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Abstract
We investigate the dynamics of resonant Hamiltonians with n degrees of 
freedom to which we attach a small perturbation. Our study is based on 
the geometric interpretation of singular reduction theory. The flow of the 
Hamiltonian vector field is reconstructed from the cross sections corresponding 
to an approximation of this vector field in an energy surface. This approximate 
system is also built using normal forms and applying reduction theory obtaining 
the reduced Hamiltonian that is defined on the orbit space. Generically, the 
reduction is of singular character and we classify the singularities in the orbit 
space, getting three different types of singular points. A critical point of the 
reduced Hamiltonian corresponds to a family of periodic solutions in the full 
system whose characteristic multipliers are approximated accordingly to the 
nature of the critical point.
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1. Introduction

We present a way of studying perturbed resonant Hamiltonian systems with n degrees of free-
dom (n � 2) that we have developed during the last few years. It is a very classical problem 
that has been approached from different points of view by many authors, see for instance [2, 
12, 16, 33, 34, 51, 55, 56] or [23] and references therein. As in our previous works the point of 
view is qualitative, and we provide results on the existence of periodic solutions, their stabil-
ity and possible bifurcations. The procedure can be applied to study the stability of equilibria 
or the existence of invariant tori. We have tried to present a methodology to analyze resonant 
Hamiltonians which exposes our results in an intuitive manner.

The features of the software Mathematica have been applied to perform all the computa-
tions and make the pictures that are essential in the understanding of the problem.

In [45] we give some preliminary results on the existence of families of periodic solu-
tions and their bifurcations for two degrees of freedom Hamiltonians in semi-simple reso-
nance k:  −  1 (k a positive integer). These solutions are typically found in the planar circular 
restricted three body problem around the Lagrange equilateral equilibria L4 and L5.

Our primary goal is to look at classical perturbation theory through the lens of invariant 
theory and singular reduction introduced in [3], with the goal of exposing some of the underly-
ing geometry. The papers [2, 35, 57] and the book [8] are also relevant in the context of singu-
lar reduction theory. Previous approaches using this perspective can be found in the literature; 
see, for instance [6]. The case of regular reduction was addressed in [44, 61]. Here we study 
small perturbations of maximally super-integrable systems and our prime example is perturba-
tions of a system of two harmonic oscillators with rationally related frequencies. Examples of 
Hamiltonians with more than two degrees of freedom will be given in [46].

Let H : M → R be a smooth Hamiltonian of n degrees of freedom on a symplectic mani-
fold M of dimension 2n. Since H is an integral the set N = Nh = {z ∈ M : H(z) = h} is a 
smooth invariant submanifold of dimension 2n  −  1 when h ∈ R is a regular value. The orbit 
space O = Oh  is the quotient space obtained from N  by identifying orbits to a point. In 
general quotient spaces are not even Hausdorff, but in some important examples in mechan-
ics the orbit space is a manifold of dimension 2n  −  2. For example Moser [47] showed that 
the orbit space for the regularized spatial Kepler problem with negative energy is S2 × S2. 
What is essential for Moser theorem and our example treated below is that all the solutions 
are periodic so that N  is foliated by circles. However, in our case not all the solutions have 
the same period and so our orbit space is a symplectic orbifold. Another example of a system 
whose solutions are all periodic is the case of n harmonic oscillators with the same frequency. 
Moser [47] handled this problem, proving that the orbit space is the complex projective space 
CPn−1.

We attack our problem from two points of view. First, the periodic solutions of H define a 
symplectic Lie group action Z : S ×M → M where S  is just the circle group so the action 
is proper and locally free. With this we show that the orbit space O = N/S  is a symplectic 
orbifold by viewing cross sections to the flow as symplectic charts on O. Related recent work 
is presented by Dullin et al [13]. These authors focus on diffeomorphisms and introduce the 
concept of reduction by lifting. They show that after finding a global Poincaré section of the 
symmetry flow, there are coordinates in which the map takes a reduced form allowing for a 
decrease of dimensionality. A Hamiltonian function that is invariant under the action Z  is well 
defined on O and is called reduced Hamiltonian, while its associated equations of motion are 
called reduced system. In many cases a normal form computation together with a truncation of 
the tail is carried out in order to get a Hamiltonian with a continuous symmetry so that reduc-
tion can be applied [61].
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Second, we study the integrals and the invariant spaces defined by them. Any collection of 
harmonic oscillators is integrable if the system has n independent integrals in involution but, 
due to resonance, our problem is super-integrable, i.e. it has more than n independent integrals 
[19, 20, 37]. Actually our system has 2n  −  1 independent integrals, thus it is called maximally 
super-integrable [25, 26]. In this latter case one has to study the reduced Hamiltonian system 
with n  −  1 degrees of freedom obtained after averaging a given perturbation along the periodic 
solutions of the unperturbed system [53, 61], then reducing by the acquired S1-symmetry. As 
the perturbation analysis has to be performed in a space of dimension 2n  −  2 it becomes more 
complicated. We proceed by means of the polynomial invariants associated to the reduction. 
In the particular case of resonant Hamiltonians this leads to get 3n  −  2 polynomial invariants 
with n  −  1 constraints and a model for O as a semi-algebraic variety embedded in R3n−2. 
Besides the n  −  1 constraints one has to add some inequalities that the invariants are required 
to fulfill so that O makes sense, as we shall show with more detail in the forthcoming sections. 
The dimension of the orbit space is always 2n  −  2.

When n  =  2 we shall provide local symplectic coordinates for both the regular and singular 
points of O. These coordinates are related to the polynomial invariants and are obtained from 
the action-angle coordinates. They are useful in the analysis of the dynamics of the reduced 
system, for instance we use them to establish the stability and bifurcations of the critical points 
of the Hamiltonian. An interesting feature of the coordinates that we introduce is that they 
desingularize the singular points of the orbifold O. The corresponding symplectic coordinates 
for the general case n � 2 will be given in [46].

Another goal of our study is to present a classification of the types of points occurring 
in the orbit spaces resulting from the reduction of resonant Hamiltonians with n degrees of 
freedom. Concretely we distinguish among plateau, peaks and ridges. The plateau is the set of 
regular points of the orbifold, the peaks are isolated singular points and the ridges correspond 
to the singular points lying in sets of dimensions greater than or equal to 1. In a peak only one 
of the n principal modes of the unperturbed Hamiltonian is non-zero and it is always a critical 
point of the reduced Hamiltonian. A ridge may or may not be composed of critical points of 
the reduced system and at least two modes are non-zero and interact. The main purpose of our 
classification is that in the reconstruction of the periodic solutions related to the critical points 
of the orbit space, the characteristic multipliers of these solutions are approximated differ-
ently, depending on whether they correspond to plateau, peaks or ridges. An extra singularity 
of O happens in the zero level set of the unperturbed Hamiltonian when it corresponds to an 
indefinite quadratic form in rectangular coordinates. This singularity corresponds to the origin 
in R2n .

We provide two examples for n  =  2 in detail which illustrate that our approach is par-
ticularly useful when there are many parameters and bifurcations. The flows come from nor-
malized Hamiltonians which are truncated at a convenient order. They are depicted for different 
values of the parameters by using Mathematica to exhibit different parametric bifurcations 
occurring in each example. In addition to that, these approximate flows can be understood as 
cross sections to the flow of the full problem in adequate symplectic charts on the orbit space.

In our approach we survey some known theory combining it with new results. In this 
respect the main achievements of our development are: (i) we provide a new insight of regular 
and singular reduction of resonant Hamiltonians from the point of view of cross sections and 
how this procedure is related to the reduction theory of symmetric Hamiltonians. (ii) When 
n  =  2 we give a methodology to obtain symplectic coordinates in the orbit space around criti-
cal points that are either regular or singular, considering all the possible cases. In the singular 
case the new coordinates desingularize the orbit space in a neighborhood of the critical point. 
(iii) We classify the possible singularities of resonant Hamiltonians with n degrees of freedom, 
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providing new results about the characteristic multipliers of the periodic solutions related to 
these singularities.

The case n  >  2 deserves a deeper insight and we shall give more theoretical results as well 
as related examples in [46]. In particular the general case requires to handle techniques from 
computer algebra theory in order to achieve the analysis of resonances successfully.

The paper is structured in seven sections. In section 2 we deal with the unperturbed fully 
resonant Hamiltonian with n degrees of freedom in rectangular and action-angle coordinates. 
Section 3 is devoted to the study of the orbit space through cross sections for arbitrary n, but 
specializing later on for n  =  2. For the maximally super-integrable resonant Hamiltonian, HR, 
we obtain the set of polynomial invariants from the independent integrals and then the orbit 
space defined by these invariants in section 4. Also the classification of the different types of 
points in the orbit space O is given. Moreover the case n  =  2 is studied in full detail, analyzing 
all possible cases of the orbifolds, which in this circumstance are 2-dimensional surfaces. In 
section 5 we introduce symplectic coordinates for the q:p resonance, dealing with both regular 
and singular points. The case of small perturbations attached to a Hamiltonian with n degrees 
of freedom is studied in section 6 where the type of the characteristic multipliers of the peri-
odic solutions is determined from the critical points in O. In addition to that, the case of the 
extremal bifurcation (also called saddle-center bifurcation) of periodic solutions is tackled 
from the point of view of reduction theory. The purpose of section 7 is to study the existence 
and bifurcations of periodic solutions for Hamiltonian systems in resonances 2:  −  1 and 3:2.

2. The unperturbed system

Consider a quadratic Hamiltonian which gives rise to a linear Hamiltonian system of differ-
ential equations, specifically let HR = 1

2 zT S z and ż = A z where z ∈ R2n, S is a 2n × 2n 
symmetric matrix, A = J S a Hamiltonian matrix and J  is the standard 2n × 2n skew sym-
metric matrix

J =

[
0 I

−I 0

]
.

Here N = {z ∈ R2n : HR(z) = h, z �= 0}.
Let the Hamiltonian matrix A be semi-simple and have only pure imaginary eigenvalues 

that are all rational multiples of one another. More specifically, let the eigenvalues be

±k1 ωi, ±k2 ωi, . . . , ±kn ωi

where ω is positive real, ki ∈ Z \ {0}, with gcd(k1, k2, . . . , kn) = 1. By a change of the time 
scale we may take ω = 1. In this case the Hamiltonian can be put into the form

HR(x, y) =
1
2
[k1(x2

1 + y2
1) + k2(x2

2 + y2
2) + · · ·+ kn(x2

n + y2
n)], (1)

where z = (x, y) ∈ Rn × Rn.
Let Z(t) = eA t  be the fundamental matrix solution all of whose entries are cos kjt or sin kjt 

so, they have period 2π/|kj|. Since the gcd of the ki’s is 1, the matrix Z(t) is periodic of period 
2π. Thus N  is foliated by circles. Let S = R1/(2π) so that Z defines a symplectic Lie group 
action

Z : S ×N → N : (t, z) �→ Z(t) z. (2)

Since S  is just the circle group it is compact and the action is proper. Let O = N/S  be the 
orbit space and Π : N → O the projection map.
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Change to action-angle coordinates by Ij = x2
j + y2

j , θj = tan−1(yj/xj) which is symplec-
tic with multiplier 2 so that the Hamiltonian becomes

HR(I, θ) = k1 I1 + k2 I2 + · · ·+ kn In

and in these coordinates the equations of motion are

İj = 0, θ̇j = −kj.

(This is a slight variation of the usual definition of action-angle variables that reduces the 
number of 2’s in the paper.)

3. Orbit space by cross sections

3.1. Orbifolds, sections and Poincaré maps

In general the orbit space of a proper locally free Lie group action on a manifold is an orbifold, 
see [54] where the concept of orbifold was introduced with the name V- manifold. It is easy to 
check the conditions for O to be an orbifold and in fact it can be inferred from our discussion. 
If the manifold and the action are both symplectic then so is the orbit space. See [36] for all 
the definitions related to symplectic orbifolds.

The basic tool used to prove these results depends on the concept of a slice, a group action 
invariant neighborhood of an orbit. However, since we are interested in bifurcation theory our 
key concept is a cross section in an energy surface which we use here. We will simply say sec-
tion for cross section in an energy surface. It is well known that sections are symplectic, the 
flow induced map between sections, the Poincaré map, is symplectic and fixed points in the 
section maps often correspond to periodic solutions [43].

Now we will show that O is a symplectic orbifold by giving an atlas of symplectic charts. 
Use action-angle coordinates and let d ∈ O and (I∗1 , . . . , I∗n , θ∗1 , . . . , θ∗n ) ∈ Π−1(d). At least 
one of the I∗i ’s is nonzero so for simplicity let I∗1 �= 0 and k1  >  0, and let T = 2π/k1. Take 
θ1 = 0 as a section in the level HR = h and let this section be F ⊂ N  with F restricted by the 
inequalities

1
2
δ < |Ii − I∗i | < δ if I∗i �= 0 or 0 � |Ii − I∗i | < δ if I∗i = 0

with δ small. Also let P′ : F → F  be the Poincaré map. Let U ⊂ R2n−2 be the open set with 
action-angle variables (I2, . . . , In, θ2, . . . , θn) with the same restriction on the Ii’s as above and 
let

Ψ : U → F : (I2, . . . , In, θ2, . . . , θn) �→ (I1, I2, . . . , In, 0, θ2, . . . , θn)

be the prechart with I1 determined by HR = h.
The section map P = Ψ−1 ◦ P′ ◦Ψ as a mapping of U is

I2 �→ I2, . . . , In �→ In

θ2 �→ θ2 − (k2/k1) 2π, . . . , θn �→ θn − (kn/k1) 2π
 (3)

which is a linear symplectic map written in action-angle coordinates.
Clearly Pk1 = id, i.e. the identity map, and let Pκ = id where κ is a minimal diviso r 

of k1 with that property. If a ∈ U then the orbit through a meets the set U in the points 
a, P(a), P2(a), . . . , Pκ−1(a), so in the orbit space these points are identified to one point. 
Let G = {P0 = id, P, P2, . . . , Pκ−1} be the group of linear symplectic maps of U and define 
Ψ̃ : U/G → O. The map Ψ̃ is a homeomorphism and it is a symplectic orbifold chart at d.

K R Meyer et alNonlinearity 31 (2018) 2854
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The identification defined by Ψ̃ pinches the cross section forming what we will call a peak 
or a ridge. This is illustrated later in this section for n  =  2 in figures 2 and 4. In the later sec-
tion on symplectic smoothing, section 5.2, we show how to reconstruct the cross section so 
that we can apply classical perturbation theory.

Since the Poincaré map from one section  to another is symplectic then given two such 
precharts Ψi : Ui → O, i = 1, 2 the mapping Ψ−1

1 ◦Ψ2 is symplectic where defined. The col-
lection of such orbifold charts is a symplectic atlas.

The non-trivial multipliers of the periodic solution corresponding to d ∈ O are

e±(k2/k1) 2πi, . . . , e±(kn/k1) 2πi, (4)

see more details on characteristic multipliers in [43, 61]. We shall return to this issue in sec-
tion 6 where it will be shown how the multipliers are affected when a small perturbation is 
attached to the Hamiltonian HR.

3.2. Models for q:p resonance

Look at the two degrees of freedom example by setting k1 = q, k2 = p with gcd(q, p) = 1 and 
q  >  0, p �= 0. The resonant harmonic oscillator is expressed by the Hamiltonian

Hqp =
1
2
[
q
(
x2

1 + y2
1

)
+ p

(
x2

2 + y2
2

)]
= q I1 + p I2, (5)

where x1, x2, y1, y2 are rectangular coordinates and I1, I2, θ1, θ2 are action-angle coordinates. If 
q  <  0 we change the sign of the Hamiltonian.

3.2.1. Model for N  when q > 0, p > 0. We can use action-angle variables to introduce 
coordinates on the sphere N , provided we are careful to observe the conventions of polar 
coordinates: (i) I1 � 0, I2 � 0; (ii) θ1 and θ2  are defined modulo 2π; and (iii) I1  =  0 or I2  =  0 
corresponds to a point. For a careful explanation of these conventions see [43], sections 1.8 
and 1.9.

For simplicity let h  =  1. Starting with the symplectic coordinates I1, θ1, I2, θ2 for R4, we 
note that since Hqp = q I1 + p I2 = h = 1 on N  we can discard I2 and make the restriction 

(a) (b)

Figure 1. A model of N . (a) Coordinates on N . (b) An orbit on N .

K R Meyer et alNonlinearity 31 (2018) 2854
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0 � I1 � 1/q (note that I2 will return). We use I1, θ1, θ2 as coordinates on N . Now I1, θ1 with 
0 � I1 � 1/q are just coordinates for the closed unit disk in R2 which is drawn in green in 
figure 1(b). For each point of the open disk, there is a circle with coordinate θ2  (defined mod 
2π), but I2  =  0 when I1  =  1/q, so the circle collapses to a point over the boundary of the disk.

The geometric model of N  is given by two solid cones with points on the boundary cones 
identified as shown in figure 1(a). Through each point in the open unit disk with coordinates 
I1, θ1 there is a line segment (the red dashed line) perpendicular to the disk. The angular coor-
dinate θ2  is measured downward on this segment: θ2 = 0 is the disk, θ2 = −π is the upper 
boundary cone, and θ2 = +π is the lower boundary cone. Each point on the upper boundary 
cone with coordinates I1, θ1, θ2 = −π is identified with the point on the lower boundary cone 
with coordinates I1, θ1, θ2 = +π. This is our model for the sphere N .

There are two special orbits in this model. The first one is right up the center where I1  =  0 
which is periodic with period 2π/p and the second one is around the edge where I1  =  1/q or 
I2  =  0 which is periodic with period 2π/q. Both of them are drawn in purple in figure 1(b). 
All the others wrap around a torus where I1 = I0 and I0 is a constant such that 0  <  I0  <  1/q, 
as illustrated in figure 1(b). These orbits hit the open disk where θ2 = 0 in one point, drawn 
in yellow in figure 1(b). These solutions have period 2π if gcd(q, p) = 1 and are torus knots.

3.2.2. Sections in N . We select two sections to the flow defined by Hamiltonian (5). Each 
of them will be a 2-dimensional symplectic submanifold diffeomorphic to a closed disk and 
such that each orbit intersects at least one of the cross sections and maybe more than once. 
Refer to figure 2.

The first section, S, is the disk where θ2 = 0 and 0 � I1 � 3/(4 q) and all θ1. Denote the 
boundary of S by the oriented circle a. The section S is a symplectic submanifold of dimen-
sion 2 with action-angle coordinates (I1, θ1). Orbits cross S upwardly since θ̇2 = −p and θ2  
increases downwardly.

Figure 2. Sections in N .

K R Meyer et alNonlinearity 31 (2018) 2854
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The second section, Γ, is the disk where θ1 = 0 and 1/(4 q) � I1 � 1/q. At first sight Γ, 
the region bounded by the orange curve on the left picture of figure 2, looks like a triangle 
but when the identification is taken into account as illustrated in the figure  it is indeed a 
disk. Specifically, Γ is a symplectic submanifold of dimension 2 with action-angle coordinates 
(I2, θ2). Orbits cross Γ since θ̇1 = −q. Denote the boundary of Γ by the oriented circle α. Here 
one sees the reason why we measure θ2  downward, because with that convention I2, θ2 are 
oriented to be symplectic coordinates in Γ.

Due to the overlap of these two sections every orbit crosses one or the other or both.

3.2.3. Regular reduction: q  =  p  =  1. Now we illustrate that O is a symplectic sphere when 
q  =  p  =  1 thus illustrating Reeb’s theorem [50, 61]. All solutions are 2π-periodic and θ1 and 
θ2  both decrease by one full revolution in time 2π. In our figures the orbit is a left handed helix 
traversed upward.

Symplectic maps of 2-dimensional surfaces preserve area and orientation. We will take 
artistic liberties with area, but be slaves to the orientation. At the top of figure 3 are the two 
sections S and Γ with their boundary curves a and α. Because the two sections overlap, the 

Figure 3. Gluing sections when q  =  p  =  1.

K R Meyer et alNonlinearity 31 (2018) 2854
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forward image of a meets Γ in an oriented circle a′ as illustrated, and similarly the forward 
image of α meets S in an oriented circle α′. Since θ2 − θ1 is constant in this case the curves 
are oriented as illustrated.

The flow maps the band between α and a′ onto the band between α′ and a symplectically. 
(We recall that section maps are symplectic.) The point and its image are on the same orbit and 
so should be identified to form the quotient space O. Thus we have shown that O is a 2-sphere 
with symplectic coordinates.

3.2.4. Singular reduction: q = 2, p = 3. Now we illustrate that N  is a symplectic orbi-
fold when q = 2, p = 3. The two sections are slightly different now so a little more care is 
needed.

The section  S is defined by θ2 = 0 and has coordinates I1, θ1. The first return time is 
T = 2π/3 and the section map is

I1 �→ I1, θ1 �→ θ1 − 4π/3.

A point not at the origin hits S three times and repeats. That is

θ1 �→ θ1 − 4π/3 �→ θ1 − 8π/3 �→ θ1 − 12π/3 ≡ θ1.

Figure 4. Gluing sections when q = 2, p = 3.
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Thus an orbit other than I1  =  0 hits S three times equally spaced in θ1, so we should take the 
sector 0 � θ1 � 2π/3 and identify the lines θ1 = 0 and θ1 = 2π/3 as shown on the left-hand 
side of figure 4 to get a sharp cone.

Similarly the section Γ is defined by θ1 = 0 and has coordinates I2, θ2. The first return time 
is T = π and the section map is

I2 �→ I2, θ2 �→ θ2 − π.

A point not at the origin hits S two times and repeats. That is

θ2 �→ θ2 − π �→ θ2 − 2π ≡ θ2.

Thus an orbit other than I2  =  0 hits Γ two times equally spaced in θ2 , so we should take the 
sector 0 � θ2 � π and identify the lines θ2 = 0 and θ2 = π as shown on the right-hand side 
of figure 4 to get a cone.

The boundary curves a, α, a′, α′ play the same role in identifying the two parts as in the 
previous case, see figure 4.

4. Integrable and maximally super-integrable systems

4.1. Orbit spaces and invariants for n degrees of freedom

Again let H : M → R be a smooth Hamiltonian on a symplectic manifold M of dimen-
sion 2n. An integral or invariant for the system is a smooth function I : M → R such that 
{H, I} = 0 where {·, ·} is the Poisson bracket. An integral I is constant along the solutions 
of the Hamiltonian system defined by H. Two integrals I1, I2 are said to be in involution if 
{I1, I2} = 0. The system defined by H is integrable if there exist n independent integrals in 
involution. A fact usually attributed to Arnold is that an integrable system is foliated almost 
everywhere by n-dimensional invariant tori and cylinders upon which one can find action-
angle coordinates [37].

The system defined by H is super-integrable since it has more than n independent integrals, 
in fact it is maximally super-integrable as it has 2n  −  1 independent integrals. The number 
2n  −  1 is the maximal number of independent integrals a non-trivial H can have since holding 
2n  −  1 independent integrals fixed would define a solution curve in the 2n-dimensional space 
M. The classical example is the Kepler problem which has in addition to energy and angular 
momentum, that are common to all central force problems, the vector which fixes the peri-
center. In general integrable systems are rare and amongst integrable systems super-integrable 
systems are rarer still—see [37].

Return to the discussion of the Hamiltonian HR in section 2. We see that this system is inte-
grable as I1, I2, . . . , In are n independent integrals in involution, i.e. {Ij, Im} = 0. Actually, the 
use of action-angle variables makes obvious it is a maximally super-integrable system since 
there are 2n  −  1 independent integrals, namely

I1, I2, . . . , In, k1 θn − kn θ1, k1 θn−1 − kn−1 θ1, . . . , k1 θ2 − k2 θ1. (6)

We return to rectangular coordinates by being mindful of the d’Alembert character [43] 
and defining

K R Meyer et alNonlinearity 31 (2018) 2854
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a1 = I1 = x2
1 + y2

1, a2 = I2 = x2
2 + y2

2, . . . , an = In = x2
n + y2

n,

an+1 = a|k1|/2
n a|kn|/2

1 cos(k1 θn − kn θ1) = Re [(xn + sgn(k1) yni)|k1|(x1 − sgn(kn) y1i)|kn|],

an+2 = a|k1|/2
n a|kn|/2

1 sin(k1 θn − kn θ1) = Im [(xn + sgn(k1) yni)|k1|(x1 − sgn(kn) y1i)|kn|],
...

a3n−3 = a|k1|/2
2 a|k2|/2

1 cos(k1 θ2 − k2 θ1) = Re [(x2 + sgn(k1) y2i)|k1|(x1 − sgn(k2) y1i)|k2|],

a3n−2 = a|k1|/2
2 a|k2|/2

1 sin(k1 θ2 − k2 θ1) = Im [(x2 + sgn(k1) y2i)|k1|(x1 − sgn(k2) y1i)|k2|].
 (7)

Clearly a1 � 0, a2 � 0, . . . , an � 0 and the familiar identity cos2 φ+ sin2 φ = 1 yields

a2
n+1 + a2

n+2 = a|k1|
n a|kn|

1 ,
...

a2
3n−3 + a2

3n−2 = a|k1|
2 a|k2|

1 .

 

(8)

Specifying the integrals a1, a2, . . . , a3n−2 subject to the constraints given above uniquely 

specifies an orbit because the constraint a2
n+1 + a2

n+2 = a|k1|
n a|kn|

1  allows one to solve for 
cos(k1 θn − kn θ1) and sin(k1 θn − kn θ1) and hence to find the angle k1 θn − kn θ1. Similarly 
the angles k1 θn−1 − kn−1 θ1, …, k1 θ2 − k2 θ1 are found.

We will call the polynomial invariants a1, . . . , a3n−2 in (7) a basis set of invariants. Fixing 
the energy level HR = h we also get the additional constraint k1 a1 + · · ·+ kn an = h. The 
invariants aj, j = 1, . . . , 3n − 2 together with the n constraints and the inequalities aj � 0, 
j = 1, . . . , n define the orbit space O, thus one can think of the aj’s as the coordinates of the 
(2n − 2)-dimensional orbifold O embedded in R3n−2.

Consider the geometry of the orbit space. When kj  =  1 for all j then O is diffeomorphic to 
CPn−1 provided h  >  0. However when there is at least one pair ki, kj with ki �= kj but where 
kj  >  0 for all j, the orbit space for h  >  0 is bounded, but has different types of singularities as 
we shall see in section 4.2. In this case the orbifold O is still homeomorphic to CPn−1, more 
specifically it has the structure of a weighted complex projective space [4] with weights kj’s. 
On the other hand if the kj’s have different signs, that is, when HR in (1) is an indefinite quad-
ratic form, the orbifold O is not compact.

Proposition 4.1. A Hamiltonian in total resonance (1) is integrable since I1, . . . , In are 
n integrals in involution and in fact it is maximally super-integrable since there are 2n  −  1 
independent integrals (6). In this case there are 3n  −  2 polynomial invariants (7) subject to 
n  −  1 constraints (8).

A model for the orbit space O is the semi-algebraic variety in R3n−2 generated by the invari-
ants {a1, …, a3n−2} introduced in (7) where a1 � 0, . . . , an � 0, HR = k1 a1 + · · ·+ kn an = h 
and (8) holds, therefore O is realized by a set of dimension 2n  −  2. When HR in (1) is a definite 
quadratic form, O is a weighted complex projective space, it is compact and homeomorphic 
to CPn−1 and it is diffeomorphic to it if kj  =  1 for all j and h  >  0. When HR is indefinite the 
orbifold O is unbounded.

One cannot expect more. Consider the Hamiltonian HR = ω1 I1 + ω2 I2 written in action-
angle variables with ω1/ω2 irrational. This Hamiltonian is integrable since I1, I2 are two inde-
pendent integrals in involution. Fixing I1 and I2 defines a 2-torus T ⊂ R4 and the equations on 
this torus are θ̇1 = −ω1, θ̇2 = −ω2 with orbits that are dense on T [43]. Thus any continuous 
integral must be constant on T and therefore a function of I1, I2. Therefore this Hamiltonian 
is integrable but not super-integrable.
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Resonances in Hamiltonian systems with three or more degrees of freedom have received 
also the attention of many authors from the point of view of the determination of periodic 
solutions and their possible bifurcation, reduction theory through polynomial invariants, exist-
ence of chaos and other related topics, see for instance [17, 21, 23, 24, 30, 31, 34, 52, 58, 59]. 
In this case the dimension of the orbit space is at least four and the theory turns out rather 
cumbersome.

One of the issues when n  >  2 is the number of invariants needed in order to treat a spe-
cific resonance. Concretely, given a Hamiltonian with unperturbed part (1) with its higher 
order terms in normal form with respect to HR, the invariants of a basis set are not enough 
to write down the Hamiltonian as a polynomial of them. For instance, the Poisson brackets 
among the invariants (7) cannot be represented as polynomials in the aj’s. Indeed one needs to 
determine a Hilbert basis related to (1), that is, a finite set of invariant polynomials, such that 
every invariant polynomial may be written as a polynomial function of these basis elements, 
see [7]. In particular, Egilsson [14] has proved that the minimal size possible for a Hilbert 
basis associated to a Hamiltonian like (1) is n2. Thus the theory for Hamiltonians with n  >  2 
requires a special consideration. We shall relegate its study to [46], where we will provide an 
efficient algorithm due to Derksen and Kemper [11] to compute a Hilbert basis of invariants 
for a given HR. We will also discuss the treatment of resonant Hamiltonian systems with small 
perturbations, starting from the reduced Hamiltonian written in terms of the invariants of the 
Hilbert basis.

4.2. Plateau, peaks and ridges

For our perturbation analysis that we shall perform in sections 6 and 7 we need to consider 
various types of subsets of O.

The plateau L ⊆ O consists of all those points d ∈ O such that if z ∈ Π−1(d) then the 
minimal period through z is 2π. The only solution to Z(t) z = z is t = 0 mod 2π and so the 
action Z  is free at d, so locally free. Since Z(2π) is the identity matrix all the characteristic 
multipliers of the solution through z are  +1. Clearly L is an open subset and it inherits a sym-
plectic structure from M just as in Reeb’s theorem [50, 61] or in regular reduction theory 
[40], see also [38]. The plateau maybe the whole orbifold as in the case of regular reduction 
or it may exclude some of the structures given below. In any case the plateau always contains 
the image under Π of all the points R2n  where Ij �= 0 for all j = 1, . . . , n.

To understand the substructures of O we first look at some subsets of R2n  and establish 
some notation. Let D = {1, 2, . . . , n} be the set of indexes, F ⊆ D and F† the complement of 
F in D, so D = F ∪ F†. Now let

IF = {z = (x1, . . . , xn, y1, . . . , yn) ∈ R2n : Ij = x2
j + y2

j = 0 for all j ∈ F†}.

The set IF  is an invariant symplectic linear subspace of R2n  of dimension 2f where f is the 
number of elements in F. It is filled with periodic solutions. For example, taking F  =  D one 
has ID = R2n, ID† is the origin in R2n . For each of these linear spaces one can perform the 
reduction as previously defined by fixing H = h where h is a regular value and identifying 
orbits to a point to obtain an orbifold OF  of dimension 2f  −  2. Thus O is a complicated union 
of suborbifolds. The various periods of the solutions in O single out which of these suborbi-
folds will be interesting for perturbation analysis.

If F  =  {s} then IF = {z = (0, . . . , 0, xs, 0, . . . , 0, ys, 0, . . . , 0)} is a 2-dimensional linear 
subspace filled with periodic solutions of period T = 2π/|ks| which is traditionally called a nor-
mal mode. The image of this linear subspace under Π is a single point Ps ∈ O and it is a peak if 
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|ks|  >  1 and ki/ks is not an integer when i �= s. The maximum number of peaks in O is n. All the 
nonzero solutions in IF  are periodic with least period T and multipliers e±k1Ti, e±k2Ti, . . . , e±knTi 
where e±ksTi = 1 while all the other multipliers are different from one. The only solutions of 
Z(t) z = z are t = 0, 2π/|ks|, 2(2π/|ks|), . . . , (|ks| − 1)(2π/|ks|) mod 2π and so the action Z  
is locally free at this point.

A ridge is in the complement of the plateau and the peaks. Let F = {s1, . . . , sm} be 
a proper subset of D, so 1  <  m  <  n. The linear space IF  has dimension 2m and the sub-
orbifold OF  has dimension 2m  −  2. A ridge is the subset GF ⊆ OF  formed by the points 
d ∈ OF such that z ∈ Π−1(d) has action-angle coordinates with Is1 �= 0, . . . , Ism �= 0 and 
all the other Ij’s are zero, z is filled with periodic solutions of least period T = 2π/κ with 
κ = gcd(|ks1 |, . . . , |ksm |) > 1 such that 2(n − m) characteristic multipliers are different from 
one. The solutions of Z(t) z = z are t = 0, 2π/κ, . . . , (κ− 1)(2π/κ) mod 2π, thence the 
action Z  is locally free at this point.

Since each point falls into one of the above categories the action Z  defined in (2) is locally 
free at every point.

For insight consider the case when all the ki’s are positive so HR = h with h  =  1 is an 
ellipsoid or a topological sphere of dimension 2n  −  1. For n  =  2 the flow on the 3-sphere was 
discussed above. But a ridge can only occur for systems of at least three degrees of freedom 
where the integral manifold is at least 5-dimensional and the orbit space is at least 4-dimen-
sional. For higher dimensions we need a more symbolic representation. To this end return to 
action-angle variables and project N  onto (I1, . . . , In)-space as follows,

P : N → S : (I1, . . . , In, θ1, . . . , θn) �→ (I1, . . . , In)

where

S = {(I1, . . . , In) ∈ Rn : k1 I1 + · · ·+ kn In = 1, Ij � 0}.

S is the simplex illustrated in figure 5 for n = 2, 3. In this figure each point in the simplex 
represents a torus T j, the j-dimensional torus (the circle is the 1-torus). That is, if d ∈ S then 
P−1(d) ∈ N  is a torus and we say the torus P−1(d) is above d. Above each vertex is a circle 
T1, above each edge is a 2-torus T2 and above each interior point of a triangle is a 3-torus T3. 
This simplistic representation does not tell us just how these tori are attached to each other, so 
we refer the reader to the beautiful theory found in Fomenko et al [22].

For n  =  2 refer to the image on the left in figure 5. If k1 = k2 = 1, gcd(k1, k2) = 1 then every 
point is in the plateau, i.e. the orbit space is regular. If k1 = 1, k2 = 2, gcd(k1, k2) = 1 then above 
(0,1/k2) is a peak and all the other points are in the plateau. If k1 = 2, k2 = 3, gcd(k1, k2) = 1 
then above (0,1/k2) and (1/k1,0) are peaks and all the other points are in the plateau, i.e. the 
orbit space has two singular points.

Figure 5. The simplex S for n  =  2 (left) and n  =  3 (right).
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For n  =  3 refer to the image on the right in figure  5. If k1 = 2, k2 = 3, k3 = 5 then 
gcd(k1, k2, k3) = gcd(k1, k2) = gcd(k2, k3) = gcd(k3, k1) = 1 and the vertices correspond to 
peaks and all the other points are in the plateau (even the edges). If k1 = 6, k2 = 10, k3 = 15 
then gcd(k1, k2, k3) = 1, gcd(k1, k2) = 2, gcd(k2, k3) = 5, gcd(k3, k1) = 3 then the vertices  
correspond to peaks, the edges correspond to ridge points, and the interior points are in the 
plateau. If k1 = 1, k2 = 2, k3 = 3 then gcd(k1, k2, k3) = 1, gcd(k1, k2) = 1, gcd(k2, k3) = 
1, gcd(k3, k1) = 1 , the vertex that corresponds to k1 is not a peak but is a plateau point whereas 
the other two vertices are peaks. The rest of points are in the plateau.

Any solution of the Hamiltonian system (1) is periodic with period T = 2π/g where g is a 
positive integer. Let z ∈ R2n, z �= 0, so as we have seen above the only solutions of Z(t) z = z 
are t = 0, T , 2 T , . . . , (g − 1) T . This means that the isotropy subgroup of Z  is non-trivial for 
all nonzero z ∈ R2n. Thus we have a well defined orbifold with regular points at the plateau 
and singularities at the peaks and ridges.

The only exception to the classification made above occurs when the Hamiltonian (1) is 
indefinite. Consider the solutions passing though a point Ps ∈ O with xj = yj = 0 if j �= s and 
take the level set h  =  0. Then the only possible solution to the system related to (1) is z  =  0, 
hence xs = ys = 0. The isotropy subgroup of Z  is trivial for all z ∈ R2n. This gives rise to the 
point (a1, . . . , an, . . . , a3n−2) = (0, . . . , 0, . . . , 0) on O which is a singularity in the orbifold 
but different from a peak or a ridge. Its isotropy subgroup of Z  is trivial, so Ps is related to a 
unique point of R2n , which is the origin of this space. For n  =  2 see section 4.3.

4.3. Orbit spaces and invariants for the q:p resonance

One of our main goals is the study of the unfolding of resonant systems subject to small 
perturbations using normalization and invariants. Let us consider again the two degrees of 
freedom system Hqp in (5) of section 3.2. In this section we give the geometry of the orbit 
spaces for two degrees of freedom systems in preparation for the bifurcation analysis in sec-
tion 7. This resonance has been treated by many authors from different points of view; see for 
example [8, 16, 18, 27–29, 32, 33, 48, 55, 56].

From (7) a basis set of invariants associated to the q:p resonance is

a1 = I1 = x2
1 + y2

1,

a2 = I2 = x2
2 + y2

2,

a3 = I|p|/2
1 Iq/2

2 cos(q θ2 − p θ1) = Re [(x1 − sgn( p)y1i)|p|(x2 + y2i)q],

a4 = I|p|/2
1 Iq/2

2 sin(q θ2 − p θ1) = Im [(x1 − sgn( p)y1i)|p|(x2 + y2i)q],
 

(9)

subject to the constraint

a2
3 + a2

4 = a|p|1 aq
2, a1 � 0, a2 � 0. (10)

Note that a3 and a4 are polynomials in x, y of degree q + |p|.
The Poisson brackets associated to the invariants are computed using the relations of 

the aj’s in terms of the action-angle coordinates Ij’s, θj’s and then transformed back to the 
invariants. The explicit expressions are given in table  1. All Poisson brackets are poly-
nomial in the invariants as q and p are nonzero integers. In fact the invariants (9) form a 
Hilbert basis.

As discussed above, an orbit of the system is uniquely specified by the four invariants  
subject to the constraints (10) and so the orbit space O is determined by (9), (10) and
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Hqp = q a1 + p a2 = h. (11)

Solve (11) for a2 and substitute into the constraint equation to get

a2
3 + a2

4 = a|p|1

(
h − q a1

p

)q

, (12)

which defines a surface in (a1, a3, a4)-space. This surface is a representation of the orbit space 
O. We distinguish different situations according to the values of q and p. Note that (12) defines 
a surface of revolution, so let ρ, ψ be polar coordinates in the (a3, a4)-plane so that equa-
tion (12) becomes

ρ2 = a|p|1

(
h − q a1

p

)q

. (13)

We will say that the orbit space O is an orange, turnip or a lemon if the surface (12) is 
compact and has zero, one or two peaks respectively. In the non-compact case we will say that 
O is a cap (yarmulke) if it is smooth or a trumpet if it has a singular point (which may or may 
not be a peak) of conical type.

4.3.1. Case p  >  0. In this situation let h  >  0. The surface in (a1, a3, a4)-space is compact. See 
figure 6 above for the views of the (ρ, a1)-sections of the orbit spaces when p  >  0.

First let us specify p  =  q  =  1. Then by completing the square we have 
ρ2 + (a1 − h/2)2 = h2/4 which is a circle of radius h/2 centered at (ρ, a1) = (0, h/2), and 
so (13) defines a sphere in a-space of radius h/2 and center at (a1, a3, a4) = (h/2, 0, 0), see 
figure 6(a). Here there are no singularities so this case falls under regular reduction.

Now consider the case where q and p are positive and q �= p, then the right-hand side of 
equation (13) is positive for 0  <  a1  <  h/q and the surface of revolution is smooth for a1 in that 
range. But the right-hand side is zero for a1  =  0 and a1  =  h/q and these are the candidates for 

singularities. Near a1  =  0 from (13) we see that ρ ∼ c a p/2
1  where c  >  0 is a constant. Thus 

the surface of revolution is only smooth at a1  =  0 if p  =  1. For p  >  1 the surface at a1  =  0 has 
a peak which is cone-like when p  =  2 and is cusp-like for p  >  2. The peak gets sharper for 
larger p. According to section 4.2 this peak is labelled by P2.

Similarly near a1  =  h/q we see that ρ ∼ c(h − q a1)
q/2 where c  >  0 is a constant. Thus the 

surface of revolution is only smooth at a1  =  h/q if q  =  1. When q  >  1 the surface has a peak 
at a1  =  h/q and the peak gets sharper for larger q. The peak is cone-like when q  =  2 and cusp-
like for q  >  2. See figures 6(b) and (c). This peak is labelled by P1.

4.3.2. Case p  <  0. The surface of revolution is unbounded and it is smooth when the right-
hand side of (12) is positive. As always a1 � 0 but a2 � 0 implies a1 � h/q . See figure 7.

Table 1. Poisson algebra of the invariants a1, . . . , a4. The ai’s of the first column are 
put in the left-hand side of the bracket, and the ones of the first row are placed on the 
right-hand side of the brackets.

{ , } a1 a2 a3 a4

a1 0 0 2 p a4 −2 p a3

a2 0 0 −2 q a4 2 q a3

a3 −2 p a4 2 q a4 0 a|p|−1
1 aq−1

2 (q2 a1 − p |p| a2)

a4 2 p a3 −2 q a3 −a|p|−1
1 aq−1

2 (q2 a1 − p |p| a2)
0
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When h  <  0 the right-hand side of (12) is zero only at a1  =  0 and nearby ρ ∼ c a|p|/2
1  with 

c a positive constant. Thus the surface is smooth, that is, a cap at a1  =  0 when |p| = 1, it is 
cone-like when |p| = 2 and is cusp-like when |p| > 2, i.e. one gets trumpets. Thus the surface 
has a peak at a1  =  0 when |p| � 2. The peak is called P2.

When h  =  0 the right-hand side of (12) is zero at a1  =  0 and nearby ρ ∼ c a(q+|p|)/2
1  with 

c  >  0 a constant. Thus the surface is cone-like when q + |p| = 2 and is cusp-like when 
q + |p| > 2, thence it is always a trumpet. So when h  =  0 there is always a conical singularity 
at a1  =  0. This is the point of O that corresponds to the origin in R4. It is not a peak nor a ridge, 
see the last paragraph of section 4.2.

When h  >  0 the right-hand side of (12) is zero at a1  =  h/q and nearby ρ ∼ c(q a1 − h)q/2 
where c  >  0 is a constant. Thus the surface is smooth, i.e. a cap, at a1  =  h/q when q  =  1, is 
cone-like when q  =  2 and is cusp-like when q  >  2. So there is a peak at a1  =  h/q provided 
q � 2 and then the orbifolds O are trumpets. In this case the peak is named P1.

5. Symplectic coordinates in the orbit space for the q:p resonance

5.1. Coordinates for the regular points

In order to analyze the stability of equilibria, the possible bifurcations of periodic solutions 
or the existence of KAM tori, it is convenient to introduce symplectic coordinates valid in 
neighborhoods of a regular point. We present the procedure for two degrees of freedom and 
its generalization to n � 2 will appear in [46]. It is emphasized that as far as we know there is 
not a systematic approach to build symplectic coordinates around a regular point of the orbit 
space, thus our procedure is new, although a procedure to get Darboux coordinates in a con-
structive way using Lie transformations can be seen in [41]. However our approach is more 
appropriate for resonant Hamiltonians.

Working with action-angle coordinates we build a linear transformation requiring that it is 
a 1:1 transformation. We also take into account that the occurrence of the angles θj’s in the 

(a) (b) (c)

Figure 6. Case p  >  0. Above: ρ versus a1. Below: orbit spaces. (a) Orange 1:1.  
(b) Turnip 2:1. (c) Lemon 2:3.
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expressions for a3, a4 in (9) is through the combination q θ2 − p θ1. Also for a fixed energy h 
one has h = q I1 + p I2, so we let J1 = q I1 + p I2 and simplify the calculations a bit by assum-
ing that J2 does not depend on I2. A slightly different change is derived when J2 is considered 
to be a function of I2 as we shall see later. So we start with

J1 = q I1 + p I2, J2 = α I1,

ψ1 = β θ1 + γ θ2, ψ2 = δ(q θ2 − p θ1),
 

(14)

with unknowns α, β, γ and δ.
The change (14) is symplectic when β = 0, γ = 1/p and δ = −1/(α p). Writing down the 

ak’s in terms of the Jk’s, ψk’s we end up with

a1 = J2
α ,

a2 = α J1−q J2
α p ,

a3 =
( J2
α

)|p|/2
(

α J1−q J2
α p

)q/2
cos(α pψ2),

a4 =
( J2
α

)|p|/2
(

α J1−q J2
α p

)q/2
sin(α pψ2).

 

(15)

In order to get a 1:1 transformation we need that the arguments of the cosine and sine in 
(15) be ±ψ2. Thus we set α = 1/|p| so J2 = I1/|p| and ψ2 = |p|[θ1 − (q/p) θ2].

Now we are ready to define action-angle coordinates, J, ψ, through

J ≡ J2 =
I1

|p|
, ψ ≡ ψ2 = |p|[θ1 − (q/p) θ2], (16)

noting that J and ψ are well defined for a regular point of (10) and that {J,ψ} = 2.

(a) (b) (c)

Figure 7. Case q = 3, p = −1. Above: ρ versus a1. Below: orbit spaces. (a) Cap.  
(b) Trumpet (not a peak). (c) Trumpet (a peak).
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Applying (16) to (9), or to (15), and taking into account that J1  =  h, the relation among the 
invariants aj’s and the action-angle variables J, ψ is

a1 = |p| J,

a2 = h−q |p| J
p ,

a3 = (|p| J)|p|/2
(

h−q |p| J
p

)q/2
cosψ,

a4 = −sgn( p)(|p| J)|p|/2
(

h−q |p| J
p

)q/2
sinψ.

 

(17)

Rectangular coordinates x, y are introduced in terms of J and ψ by means of 
J = x2 + y2, ψ = tan−1(y/x), noticing that {x, y} = 1. After a few manipulations we arrive at

a1 = |p|(x2 + y2),

a2 = h−q |p|(x2+y2)
p ,

a3 = |p||p|/2x(x2 + y2)(|p|−1)/2
[

h−q |p|(x2+y2)
p

]q/2
,

a4 = −sgn( p)|p||p|/2y(x2 + y2)(|p|−1)/2
[

h−q |p|(x2+y2)
p

]q/2
.

 

(18)

Obviously in (a1, x, y)-space the transformed surface is given by the first equation of (18).
If we assume that J2 depends only on I2 we make

J1 = q I1 + p I2, J2 = α I2,

ψ1 = β θ1 + γ θ2, ψ2 = δ(q θ2 − p θ1),
 

(19)
and proceeding similarly as above we arrive at the 1:1 transformation

a1 = h−q p(x2+y2)
q ,

a2 = q(x2 + y2),

a3 = q(q−|p|)/2x(x2 + y2)(q−1)/2
[
h − q p(x2 + y2)

]|p|/2
,

a4 = q(q−|p|)/2y(x2 + y2)(q−1)/2
[
h − q p(x2 + y2)

]|p|/2
,

 

(20)

which is an alternative to (18).
The inverse of (18) is given by

x = |p|−1/2a(1−|p|)/2
1 a−q/2

2 a3, y = −sgn( p)|p|−1/2a(1−|p|)/2
1 a−q/2

2 a4, (21)

while the inverse of (20) yields

x = q−1/2a−|p|/2
1 a(1−q)/2

2 a3, y = q−1/2a−|p|/2
1 a(1−q)/2

2 a4. (22)

We need to make an extra transformation to get the desired symplectic coordinates 
around a specific regular point of the surface (10) for a given Hamiltonian in O. If 
(a0

1, a0
3, a0

4), together with a0
2 = (h − q a0

1)/p, represents a particular critical point of the 
equations of motion associated to the Hamiltonian, the change (21) (or (22)) is used to 
obtain the point (x0, y0) in the projection defined through (18) (or through (20)). Then, we 
introduce new coordinates x̄, ȳ as x = x̄ + x0 , y = ȳ + y0  and perform a Taylor expansion 
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of the Hamiltonian function in terms of x̄, ȳ around x̄ = ȳ = 0. Since the point of the sur-
face (12) we are analyzing is regular, the transformations (18) and (20) and their respec-
tive inverses (21) and (22) have to be analytic in a neighborhood of (x0, y0). When p  =  1 
the change (20) cannot be applied around the point (0, 0, 0), but one applies instead the 
transformation (18), while when q  =  1 the change (18) cannot be applied around (h, 0, 0) 
but (20) can be used. In the remaining cases both (18) and (20) and their inverses are 
analytic. Therefore, one can always obtain x̄, ȳ as a pair of symplectic rectangular coor-
dinates. When applying either (18) or (20) to a given Hamiltonian we divide the resulting 
Hamiltonian by 2 since in the change from rectangular to action-angle coordinates we 
multiplied the transformed Hamiltonian by 2.

Proposition 5.1. Let H be a Hamiltonian in q:p resonance defined in the orbit space O 
with q and p as in (5). Let (a0

1, a0
3, a0

4) satisfying (12) represent a regular critical point of 
the vector field associated to H and let (a0

1, x0, y0) be the critical point in (a1, x, y)-space 
where x0, y0 are obtained from (a0

1, a0
3, a0

4) by means of (21) or of (22). The successive 
changes given by (18) (or (20)) and by x = x̄ + x0, y = ȳ + y0  transform H into a function 
in the symplectic rectangular coordinates x̄ and ȳ in a neighborhood of the critical point 
(a0

1, a0
3, a0

4). The surface (12) is transformed into a1 = |p|[(x̄ + x0)
2 + (ȳ + y0)

2] (or into 
a1 = {h − q p[(x̄ + x0)

2 + (ȳ + y0)
2]}/q).

5.2. Symplectic smoothing

In order to study the eventual singular points appearing in the orbit space defined by (12) and 
the flow of the harmonic oscillator in q:p resonance (usually with an attached perturbation) 
around the singular points, we construct a set of symplectic changes of coordinates with the 
aim of removing the conical singularities on the surface O and perform local studies around 
these points. The procedure is presented for arbitrary values of integers q  >  0, p �= 0 and 
gcd(q, p) = 1. We focus on the singularities occurring at a1  =  0 (the peak P2 and the singular-
ity of the origin in a-space when h  =  0) and at a1  =  h/q (the peak P1) whereas the general-
ization for n � 2 will appear in [46]. We stress that our analysis covers all possible cases of 
singular orbits spaces when n  =  2. In addition, although a few particular situations have been 
studied previously, see for instance [23, 24], our approach is new, straightforward and can be 
extended to any dimension easily.

In order to unfold the singularity at a1  =  0 we introduce the change

w = a3 + a4i, w̄ = a3 − a4i, w w̄ = a2
3 + a2

4.

Making w  =  z|p| the constraint (12) is transformed into

z|p| z̄|p| = a|p|1

(
h − q a1

p

)q

,

whence one gets

z z̄ = a1

(
h − q a1

p

)q/|p|

.

Then, the variables we use to perform a local study around the point are (a1, u, v), where 
u = Re (z) and v = Im (z). The expression of the smoothed surface in the new variables is
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u2 + v2 = a1

(
h − q a1

p

)q/|p|

. (23)

Since u, v are not symplectic we modify them to get local symplectic coordinates. We shall 
achieve it using action-angle coordinates as in section 5.1, having in mind that we are looking 
for a |p|:1 covering.

The singularity at a1  =  h/q is unfolded similarly, but introducing z so that w  =  zq. We get

u2 + v2 = a|p|/q
1

(
h − q a1

p

)
, (24)

thus we need to build a q:1 covering, and we shall deal with it by means of adequate action-
angle coordinates.

For the singularity a1 = a2 = 0, h  =  0 one has that p  <  0, so |p| = −p. Making w  =  zq+|p|, 
(12) becomes

u2 + v2 =

(
q
|p|

)q/(q+|p|)

a1, (25)

concluding that the symplectic change we shall make is a (q + |p|):1 covering.

5.2.1. Case a1 = 0, h p > 0. This is the smoothing of the peak P2. We consider the singular 
point (a1, a3, a4) = (0, 0, 0) when h �= 0, noticing that a2 = h/q �= 0. The inequality |p| > 1 
also holds.

Analogously to how we proceeded in the precedent subsection we introduce action-angle 
coordinates J1, J2, ψ1, ψ2 from the Ik’s, θk’s and such that J2 depends only on I1 and ψ2 is a 
multiple of p θ1 − q θ2. In order to get a symplectic transformation that is a |p|:1 covering we 
obtain specific values for Jk’s, ψk’s. Next we introduce J ≡ J2 and ψ ≡ ψ2 where

J = I1, ψ = θ1 − (q/p)θ2. (26)

The angle ψ is undefined at a1  =  0 but this trouble will be handled below. Note that {J,ψ} = 2.
Putting in (9) I1, I2 in terms of J and h (using (26) and the identity h = q I1 + p I2) and writ-

ing θ1, θ2  as functions of ψ the invariants aj’s are given by

a1 = J,

a2 = h−q J
p ,

a3 = J|p|/2
(

h−q J
p

)q/2
cos( pψ),

a4 = −J|p|/2
(

h−q J
p

)q/2
sin( pψ).

 

(27)

As in the regular case we define x, y in terms of J and ψ through J = x2 + y2, ψ = tan−1(y/x), 
thus {x, y} = 1. Using the identities

(r2 + s2)|m|/2 cos[m tan−1(s/r)] =
∑�|m|/2�

k=0 (−1)k
(|m|

2k

)
r|m|−2ks2k,

(r2 + s2)|m|/2 sin[m tan−1(s/r)] = sgn(m)
∑�(|m|−1)/2�

k=0 (−1)k
( |m|

2k+1

)
r|m|−2k−1s2k+1,

 (28)
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for reals r, s and integer m, we get the unfolding transformation

a1 = x2 + y2,

a2 = h−q(x2+y2)
p ,

a3 =
[

h−q(x2+y2)
p

]q/2 ∑�|p|/2�
k=0 (−1)k

(|p|
2k

)
x|p|−2ky2k,

a4 = −sgn( p)
[

h−q(x2+y2)
p

]q/2 ∑�(|p|−1)/2�
k=0 (−1)k

( |p|
2k+1

)
x|p|−2k−1y2k+1.

 
(29)

The transformation (29) is well defined near x  =  y  =  0. In (a1, x, y)-space the transformed sur-
face is given by the smooth constraint a1 = x2 + y2. Since the angle ψ enters in (27) through 
cos( pψ), sin( pψ), the change (29) is a |p|:1 covering.

5.2.2. Case a1 = h/q, h > 0. This is the smoothing of the peak P1. Now q  >  1 and the sin-
gular point is (a1, a3, a4) = (h/q, 0, 0). We make a1 = (h − p a2)/q and introduce Jk’s, ψk’s  
following the procedure explained in section 5.1 having in mind that we wish to obtain a q:1 
covering. The pair J ≡ J2,ψ ≡ ψ2 is

J = I2, ψ = θ2 − ( p/q) θ1. (30)

The angle ψ is not well defined at a2  =  0 but this is not a problem when passing to rectangular 
coordinates. The action-angle pair satisfies {J,ψ} = 2.

We replace in (9) I2 by J and I1 by (h − p J)/q and express θ1, θ2  in terms of ψ through 
(30). Then we introduce x, y as in the previous case. With the aid of (28), it is concluded that 
the aj’s are given by

a1 = h−p(x2+y2)
q ,

a2 = x2 + y2,

a3 =
[

h−p(x2+y2)
q

]|p|/2 ∑�q/2�
k=0 (−1)k

( q
2k

)
xq−2ky2k,

a4 =
[

h−p(x2+y2)
q

]|p|/2 ∑�(q−1)/2�
k=0 (−1)k

( q
2k+1

)
xq−2k−1y2k+1.

 

(31)

The transformation (31) is well defined near x  =  y  =  0. Transformation (31) is a q:1 covering. 
In (a1, x, y)-space the transformed surface is given by a1 = [h − p(x2 + y2)]/q. The pair x, y is 
a set of symplectic rectangular coordinates in a neighborhood of x  =  y  =  0.

5.2.3. Case a1 = 0, h = 0. We treat the situation a1  =  0 when h  =  0 so a2  =  0. Observe 
that p  <  0 and the singular point of O becomes (0, 0, 0).

Proceeding analogously to the precedent cases we introduce action-angle coordinates Jk’s, 
ψk’s assuming that ψ2 is a multiple of p θ1 − q θ2, J2 is a function of I1 and I2 and the change 
we are constructing is a symplectic (q + |p|):1 covering. Thus we define J ≡ J2 and ψ ≡ ψ2 
by means of

J = I1 + I2, ψ =
1

q + |p|
(q θ2 + |p| θ1) . (32)

It is easily checked that {J,ψ} = 2.
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The invariants aj’s are written in terms of J and ψ. Next rectangular coordinates x, y are 
introduced as functions of J and ψ as in the previous cases. After some manipulations includ-
ing making use of (28) we get the unfolding

a1 = |p|
q+|p| (x

2 + y2),

a2 = q
q+|p| (x

2 + y2),

a3 = qq/2|p||p|/2(q + |p|)( p−q)/2 ∑�(q+|p|)/2�
k=0 (−1)k

(q+|p|
2k

)
xq+|p|−2ky2k,

a4 = qq/2|p||p|/2(q + |p|)( p−q)/2 ∑�(q+|p|−1)/2�
k=0 (−1)k

(q+|p|
2k+1

)
xq+|p|−2k−1y2k+1.

 
(33)

The transformation (33) is polynomial, so it is well defined near x  =  y  =  0. The change (33) 
is a (q + |p|):1 covering. Since {J,ψ} = 2 then {x, y} = 1.

In (a1, x, y)-space the transformed surface is given by a1 = |p|(x2 + y2)/(q + |p|). The 
variables x, y represent a pair of symplectic rectangular coordinates valid in a neighborhood 
of x  =  y  =  0.

In figure 8 we show the smoothing technique for the 2:3 resonance at the points (a1, 0, 
0)  =  (0, 0, 0) and (a1, 0, 0)  =  (h/2, 0, 0) for the energy level h  =  10/3. Around (0, 0, 0) we 
employ the transformation (29) and the unfolded surface is drawn in red. For (h/2, 0, 0) we use 
(31) and the unfolded surface is drawn in brown. We also present the smoothing for the 3:  −  1 
resonance at h  =  0 performed through the change (33). The local smoothed surface appears in 
green. Furthermore we illustrate how a regular point of the trumpet (in dark red) is projected 
into four points of the surface a1 = (x2 + y2)/4, due to the (q + |p|):1 covering.

As in the regular case, given a Hamiltonian in a-space when expressing it in (a1, x, y)-space 
using either (29), (31) or (33) we divide the transformed Hamiltonian by 2.

We summarize the previous paragraphs in the following.

Proposition 5.2. Given the Hamiltonian (5) in q:p resonance the surface given through 
(12) has a singular point of conical type at (a1, a3, a4) = (0, 0, 0) when |p| > 1, h p > 0, at 
(a1, a3, a4) = (h/q, 0, 0) when q  >  1, h  >  0 and at (a1, a3, a4) = (0, 0, 0) when p  <  0, h  =  0. 
For |p| > 1, h p > 0 an unfolding of the point (0, 0, 0) is provided by the change (29) together 
with the constraint a1 = x2 + y2. An unfolding of (h/q, 0, 0) for q > 1, h > 0 is provided by 
(31) with the constraint a1 = [h − p(x2 + y2)]/q. When p  <  0, h  =  0 the unfolding is given by 
(33) with the constraint a1 = |p|(x2 + y2)/(q + |p|).

Figure 8. Symplectic smoothings for the resonances 2:3 (left) and 3:  −  1 (right).
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6. Attaching perturbations

6.1. Normalizing small perturbations

Consider a small Hamiltonian perturbation of HR, i.e. take

Hε = HR + εHP (34)

where HP is a smooth function on R2n  (the perturbation) and ε is a small parameter. Our 
analysis starts with normalizing the Hamiltonian possibly to very high order, i.e. we transform 
the Hamiltonian by a symplectic change of variables to the form

Hε = HR + εHN + ε2 HH (35)

where HN  is in normal form with respect to HR, that is, {HN ,HR} = 0. Besides it is assumed 
that HN  is already reduced, which for us means it is written totally in terms of invariants, as 
a projection Π from Nε = H−1

ε  to O has been performed. For the normalization we use the 
method by Deprit [10]. Since the transformation to normal form does not converge in general 
it is necessary to stop at a certain order leaving a remainder term HH called the higher order 
terms. (In the various applications the powers of ε will vary.)

6.2. On the plateau

In order to stress our point of view we recall in this subsection some results about the recon-
struction of the flow of a Hamiltonian system related to the points of the reduced space for 
which regular reduction holds. In particular we give a new description of the center-saddle 
bifurcation of periodic solutions in the context of regular reduction.

To investigate solutions that are perturbations of plateau points we use averaging as we did 
in [61]. Specifically let the average of HP be

H̄(z) =
1

2π

∫ 2π

0
HP(Z(t) z)dt. (36)

Clearly H̄ is constant on the orbits of HR and so, after projecting into O, it can be considered 
as a function on O which is smooth on the plateau L. (Observe that we keep the same name 
for the averaged Hamiltonian after projection through Π.) As a consequence, for Hamiltonians 
like (35) one has that H̄ = HN , that is, the normal form computation is equivalent to the 
averaging over the periodic solutions of HR. By Reeb’s theorem the plateau has a symplectic 
structure and H̄ defines a Hamiltonian system on L. Let v be symplectic coordinates on L then 
the Hamiltonian system of equations on L in these coordinates is

v̇ = J ∂H̄
∂v

where J  is the usual (2n − 2)× (2n − 2) matrix of Hamiltonian mechanics.
A critical point d ∈ L of H̄ (i.e. ∂H̄/∂v(d) = 0) is nondegenerate if the Hessian at the 

critical point, ∂2H̄/∂v2(d), is nonsingular. The linearization about the critical point is

v̇ = Ā v = J ∂2H̄
∂v2 (d) v.

Let the eigenvalues of Ā be ν1, . . . , ν2n−2.
Indeed, all the local results in section 2 of [61] hold at plateau points. For example:

Theorem 6.1. If H̄ has a nondegenerate critical point at Π(z) = d ∈ L ⊂ O, 
z ∈ Nε(h) = H−1

ε (h) then there are smooth functions z(ε) = z + O(ε) and T(ε) = 2π + O(ε) 
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for ε small, such that the solution of Yε, the vector field associated to Hε, through z(ε) is 
T(ε)-periodic. The characteristic multipliers are

+1,+1,+1 + 2πε ν1 + O(ε2), . . . ,+1 + 2πε ν2n−2 + O(ε2).

Proof. This is an immediate consequence of corollary 2.2 in [61], where we have used the 
fact that T(ε) = 2π + O(ε). □ 

An illustrative bifurcation result is the proof of the existence of an extremal bifurcation of 
periodic solutions using reduction theory. We could handle other cases such as the pitchfork 
or the period doubling bifurcations similarly.

For simplicity let n  =  2 so the orbit space O is 2-dimensional and consider the case where 
HP and H̄ depend on a parameter δ which may be an external parameter or h ∈ I ⊂ R. A criti-
cal point d ∈ L ⊂ O of H̄ for δ = 0 will be called an extremal critical point [39, 43] if there 
are symplectic coordinates u, v for O at d such that

H̄ = H̄u = H̄v = H̄vv = H̄uv = 0, H̄uu �= 0, H̄vδ �= 0, H̄vvv �= 0, (37)

when u = v = δ = 0. The canonical example of the extremal critical point is given by

H̄ = u2/2 + δ v + v3/3.

An extremal bifurcation is sometimes called a saddle-center bifurcation, or creation in [1], or 
fold in catastrophe theory [49].

Lemma 6.1. An extremal critical point d lies on a smooth one-parameter family d(δ), 
d(0) = d, of critical points of H̄ and δ achieves a non-degenerate maximum or minimum on 
this family at d. The point d divides the family of critical points in two subfamilies, one sub-
family is all saddle points and the other is all non-degenerate maxima (or minima).

This is an elementary result, but for a proof and discussion, see [49].
Let Hε,δ be the Hamiltonian (35) with HN = H̄, let Yε,δ be the vector field associated to 

Hε,δ and let Nε,δ(h) = H−1
ε,δ (h).

Theorem 6.2. If H̄ has an extremal critical point at Π(z) = d ∈ L ⊂ O with z ∈ Nε,0(h) 
when δ = 0 then there are smooth functions z(ε, δ) and T(ε, δ) for ε and δ small with z(0, 0) = z, 
T(0, 0) = T , z(ε, δ) ∈ Nε,δ(h) and the solution of Yε,δ through z(ε, δ) is T(ε, δ)-periodic.

For a fixed small ε the family of periodic solutions z(ε, ·) has a unique degenerate periodic 
solution which divides the family into a subfamily of elliptic periodic solutions and a subfam-
ily of hyperbolic periodic solutions.

Proof. We follow the proof found in [15]. From the proof of theorem 2.2 and lemma 2.1 of 
[61] the cross section map in an energy level is of the form P : σ → σ : y �→ P(y, δ) where 
y = (u, v) are local coordinates in O and P(y, δ) = y + ε T J ∇y H̄(y, δ) + O(ε2). Define Q 
by P(y, δ) = y + ε T J Q(y, δ, ε), so Q(y, δ, ε) = ∇y H̄(y, δ) + O(ε). A fixed point of P gives 
rise to a periodic solution so we must solve P(y, δ) = y or equivalently Q(y, δ, ε) = 0.

The equations  for a fixed point are Q1(u, v, δ, ε) = H̄u + O(ε) = 0, Q2(u, v, δ, ε) = 
H̄v + O(ε) = 0, and when u = v = δ = ε = 0 the Jacobian matrix of these equations is

∂(Q1, Q2)

∂(u, v, δ)
=

∂(H̄u, H̄v)

∂(u, v, δ)
=

[
H̄uu 0 H̄uδ

0 0 H̄vδ

]

which is of rank 2 by (37). Thus, we can find functions ξ(v, ε) and η(v, ε) such that
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Q1(ξ(v, ε), v, η(v, ε), ε) = Q2(ξ(v, ε), v, η(v, ε), ε) = 0.

From these identities we compute

ξv(0, 0) = ηv(0, 0) = 0, ηvv(0, 0) = −H̄vvv(0, 0, 0)/H̄vδ(0, 0, 0) �= 0.

By the implicit function theorem there is a function w(ε) such that ηv(w(ε), ε) = 0 and 
ηvv(w(ε), ε) �= 0. For a fixed small ε the function η(v, ε) has a non-degenerate maximum or 
minimum at w(ε) and ηv(v, ε) changes sign at w(ε).

Let E be the identity matrix and A = E + εA∗ be a 2 × 2 matrix with determinant 1. From 
detA = 1 obtain that trace A∗ = −ε detA∗ and so A is elliptic if detA∗ > 0 and it is hyper-
bolic if detA∗ < 0 for small ε.

Now differentiate the equations Q1 = Q2 = 0 with respect to v to get

Q1uξv + Q1v + Q1δηv = 0,

Q2uξv + Q2v + Q2δηv = 0,

all evaluated at (ξ(v, ε), v, η(v, ε), ε). Use Cramer’s rule to solve for ηv to get

det

[
Q1u Q1δ

Q2u Q2δ

]
ηv = − det

[
Q1u Q1v

Q2u Q2v

]
. (38)

When ε = 0 one obtains

det

[
Q1u Q1δ

Q2u Q2δ

]
= H̄uu(0, 0, 0)H̄vδ �= 0

so for small ε the determinant on the left in (38) is nonzero. Thus,

det

[
Q1u Q1v

Q2u Q2v

]
= det

[
Q2u Q2v

−Q1u −Q1v

]

is zero when v = w(ε), changing sign at this value of v.
Using these facts we compute the characteristic multipliers from

∂P
∂y = E + ε T J ∇y Q(ξ(v, ε), v, η(v, ε), ε)

= E + ε T

[
Q2u Q2v

−Q1u −Q1v

]
(ξ(v, ε), v, η(v, ε), ε).

Thus for v = w(ε) the critical point (ξ(v, ε), v, η(v, ε)) is degenerate, a saddle point for v 
on one side of w(ε) and a non-degenerate maximum or minimum for v on the other side of 
w(ε). □ 

Thus if a reduced Hamiltonian system of two degrees of freedom undergoes an extremal 
bifurcation then the periodic solutions of the full system do the same.
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6.3. At a peak

It is possible to approximate the characteristic multipliers of a periodic solution related to a 
peak. Specifically we have the following result.

Theorem 6.3. Let Ps = d ∈ O be a peak with frequency ks and z ∈ Π−1(d). Since kj/ks is 
not an integer for j �= s then the solution through z of (34) for ε = 0 is periodic with period 
2π/|ks| and characteristic multipliers

e±(k1/ks) 2πi, . . . , e±(ks/ks) 2πi, . . . , e±(kn/ks) 2πi.

Of course e±(ks/ks) 2πi = +1 as one expects from a periodic solution of a Hamiltonian system, 
but all the others are not equal to  +1.

For ε small, the system (34) has a periodic solution near z of period 2π/|ks|+ O(ε) and 
characteristic multipliers

e±(k1/ks) 2 πi + O(ε), . . . , e±(ks−1/ks) 2πi + O(ε),

e(ks/ks) 2πi = +1, e−(ks/ks) 2πi = +1,

e±(ks+1/ks) 2πi + O(ε), . . . , e±(kn/ks) 2πi + O(ε).

Proof. This result is classical and does not use reduction, see [42, 43]. □ 

In order to obtain the ε order correction terms for the multipliers, decide stability and ana-
lyze the bifurcations it is necessary to use symplectic smoothing techniques which are given 
in section 5.2 for n  =  2 and are illustrated by examples in sections 7.2.3 and 7.3.2. The general 
case when n � 2 will be discussed in [46].

For n  =  2 we present a result on the characteristic multipliers of a periodic solution related 
to a peak that improves the approximation given in theorem 6.3. In this case we have pro-
vided symplectic coordinates v = (x, y) given by (29) for the peak P2 and by (31) for P1 with 
the aim of making smooth the orbit space around these peaks. Let H̄(v) be the normal form 
Hamiltonian written in terms of these coordinates with its associated Hamiltonian equations

v̇ = J ∂H̄
∂v

. (39)

Since the peak P1 is transformed into (x, y) = (0, 0) through (31), respectively P1 is trans-
formed into (0, 0) by means of (29), the linearization about the peak points is

v̇ = Ā v = J ∂2H̄
∂v2 (0) v. (40)

Let the eigenvalues of Ā be ±ν.

Theorem 6.4. Let n  =  2 and let P2 = d ∈ O be a peak with frequency |p| > 1 and 
z ∈ Π−1(d). For ε small the system associated to the Hamiltonian (34), where HR is given 
in (5), has a periodic solution near z of period 2π/|p|+ O(ε) and characteristic multipliers 
+1,+1 and

e(q/p) 2πi[1 + (2π/p) ε ν] + O(ε2), e−(q/p) 2πi[1 − (2π/p) ε ν] + O(ε2). (41)

For P1 simply interchange p and q. When ν is real we assume that it is positive whereas when 
it is pure imaginary we assume that its imaginary part is positive.
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Proof. When p and q are positive refer to the figures in section 3.2. As in theorem 6.2 we 
use the theory of [61], specifically the proof of theorem 2.2 and lemma 2.1. Consider the 
Hamiltonian Hε of (34) and compute the cross section  map in the energy level h + O(ε), 
which is of the form P : σ → σ : v �→ P(v, h), where v = (x, y) introduced in (29) are local 
coordinates in O valid around the peak point P2 and P(v, h) = v + ε T J ∇v H̄(v, h) + O(ε2) 
and T = 2π/|p|+ O(ε). As we know from [61], the fixed point of P, v = O(ε), leads to the 
periodic solution related to P2.

In case that P2 were a critical point in the plateau, the nontrivial characteristic multipliers 
of the periodic solution would be the eigenvalues of ∂P(0, h)/∂v, where

∂P
∂v

(0, h) = E + ε T J ∂2H̄
∂v2 (0, h) + O(ε2) = E + ε T Ā + O(ε2)

with Ā defined in (40), thus the multipliers would be 1 ± (2π/p)εν + O(ε2). However we need 
to modify the map P since we have made a |p| : 1 covering when introducing coordinates x, y 
in (29). Thus we have to compose P with a rotating map related to Hqp given in (5). Observe 
that x2

1 + y2
1 = x2 + y2 then the section map P′ related to the periodic solution x  =  y  =  0 (i.e. 

the periodic solution P2) is obtained integrating the equations of motion ẋ = ∂Hqp/∂y = qy, 
ẏ = −∂Hqp/∂x = −qx between 0 and 2π/|p|. One gets

v �→ P′(v) = B v with B =

[
cos(2πq/p) sin(2πq/p)

− sin(2πq/p) cos(2πq/p)

]
.

In particular P′ is the section map corresponding to the cross section θ2 = 0 associated to the 
periodic solution P2 (the set S in figure 2).

Composing P with P′ we get P′′ = P ◦ P′ with P′′ : σ → σ : v �→ P′′(v, h) = B [v+  
T J ∇v H̄(v, h)] + O(ε2). The Jacobian of P′′ at v = 0 is

∂P′′

∂v
(0, h) = B + ε T B Ā + O(ε2)

and its eigenvalues are the approximate characteristic multipliers of the periodic solution re-
lated to P2. These eigenvalues are given in (41). □ 

The reader could notice that the factor 1/p in the multipliers (41) comes from the fact that 
we have performed a |p| : 1 covering when passing to the coordinates x, y.

6.4. At a ridge

Ridges can only be found in systems with three or more degrees of freedom and one is not 
assured that a periodic solution is generated from a ridge in general. We will develop the gen-
eral theory of symplectic smoothing for ridges in [46].

7. Bifurcations in the q:p resonance

7.1. Cherry’s example: 2:  −  1 resonance

To show that linear stability does not imply nonlinear stability for Hamiltonian systems 
Whittaker [60] gives an example that he attributes to Cherry [5]. In his original variables the 
differential equation is
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dx1

dt
=

∂H
∂y1

,
dx2

dt
=

∂H
∂y2

,
dy1

dt
= −∂H

∂x1
,

dy2

dt
= −∂H

∂x2
,

where

H =
1
2
λ(x2

1 + y2
1)− λ(x2

2 + y2
2) +

1
2
α[x2(x2

1 − y2
1)− 2 x1 y1 y2],

with λ and α arbitrary parameters. He explicitly gives solutions

x1 =
√

2
α(t+ε) sin(λ t + γ), y1 =

√
2

α(t+ε) cos(λ t + γ),

x2 = 1
α(t+ε) sin[2(λ t + γ)], y2 = −1

α(t+ε) cos[2(λ t + γ)],
 

(42)
where ε and γ are constants of integration. These solutions represent orbits which spiral to the 
origin as t → +∞ and t → −∞, but which have branches with all coordinates spiraling to 
infinity as t tends to −ε. Think of these solutions on two surfaces in R4. The equilibrium at the 
origin is therefore unstable, in spite of being stable to the first order.

Whittaker gives no hint as to the origin of this example—no discussion of normal forms or 
invariants. Cherry on the other hand was looking at systems which have an additional integral 
and hence were solvable. A closer look at this example reveals that the system is in 2:  −  1 
resonance and the Hamiltonian is written in terms of our invariants. To be consistent with our 
notation we specialize by taking λ = −1, α = 1 and reverse the subscripts so that

H = 2 a1 − a2 + a3.

The orbit space O when 2 a1 − a2 = h is the surface

a2
3 + a2

4 = a1(h − 2 a1)
2, a1 � 0, a1 � h/2.

The Hamiltonian H is already in normal form and so the reduced Hamiltonian is H̄ = a3. 
Using the Poisson structure given in table 1 with q  =  2 and p  =  −1, we obtain the equations of 
motion, arriving at

ȧ1 = {a1, H̄} = −2 a4, ȧ3 = {a3, H̄} = 0, ȧ4 = {a4, H̄} = −a2(4 a1 + a2).

The system has also been studied in [45] using the invariants ak’s. Recall that on the orbit space 
a2 = 2 a1 − h. For a critical point one must have a4  =  0 and a2(4 a1 + a2) = 0 and since not 
both a1 and a2 can be zero or negative the conditions for an equilibrium are a2 = a4 = 0. But 
in the orbit space a2  =  0 only when a1  =  h/2 and that occurs when h � 0; this is a singular 
point of the orbit space (a peak when h  >  0) which is always an equilibrium of the reduced 
system even when the equations of motion are not well defined in non-regular points. When 
h � 0 the orbit space is a trumpet whereas for h  <  0 it is a cap.

Look at the flow lines in figure 9. The flow lines lie in H̄ = a3 = constant and a4 is decreas-
ing. These flow lines can be interpreted as approximations of the flow of the two degrees of 
freedom problem in symplectic charts on the orbit space. These charts are the different trum-
pets and caps defined when varying h.

When h  =  0 the origin in a-space corresponds to the origin in R4 and it is a singularity (not 
a peak). There is an orbit on O tending to the origin as t → +∞ and there is an orbit on O 
tending to the origin as t → −∞. These represent a surface of solutions that spiral to the origin 
as t → ±∞ and are geometrically the solutions given by Whittaker in (42).

When h  >  0 there is an equilibrium (a peak) on O at a1 = h/2, a3 = a4 = 0. This gives 
rise to a periodic solution of period T ∼ π for each h � 0. These solutions form the short 
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periodic family given by Liapunov center theorem [43]. Note that here too there is an orbit 
on O tending to the equilibrium as t → ±∞. Thus the solutions in the short period family are 
unstable.

When h  <  0 there are no equilibria and so all solutions recede far away as t → ±∞.

7.2. Detuning the 2:  −  1 resonance

Look at a detuning of the previous example, namely,

H = (2 + µ)a1 − a2 + a3,

where μ is a parameter. This system has also been dealt with partially in [55] and in [9]. We 
also treated it in the setting of singular reduction in [45]. Here we give a much deeper insight 
using the results of sections 5 and 6. In particular the bifurcation analysis by means of the 
symplectic smoothing is new.

When 2 a1 − a2 = h the orbit space is still the surface

a2
3 + a2

4 = a1(h − 2 a1)
2, a1 � 0, a1 � h/2. (43)

7.2.1. Equations of motion and equilibria. The reduced Hamiltonian on the orbit space is 
H̄ = µ a1 + a3 and the equations  of motion are obtained through the Poisson brackets of 
table 1, yielding that

ȧ1 = {a1, H̄} = −2 a4, ȧ3 = {a3, H̄} = 2µ a4, ȧ4 = {a4, H̄} = −2µ a3 − a2(4 a1 + a2).

Recall that on the orbit space a2 = 2 a1 − h. For an equilibrium point one must have

a4 = 0, −2µ a3 − a2(4 a1 + a2) = 0, a2 = 2 a1 − h, a2
3 + a2

4 = a1(h − 2 a1)
2,

 
(44)

with a1 � max{0, h/2}. Solving (44) in {a1, a3, a4} we obtain up to three solutions, namely,

P1 = (h/2, 0, 0),

L± =
(

1
18 (3 h + µ2 ± |µ|

√
6 h + µ2), 1

27 µ [−µ4 ± |µ|(3 h − µ2)
√

6 h + µ2], 0
)

.

These solutions correspond to critical points of the system (44) when the three components of 
each point are real numbers and a1 � max{0, h/2}. Indeed the point P1 should be discarded 
from the solutions of (44) as the orbit space O is not defined in it since it is a singular point. 
However it is always an equilibrium of a reduced system defined in O. We get

h < 0 h = 0 h > 0

Figure 9. Flow of Cherry’s example in O.
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 (i) P1 is an equilibrium for h � 0, that is, in regions I, II of figure 10.
 (ii) L+ is an equilibrium when −µ2/6 � h � µ2/2, i.e. in regions II and III of figure 10.
 (iii) L− is an equilibrium when −µ2/6 � h � 0, i.e. in region III of figure 10.

The value of h as a function of the Hamiltonian H  =  e on the three equilibria is represented 
in figure 11. The flow of the reduced system appears in figure 12.

7.2.2. Bifurcation curves. Bifurcations of equilibria occur when a critical point appears or 
disappears or when two or the three possible equilibria collide. Solving the equations for this 
to happen we end up with the bifurcation plane appearing in figure 10. The plane is symmetric 
with respect to µ = 0, so we only plot the bifurcation lines for µ � 0.

In region I, when h � µ2/2, the orbit space has a peak at P1 and it is the only equilibrium 
point.

Figure 11. Value of h at each equilibrium as a function of H  =  e for μ fixed. Solid 
lines correspond to elliptic points and dashed lines to hyperbolic ones. The red line 
is associated to P1, the blue line to L− and the green one to L+ . Bifurcations take 
place where two different colors meet, in particular a center-saddle bifurcation occurs 
at h = −µ2/6; a vanishing of periodic solutions at h  =  0; and a subcritical Hamiltonian 
flip bifurcation when h = µ2/2.

Figure 10. Bifurcation plane in the detuning of the 2:  −  1 resonance.
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In region II the orbit space O has a peak at P1 and the point L+ is also an equilibrium in 
the plateau. When h � µ2/2 the point L+ approaches P1 and finally collides with it when 
h = µ2/2. See the point where the green and the red lines meet in figure 11.

For h  =  0 the situation is qualitatively the same as in region II, but the singularity moves 
to the origin of a-space.

For h  <  0 the orbit space becomes regular and P1 is not an equilibrium. The point L− 
appears as an equilibrium up to h = −µ2/6 while L+ still persists for these values. This situ-
ation corresponds to region III of figure 10. For values of h � 0 the point L−, which is in the 
plateau, is close to P1 colliding with it when h  =  0, and only the point P1 survives for h  >  0 as 
a peak. See the point where the red and the blue lines meet in figure 11.

When h � −µ2/6 the two equilibria L+ and L− get close until they collide when h = −µ2/6. 
After crossing this line, once in region IV, the equilibrium disappears, i.e. for h < −µ2/6 there 
are no equilibria. See figure 12 and the point where the blue and the green lines meet in figure 11.

When h = µ = 0 the only equilibrium is the origin of the orbit space.

7.2.3. Bifurcation analysis and reconstruction. In order to determine the stability of the equilib-
ria and classify their bifurcations we distinguish between singularities and points in the plateau.

Hamiltonian flip bifurcation. The peak, P1, is associated to a π-periodic solution. Its stabil-
ity is analyzed applying the symplectic smoothing technique of section 5.2, defining a set 
of adequate coordinates around P1. We use the transformation (31) with q  =  2 and p  =  −1, 
obtaining

a1 =
1
2
(h + x2 + y2), a2 = x2 + y2, a3 =

1√
2
(x2 − y2)

√
h + x2 + y2, a4 =

√
2 x y

√
h + x2 + y2.

 (45)
The change (45) is applied to H̄/2 and making a Taylor expansion around (0, 0) one ends up 
with

Figure 12. Flow in the different regions of the bifurcation plane for the detuning of the 
2:  −  1 resonance.
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H̄ =

√
h

2
√

2
(x2 − y2) +

µ

4
(x2 + y2) +

1
4
√

2 h
(x4 − y4) + . . . ,

after discarding constant terms. The ellipsis stands for terms that are at least sixth order. The 
expansion is valid for h  >  0.

Hamiltonian H̄  represents a Z2-symmetric one degree of freedom system in (a1, x, y)-space. 
The eigenvalues of the Hessian matrix related to H̄  evaluated at (x, y) = (0, 0) (i.e. the point 
corresponding to the peak in a-space) are ν± = ±(1/2)

√
2 h − µ2 , thus (0, 0) is unstable  

(a saddle) for h > µ2/2 and stable (a center) for 0 < h < µ2/2. For h = µ2/2 it is a cusp 
point and the normal form around it is x2 − y4/(2µ2) for µ > 0, hence it is unstable. Note 
that the stability of the peak is difficult to guess from figure 12, as the flow in region I and on 
the bifurcation h = µ2/2 look alike. Calculating the other valid critical points of the system 
in (a1, x, y)-space from the 4-jet above we see that for h > µ2/2 the origin is the only equi-
librium, whereas for 0 < h < µ2/2 two more hyperbolic equilibria (saddles) arise. This is the 
typical scenario of a subcritical Hamiltonian pitchfork bifurcation occurring at h = µ2/2. The 
coordinates (x, y) of the two saddles are (0,±(h/2)1/4

√
µ− (2 h)1/2) and their eigenvalues 

±(1/
√

2)
√
µ2 − 2 h. Returning to a-space the previous considerations tell us that the reduced 

Hamiltonian H̄  undergoes a subcritical Hamiltonian flip (or period doubling) bifurcation in 
O because the two hyperbolic equilibria become a unique saddle, this point being L+ ; see 
figure 12.

Reconstructing the dynamics of the full system in R4 we conclude that there is a 
Hamiltonian flip bifurcation of periodic solutions. The unstable periodic solution corre-
sponding to the peak point has period near π and bifurcates at h ≈ µ2/2, changing its stability 
character and giving rise to an unstable periodic solution whose period is near 2π. Applying 
theorem 6.4, the approximate non-trivial multipliers of the periodic solution related to P1 are 
e(−1/2)2πi[1 + (2π/2)ν+] and e−(−1/2)2πi[1 + (2π/2)ν−], that is, −1 ± (π/2)

√
2 h − µ2 . We 

exclude the case µ = 0 in the analysis.

Vanishing of the periodic solution. We study the behavior of H when h passes through 0. 
When h � 0 the peak is stable while for h � 0 it becomes a regular non-critical point and 
near to it the point L− emerges as a regular point. For h  =  0 the stability of the singular point 
corresponds to the stability of the origin in R4 for H in the coordinates (x1, y1, x2, y2) and we 
analyze it by applying the change (33). The unfolding is given by

Figure 13. Symplectic smoothing of the 2:  −  1 resonance for h  =  0 and µ = 0 (left) 
and for h  =  0 and µ = 2 (right).
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a1 =
1
3
(x2 + y2), a2 =

2
3
(x2 + y2), a3 =

2
3
√

3
x(x2 − 3 y2), a4 =

2
3
√

3
y(3 x2 − y2).

 (46)
The reduced Hamiltonian reads as

H̄ =
1
6
µ(x2 + y2) +

1
3
√

3
x(x2 − 3 y2),

which is a Z3-symmetric Hamiltonian. We get that the origin is an elliptic point whenever 
µ �= 0 whereas for h = µ = 0 it is a degenerate unstable point. Concretely the eigenvalues 
of (0, 0) are ±µ i/3. Apart from the origin we obtain three saddle points with coordinates 
(−µ/

√
3, 0), (µ/(2

√
3),±µ/2) and eigenvalues ±µ/

√
3 , provided µ �= 0. The three saddles 

correspond to the point L+ in the orbit space O. See figure 13 where the 3:1 covering induced 
by the transformation (46) is clearly discerned.

Dealing with the flow of H in R4 we know that when h � 0 the point P1 represents a stable 
periodic solution with period close to π. For h � 0 the singularity disappears but L− is born 
close to the point (0, 0, 0) in a-space as a regular point. Thus L− corresponds to a periodic 
solution of the full system with period near 2π. Hence the stable periodic solution of period 
near π shrinks down to the origin when h  =  0 and reappears for h  <  0 also as a stable periodic 
solution though duplicating its period.

Center-saddle bifurcation. In this case the bifurcation occurs in the plateau of O thus 
we apply the theory of section  6.2. We also make use of the local transformation (18). 
Let (a0

1, a0
3, a0

4) represent either the coordinates of L+ or of L−. Applying (21) we obtain 

(x0, y0) = (− 1
6 (µ±

√
6 h + µ2), 0) with the upper sign for L+ and the lower one for L−. Thus 

we define symplectic coordinates x̄, ȳ according to the study carried out in section 5.1. By 
means of (18) we get

a1 = x2 + y2, a2 = 2(x2 + y2)− h, a3 = x[2(x2 + y2)− h], a4 = y[2(x2 + y2)− h],

and replace x, y by x̄ + x0, ȳ + y0 where x0, y0 are taken differently for L+ or for L−. Plugging 
the changes in H̄ , dividing the result by two, expanding in terms of x̄, ȳ and dropping constant 
terms we end up with

H̄ =
1
3
µ ȳ2 ∓ 1

6

√
6 h + µ2(3 x̄2 + ȳ2) + x̄(x̄2 + ȳ2) + . . . ,

where the upper sign is for L+ and the lower one for L− and the ellipsis means that the remain-
ing terms start at degree four. The eigenvalues are

± 1√
3

√
−6 h − µ(µ− 2

√
6 h + µ2) for L+, ± 1√

3

√
−6 h − µ(µ+ 2

√
6 h + µ2) for L−.

We conclude that L− is an elliptic equilibrium when −µ2/6 < h < 0, i.e. in region III, see 
figures 11 and 12, whereas L+ remains a saddle when −µ2/6 � h. For h = −µ2/6 there is a 
collision between L+ and L− that gives rise to an extremal point that disappears once in region 
IV, see figure 12. We can use the 3-jet given above either in a neighborhood of L+ or of L− to 
check that the normal form of the bifurcation happening at h = −µ2/6 corresponds to the one 
studied in section 6.2. In summary, at h = −µ2/6 there is a center-saddle bifurcation of rela-
tive equilibria in the orbifold O.
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Applying theorem 6.1 we ensure the existence of two (families of) periodic solutions for 
the Hamiltonian H related to L+ and L− whose periods are near 2π. Besides the periodic solu-
tion associated to L− is elliptic while the one associated to L+ is hyperbolic and their non-triv-
ial approximate multipliers are, respectively, 1 ± (2/

√
3)π[−6 h − µ(µ+ 2

√
6 h + µ2)]1/2 

and 1 ± (2/
√

3)π[−6 h − µ(µ− 2
√

6 h + µ2)]1/2. These multipliers are valid whenever the 
periodic solutions exist. According to theorem 6.2, these periodic solutions undergo a center-
saddle bifurcation in R4 when h ≈ −µ2/6.

7.3. The 3:2 resonance

7.3.1. Hamiltonian, equations of motion and relative equilibria. We consider the detuning of 
the 3:2 resonance as it is presented and analyzed by Schmidt in [55]. The starting point is the 
Hamiltonian

H = 3 a1 + 2 a2 + ε2
(
λ1 a1 + λ2 a2 +

A
2

a2
1 + B a1 a2 +

C
2

a2
2

)
+ ε3(D1 a3 + D2 a4)

 (47)
with the relations

a2 =
1
2
(h − 3 a1), a2

3 + a2
4 =

1
8

a2
1(h − 3 a1)

3, a1 � 0, a2 � 0, (48)

where we have fixed an energy level h  >  0. The constants A, B, C, D1, D2 have real values, 
λ1 and λ2 are detuning parameters and ε is a small parameter. The orbit space is the second 
constraint of (48) together with 0 � a1 � h/3. The reduced Hamiltonian is given by

H̄ = λ1 a1 + λ2 a2 +
A
2

a2
1 + B a1 a2 +

C
2

a2
2 + ε(D1 a3 + D2 a4).

Apart from the peaks, the relative equilibria are the solutions of the system

ȧ1 = {a1, H̄} = 4 ε(a4 D1 − a3 D2) = 0,

ȧ3 = {a3, H̄} = −[h(2 B − 3 C) + 2(2λ1 − 3λ2)]a4 − (4 A − 12 B + 9 C)a1 a4

+ ε
4 D2(15 a1 − 2 h)(h − 3 a1)

2a1 = 0,

ȧ4 = {a4, H̄} = [h(2 B − 3 C) + 2(2λ1 − 3λ2)]a3 + (4 A − 12 B + 9 C)a1 a3

− ε
4 D1(15 a1 − 2 h)(h − 3 a1)

2a1 = 0,

a2
3 + a2

4 = 1
8 a2

1(h − 3 a1)
3.

From the first equation we infer that the solutions (a1, a3, a4) satisfy a4 D1 = a3 D2. Then, 
considering the generic case D1, D2 �= 0 and substituting this relation in the second and third 
equations we arrive at ȧ3 D1 = −ȧ4 D2. Therefore our system can be reduced to two equa-
tions in (a1, a3), which are the third and the fourth ones. From the third equation it is natural 
to define the following parameters, as it is done in [55],

M = 2 B − 3 C, σ = 2λ1 − 3λ2, ∆ = 4 A − 12 B + 9 C.

The relevant factors of the resultant of these two equations with respect to a3 are

R(a1) = a2
1(3 a1 − h)3 {675 ε2(D2

1 + D2
2)a

3
1 + [2∆2 − 405 h ε2(D2

1 + D2
2)]a

2
1

+ 4[18 h2 ε2(D2
1 + D2

2) + ∆(h M + 2σ)]a1

+ 2[−2 h3 ε2(D2
1 + D2

2) + (h M + 2σ)2]}.
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The roots a1  =  0,h/3 lead to the peak points in O. (Strictly speaking one cannot conclude 
the existence of the peaks from the equations of motion, however they are critical points 
of the reduced system.) The peak P1  =  (h/3,0,0) corresponds to the q  =  3 singularity in 
O, i.e. the family of short periodic solutions in R4. The peak P2  =  (0,0,0) corresponds to 
the p  =  2 singularity in O, i.e. the family of long period solutions in R4. The solutions of 
the equation R(a1) = 0 with 0  <  a1  <  h/3 are related to the critical points in the plateau 
L ⊂ O. So they are the roots of the cubic polynomial in a1 given by

p3(a1) = 675 D a3
1 + (2∆2 − 405 h D)a2

1 + 4[18 h2 D +∆(h M + 2σ)]a1

+ 2[(h M + 2σ)2 − 2 h3 D],

such that 0  <  a1  <  h/3. We have introduced the new parameter D = ε2(D2
1 + D2

2).
The bifurcations take place when there is a multiple root of the cubic polynomial, say a0

1, 
such that 0 < a0

1 < h/3 or when a root of this cubic polynomial is 0 or h/3.

 (i) The appearance of multiple valid roots of the cubic polynomial corresponds to a multiple 
collision of relative equilibria in the plateau. This occurs when the discriminant D of the 
cubic polynomial is zero, where D is

D = 4 D[2∆ h + 15(h M + 2σ)]2{8∆4 h + 24∆3(h M + 2σ)− 3564∆2 h2 D

− 29160∆ h D(h M + 2σ) + 10935 D[−5(h M + 2σ)2 + 2h3 D]}.

  So when D = 0 the cubic polynomial has a multiple root, but we need 0 < a0
1 < h/3 and 

it is not possible when 2∆ h + 15(h M + 2σ) = 0, but only when the last factor of D 
vanishes. Thence a bifurcation in the plateau takes place when

Γ1 ≡ 8∆4 h + 24∆3(h M + 2σ)− 3564∆2 h2 D − 29160∆ h D(h M + 2σ)

+ 10935 D[−5(h M + 2σ)2 + 2 h3 D] = 0.

  This is the blue line appearing in figure 14.
 (ii) When a valid root of the cubic polynomial is 0, then a relative equilibrium in the plateau 

collides with the peak at a1  =  0. So a bifurcation involving P2 happens when

Γ2 ≡ (h M + 2σ)2 − 2 h3 D = 0.

  This is the red line appearing in figure 14.
 (iii) When a valid root of the cubic polynomial is h/3, then a relative equilibrium in the plateau 

collides with the peak at a1  =  h/3. Thus a bifurcation involving P1 takes place when

Γ3 ≡ ∆ h + 3(h M + 2σ) = 0.

  This is the green line appearing in figure 14.

7.3.2. Bifurcations and flow of the full system. We start by applying the symplectic smooth-
ing technique in order to unfold the peak points. For P2 we use formulae (29) while for P1 we 
apply (31). Specifically for the peak at a1  =  0 we get
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a1 = x2 + y2, a2 = 1
2 [h − 3(x2 + y2)],

a3 = 1
2
√

2
(x2 − y2)[h − 3(x2 + y2)]3/2, a4 = − 1√

2
x y[h − 3(x2 + y2)]3/2

 

(49)

while for the peak at a1  =  h/3, the change is

Figure 14. Bifurcation plane and flows for the detuning of the 3:2 resonance. In each 
picture of the orbit space one can also see the flow in the back.
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a1 = 1
3 [h − 2(x2 + y2)], a2 = x2 + y2,

a3 = 1
3 x(x2 − 3y2)[h − 2(x2 + y2)], a4 = 1

3 y(3x2 − y2)[h − 2(x2 + y2)].
 

(50)

Now we plug (49) and (50) in H̄/2 and obtain the reduced Hamiltonian around the peaks. 
Linearizing the Hamiltonian around (0, 0) for the two peaks we compute their eigenvalues, 
arriving at

ν±2 = ±1
4

√
2 h3 D − (h M + 2σ)2, ν±1 = ± 1

18
[−∆ h − 3(h M + 2σ)] i,

the first one applies for P2 and the second one for P1. It is immediate to deduce that P2 is hyperbolic 
when 2 h3 D − (h M + 2σ)2 > 0 and elliptic when 2 h3 D − (h M + 2σ)2 < 0. This expression 
vanishes on the curve Γ2. Regarding P1, it is a center (elliptic) provided ∆ h + 3(h M + 2σ) 
does not vanish, but this is precisely the expression of Γ3.

The peak points are reconstructed as periodic solutions of the full sys-
tem in R4 of periods near π for P2 and near 2π/3 for P1. If we apply theo-
rem 6.4, the approximate non-trivial characteristic multipliers of the periodic 
solution related to P2 are e(3/2) 2πi[1 + (2π/2) ε2 ν+2 ] and e−(3/2) 2πi[1 + (2π/2) ε2 ν−2 ] thence 
−1 ± (π/4) ε2

√
2 h3 D − (h M + 2σ)2 . The multipliers of the periodic solution related to P1 are 

e(2/3) 2πi[1 + (2π/3) ε2 ν+1 ] = −(1 +
√

3 i)/2 − [(
√

3 − i)/54]π ε2 [∆ h + 3(h M + 2σ)] and 
e−(2/3) 2πi[1 + (2π/3) ε2 ν−1 ] = −(1 −

√
3 i)/2 − [(

√
3 + i)/54]π ε2 [∆ h + 3(h M + 2σ)] , 

0

0

x

y

Figure 15. Unfolding of the 3:2 resonance: projection of a neighborhood of the point 
(a1, a3, a4) = (0, 0, 0) in the (x, y)-plane. The red curve corresponds to Γ4, i.e. to the 
connection between the two saddle points in a-space.
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thus the stability of these periodic solutions depends basically on the eigenvalues ν±1 , ν±2 , 
hence on the parameters involved in the study. We shall be more specific in the next paragraphs.

Now we can deal with the bifurcation analysis. To simplify the presentation a bit we fix 
specific values of the parameters ∆, M  and D and draw a bifurcation plane for σ and h, which 
are the significant parameters, see figure 14. The main feature when varying the values of 
∆, M  and D is that the sequence of bifurcations is the same but occurs in a different order. In 
figure 14 we also present a sketch of the flow of the reduced system throughout all regions and 
bifurcation lines. In the following paragraphs we describe the evolution of the flow starting 
from the left in the bifurcation plane and going on to the right. In the flow pictures we start by 
the top left and continue clockwise.

In region I the only relative equilibria are the peaks P1 and P2 and both are elliptic points.
On the first branch of the red line that we call Γ1

2 a bifurcation involving P2 happens 
though on the line P2 and P1 are still centers. After crossing this line, when being in region 
II, P2 changes from elliptic to hyperbolic and the stable equilibrium L1 in the plateau will 
emerge from it. The peak P1 stays stable. The bifurcation occurring on Γ1

2 is a supercritical 
Hamiltonian flip bifurcation and can be analyzed analogously as we did in section 7.2. In par-
ticular L1 reconstructs to an elliptic periodic solution of period near 2π and a Hamiltonian flip 
bifurcation of periodic solutions occurs for values of the parameters with Γ1

2 ≈ 0.
On the first branch of the blue curve, i.e. Γ1

1, a center-saddle bifurcation in the plateau takes 
place. A cusp L2 appears near the peak P1, that continues to be stable. The points P2 and L1 
remain hyperbolic and elliptic respectively. The coordinate a0

1 of L2 is obtained as a solution 
of p3(a1) = 0.

After crossing the bifurcation curve, in region III, the cusp L2 in the plateau becomes a sad-
dle and a new stable equilibrium L3 appears from it in the plateau. The center-saddle bifurca-
tion in O involving L2, L3 is reconstructed as a center-saddle bifurcation of periodic solutions 
for the Hamiltonian H with Γ1

1 ≈ 0, in a similar way to the analysis of the 2:  −  1 resonance 
of section 7.2. Thus L2, L3 correspond to periodic solutions of H with periods near 2π. The 
stability of P1, P2 and L1 is the same as in region II and on Γ1

1.
On the purple line, Γ4, the energy of the saddle L2 is the same as the energy of P2 and 

there is a connection of saddles, that is a global bifurcation. The line Γ4 has been obtained 
numerically. We present in figure 15 a view of the reduced flow near P2 in the coordinates x, 
y of (49). Due to the 2:1 covering (p  =  2) all the equilibria in the picture excepting the origin 
appear duplicated, thus the two saddles placed outside the point (0, 0) correspond to the point 
L2. Since the eigenvalues of the corresponding Hessian at the points P2 and L2 do not vanish 
at Γ4 a global bifurcation of hyperbolic periodic solutions occurs for the full system H in R4.

In region IV the number of equilibria together with their stability is the same as in region 
III but, out of the global bifurcation, the stable equilibrium L1 (that was attached to P2) is 
now attached to the saddle L2, and the stable equilibrium L3, that was attached to L2, is now 
attached to P2.

On Γ3 a bifurcation of P1 occurs. The saddle L2 in the plateau collides with P1 (which was an 
elliptic point) and disappears while P1 becomes a cusp. The stable equilibrium L1 is attached to 
P1 and the peak P2 continues to be hyperbolic and the stable equilibrium L3 is linked to it. From 
this point on, we continue by reversing all the bifurcations. In region V the peak P1 turns into 
a center and a new saddle L4 appears. The bifurcation involving P1, L2 and L4 is studied with 
the Hamiltonian H̄ in the coordinates x, y defined through (50). Thus the peak P1 behaves like 
a 3-bifurcation point, see [39, 43] due to the 3:1 covering (q  =  3) caused by the transformation 
(50). The rest of points keep on their stability character. The point L4 gives rise to an unstable 
periodic solution in R4 of period near 2π. This bifurcation translates into a bifurcation of peri-
odic solutions of the same type that takes place for the Hamiltonian (47) when Γ3 ≈ 0.
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On the second branch of the blue line, Γ2
1, a center-saddle bifurcation in the plateau occurs. 

The center L1 collides with the saddle L4 and becomes a cusp point. Once in region VI the cusp 
in the plateau vanishes while P1 remains elliptic, P2 hyperbolic and L3 elliptic. Then a center-
saddle bifurcation of periodic solutions occurs for H given in (47) when Γ2

1 ≈ 0.
In the second branch of the red line, Γ2

2, a bifurcation of P2 occurs. The elliptic point in the 
plateau, L3, collides with P2 and the peak becomes stable. The other peak, P1, remains stable. 
This is a Hamiltonian flip bifurcation involving P2 and L3 that translates into a Hamiltonian 
flip bifurcation of periodic solutions for the full system.

Finally in region VII the situation is the same as in region I, the peaks are the only critical 
points and they are elliptic.
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