of least period k for
l .

{ for each Tlé(o,ﬂo) (or (ME€( -T%,o)) . Moreover zi(ﬂ) and wi(ﬂ) tend to zero as

T Ztends to zero.

We note that if tHe above map is the section map about the harmonic solution
of a differential equation then there would exists two subharmonic periodic solutions of
order k , one elliptic and one hyperbolic. These subharmonics bifurcate from the harmonic

as the parameter passes through the value where the harmonic solution has multipliers

that are kth roots of unity.
Remark: Similar conclusions hold if k=4 with [B|>|y| but k=4 with |g|<]y]

and k=3 are considerably different. See remark 4 of section II and [5].

IV The Computable Case:

In applications it is difficult to verify the hypothesis +vy(o) %o of the

previous lemma. In applications the period map is not precisely known and will not be

in the normalized form of lemma 1. Finding the change of variables described in lemms 'l
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is a difficult computations problem. Thus we would.like to dispense with the condition

v (o) #o . In several interesting examples one can compute the coefficients a(o)
and B,(o) eand find they are not zero. (cf. sections V and [6])

With only knowledge that a(o) %o and Bl(o) #o we can use an ingenious

idea of Birkhoff to give the existence of periodic points that bifurcate from the

fixed point at the origin.

Let {§ Dbe as in section II and choose coordinates as described in lemma 1.

Lemma 3: Let a(o) fo , ﬁl(o)#o and k25 . Then there exists an T_>o such that

-for_each T]E(o,'ﬂo) if a(o) Bl(o)<o (resp. T\E(—'ﬂo,o) if a(o) Bl(o)>o) the map

¢ has 4 , *>4>2k , periodic points of least period k . Moreover as T—o these

periodic points tend to the origin.

Remark: Note that this statement is only an existence statement for each 1 E(o,ﬂo) or
M €e( —'ﬂo,o) . In particular 4 may change with 1T . Also one can not assert any

continuity properties of these periodic points in the parameter T except that they tend

to the origin as T ~—o .
Proof in outline: Let a(o) =a and Bl(o) =B and assume for simplicity that ap<o .

Make the change of scale r—Tr and compute the K iterate of \y,nk : (g,r) —»(@k,Rk)

05 =0+ KkN(a + pr( +0 (n3/2) B =r+0 (n?/2)

Since B #:o we can apply the implicit function theorem to assert the

existence of a function p(@,N) such that p is 2m periodic in 6 , p(6,0) ZaB_l
and hence positive for all © if T is sufficiently small, and such that

k =

@ (e P p(e,n) P n)—9=0 .
Thus the circle S,n : r=p(0,TM) 1is a curve of zero rotation for the map ‘l"ﬂk . Since

\p,n is area preserving and leaves the origin fixed the image of the circle S

Il
under wnk must intersect itself, i.e. S,nﬂxlrnk(sn) ¢ . For T sufficiently small boi

S,n and q;,nk(Sn) are smooth curves that meet a ray from the origin in only one point.
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Thus if xESnﬂ\y,ﬂk(S.ﬂ) the angular coordinate of x does not change and since it is

on both Sy and q;nk(STl) its radial coordinate can not change. Thus x is a fixed
point of q;,nk . Profided T 1is small enough one can show that x is not a fixed point of
\llnj , 0<j<k and so x, wnl.(x) 5aens wnk_l (x) are distinct fixed points of \y,nk
or equivalently the orbit of x wunder \Lr,n + By the same argument as found in [1]

pp 215 -18 one can show that either there are an infinite number of periodic points or at

least one has index+1 and at least one has index-1 and so there are at least 2k

fixed points.

V Applications:

We shall now proceed to apply lemma 3 to equation 1. First we note:

For each integer k>3 there exists a smooth function w,fe) defined for e

sufficiently small such that wk(o) =k and the characteristic multipliers-of the harmonic

solution ep(t,wk(e),e) are exp( +2mi/k)
We note that the characteristic multipliers are smooth functions of e and w
provided the multipliers are not near Il - For e=o the characteristic multipliers
are exp( + 2m1i/w) and so the above statement follows from the implicit function theorem.
Now for fixed ¢ define ﬂ:w—wk(e) . For e=o the characteristic multipliers
of the harmonic solution are exp(+2mi/k) (3 (- T|k)J) =exp( +211/k+ Na(N)i) where

- ) ,]}:O
a(o) = 2n1/%° . Thus:

For each integer k>3 and e,N sufficiently small the characteristic multipliers

of the harmonic solution are exp(+2mi/k+ 7 a(M,e)i) where « is & smooth function

and afo,0) = -.?.rr/k2 .
For ¢ sufficiently small a(o,¢) #o and so for fixed e small the hypothesis

a(o) +o of lemma 3 is verified. If we choose the origin as the initial value of the
harmonic solution for t=o then the linearized period map has eigen values
exp( +2mi/k+1 a(M,e)i)

Now we must proce&d to show that the period map is a "twist map" i.e.
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Bl=}=o for ¢ sufficiently small. First consider the case when € =o . When

the equation 1) is derived from the Hemiltonian

2

H:% (u +v2)+6x4/4 .

In this simple case the Birkhoff normalization procedure converges and so there exists a

symplectic change of variables (x,¥) -(u,v) such that

2 2
H(u,v) =H (P—%) -
2
2 2 2 2
u2+v 4 36/8 (uz-l-v) + ..

Change variable by u=(2r)1/2 cos ® , Vv =(2r)1/2 sin ¢ and so

H(B,r) =H(r) =r+ (36/4) r°+ ...

The equations of motion are

r=o0 and é=l+(36/4) T+ ...

One easily computes the period map to be

r=r and cp-'c.p+2n/w+(36ﬂ/2w) T+ ...

Thus for € =o the twist coefficient is (36).77/21») .

Since the coefficients in the normalization described in lemma 1 are continuous in
we can conclude that B#o for € small provided & +o . Thus the hypothesis of

lemme 3 are satisfied and we can conclude:

For each integer k>5 there exists an ﬂo >0 and an € >o such that for

fixed e y © < eSeo equation 1) has at least two subharmonic solutions of order k for

c_a*(e)<w<w*(e)+ﬂo if 6>0 or w*(e)—ﬂo<w<w*(e) if 8<o . Moreover these

subharmonic approach the harmonic solution as —w*(e) .

Tf k=3 we know that <y is zero when €=o but this of course does not

imply that +v will remain zero when ¢ +o .
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Therefore one can not use the methods of



lemma 3 to analyze this case. When k = 4 we know that Y 1is zero when e=o0 and so
is small when efo but small. By an easy extension of lemma 3 one can show that the

same conclusions hold provided ly[ <|3| - Thus the above statement for equation 1)

can be extended to the case when k =4.
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