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ON THE EXISTENCE OF LYAPUNOV FUNCTIONS FOR THE
PROBLEM OF LUR’E*

K. R. MEYER
Introduction. This paper is an extension of the work of Yacubovich and

Kalman on the existence of Lyapunov functions for the problem of Lur’e.
The primary result of this paper is the removal of the unnecessary hypothe-
sis of complete controllability and complete observability from the theorem
of Kalman. These hypotheses have been used either explicitly or implicitly
by many authors working in this field. Indeed, the change of coordinates
introduced by Lur’e, the so-called Lur’e transformations, can be made
only if the system is completely controllable.
The first section contains a summary of elementary results and definitions

from linear algebra and control theory.
The proofs of these preliminaries are elementary and can be found in

[1], [2], and [3].
The second section contains the extensions of the lemma of Kalman-

Yacubovich. The proof of the first lcmma follows very closely the proof as
given by Kalman in [2].
The third section contains a few applications of the lemmas developed

in the second section.

1. Preliminaries. Let A be a real n X n matrix and b, c two real n-vectors
(column). Let E be Euclidean n-space. Denote by A (z) the characteristic
matrix of A, that is, A (z) zI A, where I is the identity matrix and z
is a scalar complex variable and let A (z)-1 {A (z)}-1. Let denote the
transpose, * the conjugate transpose and the determinant. Thus A(z)
is the characteristic polynomial of A. The subspaces of E generated by
the vectors b, Ab, will be denoted by [A, b]. The orthogonal comple-
merit of [A, b] in E will be denoted by [A, b]. Let the dimension of [A, b]
be p.
LEMMa A. In general,

[A,b]= {x E. x’Ab o, o, , 2, ...}
{x E" x’(exp At)b =-- O for all (- , )}
{x E" x’A(z)-Ib 0 for any set of z having finite limit point},
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and if all the characteristic roots of A have negative real parts then

[A, b] /x E: Re x’A(i)-lb =-- 0 for all real

One says the pair (A, b) is completely controllable provided [A, b] E
and the pair (A, c’) is completely observable if (A’, c) is completely con-
trollable.
LEMMA B. There exists a basis for E such that

A= b=A

where A A. and A are p X p, p X (n p) and (n p) X (n p)
matrices respectively, b is a p-vector and (A b) is completely controllable.
LnMMA C. Let (A, b) be completely controllable and let (z) g gz- - gnzn- be any polynomial with real coefficients of degree less than n.

Then there exists a real n-vector g such that g’A (z)-lb (Z) A (z)
LEMM D. Let (A, b) be completely controllable and t any real n-vector.

Let t’A(z)-ib P(Z)ll A(z) I1 -. Then the degree of the greatest common
divisor of p(z) and A (z) is equal to the dimension of [A’, k].
A rational function f(z) is said to be positive real function provided

Re f(zo) >= 0 whenever z0 is not pole of f(z) and Re z0 >_- 0.

2. The main lemmas. The extension of the Kalman-Yacubovich lemma
will require several steps. The first lemm is a slight extension of the lemma
as given by Kalman [2] and the proof of this lemm follows very closely
his proof. We obtain the additional information that B is positive definite
and that (A, q) is completely observable.
LEMMA 1. Let A be an n X n real matrix all of whose characteristic roots

have negative real parts, let - be a nonnegative real number and let b, l be two
real n-vectors. Assume (A, b) is completely controllable. If the function

(1.1) V(z) - - 2t’A (z)-b

is a positive real function then there exist two n X n real symmetric matrices
B and D and a real n-vector q such that

(a) A’B - BA -qq’- D,
(b) Bb-t= /q,
(c) (A, q’) is completely observable,
(d) B is positive definite and D is positive semidefinite,
(e) if io, oo real, is a zero of -q’A (z)-b - /, then it is a zero of
b’A -z)-DA (z)-lb, and
(f) all the zeros of -q’A (z)-ib -{- / are in the closed left halfplaue.

Proof. Let re(z) A (z)-b and k(z) A(z) I. Since T(z) is positive
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real,

0 <-_ r - m(iw)*tc - ]’m(i)

Clearly n(z) is an even polynomial with real coefficients and hence its
zeros are symmetric about both the real axis and the imaginary axis.
Since Re v(ico) _-> 0 for all real o, the zeros of n(z) on the imaginary axis
are of even multiplicity. Thus v(z) O(z)O(--z), where 0(z) is a real
polynomial all of whose zeros have nonpositive real parts.

Let O(z) 01(z)O.(z), where all the zeros of 01(z) have negative real
parts, all the zeros of 02(z) are pure imaginary, and the leading coefficient
of 0.(z) is one. Let e0 be the greatest lower bound of 01(io)01(-io) taken
over all real o. Since 01(z) has no pure imaginary zeros, e0 > 0. Let a be a
real positive number such that a e0and a 01(X)th(-X), i 1, ,n,
where hi is a zero of (z). If 01(z) is a constant, take a 0. Consider
F(Z) 02(z)O2(--z)[OI(z)OI(--Z) OZ2]. By the definition of a and r it
follows that (i) r (io) _>_ 0 for all real co, and (ii) the greatest common
divisor of r(z) and (z)(-z) is one.

Since r(z) is an even polynomial and Re r(ico) =>_ 0 for all real co, there
exists a polynomial ,(z) with real coefficients all of whose zeros have non-
positive real parts such that r(z) ,(z),(-z). Define the vector g such
that g’A (io)-b aO(z) {(z) }-1. Thus

0 <= r + m(io)*k + ]c’m(io) m(i)*gg’m(i)

r(i)
(1.3) (i)b(--io)

The formal degree of ,(z) is n and its leading coefficient is V/ and so

(z__2 ,() + v/;,
(z) (z)

where t is real and of degree less than or equal to n 1. The vector q is
then defined by t(z){C(z)} -1 q’m(z). By construction, (z) and (z)
have greatest common divisor one and so (A, q’) is completely observable.
Thus property (c) holds. Define D gg’; since by construction the pure
imaginary zeros of g’m(z) and -q’m(z) 4- / are the same, property
(e) holds.
Now define

B f e’4’t{qq + D}eAtdt,
.o
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and so, A’B + BA -qq’ D. Since (A, q’) is completely observable,
B is positive definite. From (1.3) it follows that

,
m (i) + ’m(i)

m*(io)Dm(io) -F (-q’m(i) + 7)(-m*(i)q + ) r

m*(i){qq’ + D}m(i) g(q’m(i) + m*(i)q)

b’Bm(i) + m*(i)Bb- 7(q’m(i) + m*(i)q)

and hence Re {Bb Tq}’m(i) 0 and so Bb 1 q.
The next step is the removal of the assumption that (A, b) be completely

controllable. This is done with the following lemma.
LEMMa 2. Let A be a real n X n matrix all of whose characteristic roots have

negative real parts; let r be a real nonnegative number and let b, be two real
n-vectors. If

T(z) r + 2k’A(z)-lb
is a positive real function then there exist two n X n real symmetric matrices
B, D and a real n-vector q such that

(a) A’B + BA -qq D,
(b) Bb--= q,
(c) D is positive semidefinite and B is positive definite,
(d) (x E" x’Dx 0} [A’, q]0 0},
(e) q [A,b],and
(f) if i, real, is a zero oj" -q’A(z)-b + , then it is a zero of
b’A(-z)-nA(z)-b.

Proof. Choose coordinate system for E such that

A lc

where A, A2, As are p X p, p X (n p), (n p) X (n p) matrices,
respectively, b, lc sre p-vectors, lc2 is sn (n p)-vecor, and such thst
(A, b) is completely controllable. Clearly if A has all characteristic roots
with negative real parts then so do A and A. If we partition B, D and q
in the same way, i.e.,

B= B B D q
q

we find that we must solve the following set of matrix equations"

(1) A’B1 + BA -qqt’-- D,
(2) A + Aa + B’A -qq;
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(3) A2’B + A3’B3 + B.’A. + B3A3 -qq’ D3,
(4)
(5) B2’bl-- 2-
By hypothesis, + 2k’Al(z)-lbl is a positive real function and so by
Lemma 1 there exists a solution to (1) and (4) and by Lemma 1(c) the
condition of Lemma 2(e) is satisfied. Also by Lemma l(e) the condition
of Lemma 2(f) is satisfied. Now let us consider (2) and (5). Since Bx and
q are known by Lemma 1 these two equations have only B2’ and q as
unknowns. We can solve (2) for B’ in terms of q by the formula

e’’{q q( A( B} e’t dr,

and then. substitute this into (5) to obtain

Rq eA3’t q eAlt b dt x/- q. l A- e As B e1 b dt.

Since the right hand side of the above is known, we can solve for q2 pro-
vided the matrix in the braces, R, is nonsingular. There is no loss of gen-

A3’terality in assuming that A is in. triangular form and so is in triangular
form. A typical term from the diagonal of R is then

eX’tq et’t b dt %/- q(- I A)- bl %/-

q,’ A(--X,)- bl /7r.
But this term is not zero since -X is in the open right halfplane and by
Lemma l(f), we know that the zeros of qA(z)-b /- are in the closed
left halfplane. Thus R is nonsingular and q and B are determined.
Now choose D. to be any positive definite matrix. It is clear then that

(5) has a solution and that (d) is satisfied.
Since B satisfies A’B A- BA -qq’ D, it must be of the form

B fo eA’t At fo eA’t DeAtqq e dt A-

If x0 is such that xoBxo 0, then xoe’tq
_

0 and xoDxo 0; and thus by
(d), x0 0. Hence B is positive definite.
The converse of this lemma is true also. The proof of the converse as

given in [2] does not depend on complete controllability and complete
observability.

In some critical cases the following lemma is useful. This lemma is in
essence due to Yacubovich [5] and was implicitly used by Meyer in [6].
LEMMA 3. Let A be a 2n X 2n real matrix with simple distinct pure ira-
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aginary characteristic roots i., j 1, n. If the residues of tc’A (z)-lb
at each io are positive then there exists a positive definite matrix B such
that

A’B -BA 0 and Bb-- t O.

This lemma follows at once by making a change of coordinates so that A
is diagonal. In this coordinate system B is chosen to be diagonal also.
Using the same procedure as used in the proof of Lemma 2 one can extend

the lemma of [4, p. 115] as follows.
LEMMA 4. Let A be a real n X n matrix, all of whose characteristic roots

have negative real parts, - be a nonnegative number and b, t be any two real
n-vectors. If

r + 2 Re ]c’A(io)-lb > 0

for all real o, then there exist two real positive definite matrices B and D and a
real n-vector q such that

(a) A’B - BA -qq’- D,
(b) Bb-k= x/q.

This lemma is almost the same as the lemma given by Yacubovich [7].

3. Applications. The lemmas developed in 2 can be applied to many
different systems that have been considered in the literature. Let us con-
sider the so-called direct control system. The equations are

2 Ax- b(o-),
(3.1)

0 CX

where A is a real n X n matrix, b, x and c are real n-vectors and (a) is a
continuous scalar function of the scalar such that () > 0 for all

0. The vector x and the scalar are functions of the real variable t,
time, and 2 is the derivative of x with respect to t. Let us assume also that
through each point in E there exists a unique trajectory of (3.1).
THEOnEM 1. If all the characteristic roots of A have negative real parts and if

there exist two nonnegative constants a and , a -- O, such that

(3.2) T(z) (a + z)c’A(z)-Ib
is a positive real function then all solutions of (3.1) are bounded, the trivial
solution x 0 is stable, and moreover if a 0 the trivial solution is asymp-
totically stable in the large.

If, in the case where a O, all the characteristic roots of the matrix A bc’
have negative real parts for all > 0 then the trivial solution x 0 of (3.1)
is asymptotically stable.
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Proof. Using the relation zI A (z) -t- A we obtain

T(z) flcrb + 2Re ac flA’c A (z) -l b,

and thus by Lemma 2 there exist a real n-vector q and two positive sym-
metric matrices B and D such that

A’B + BA -qq D, Bb-- ac-t- A’c

and moreover B is definite. Thus

(3.3) V x’Bx + fo 4)(0) do

is a positive definite function nd tends to as Ix -- . The derivative
? of V along the trajectories of (3.1) is given by

-? --x (A’B + BA) x + 2 Bb-- c A

(3.4) + c’b + .
x’Dx + ( () + q’x) + ().

Note that aa(z) has been added and subtracted from and that r c’b.
Clearly is also nonnegative and hence, by the well known theorems of

Lyapunov theory all solutions are bounded and the origin is stable. In
order to prove asymptotic stability we must show that no solution remains
in the set where - 0. Let a 0 and assume there exists a solution
x(t) of (3.1)such that x(0) xoandx(t)remains in the set where- 0.
But if 0 then z 0, and thus, such a solution is a solution of 2 Ax.
Hence x(t) (exp At)xo. From the second term ve obtain q’(exp At)xo O.
Also, xoDxo 0 and so by Lemma 2(d), x0 0.

In general we cannot conclude more than stability in the case where
a 0, but if the linear system 2 A bc}x is asymptotically stable for
all > 0 then (3.1) is asymptotically stable in the large also. In order to
rule out solutions that remain in the set where - 0, we must be sure
that there is no solution such that (z(t)) -q’x(t).

If r 0 then a solution of (3.1) that remains in the set where 0
must satisfy the linear equation 2 {A + r-/bq’}x. By Lemma 2(e)
there exists a nonnegative integer m such that q’b qAb

’A-lb mbq 0 and q’A 0. Hence if r 0 there exists an m such that
solution of (3.1) that remains in the set where - 0 must satisfy

{A- (q’Ab)-bq’A+lx.
As we have seen, a solution that remains in the set where - 0 is
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a solution of the linear constant coefficient differential equation. Let us
assume that there exists a nontrivial solution x(t) of (3.1) that remains
in the set where l? 0. We can assume z(t) # 0 since if z 0 we could
repeat the previous argument. Since x(t) is a solution of a linear equation
and is bounded for all t, then x(t) must be of the form

N

x(t) vlexp

where the vi are n-vectors such that v_. and o. are real scalars such
that o_i -0i. Clearly (z(t)) must be of the form

(z(t)) a/exp it},

where the a. are scalars such that a. -a_.. By substituting these forms
into (3.1) one obtains

v -aA (io)-lb.

Thus, by the well known formula from the theory of almost periodic
functions,

N

o-(t)4,(o-(t)) dt a [’c’A(ico)-b > O.

We shall have a contradiction once we prove the following remark.
Let the characteristic roots of the matrix A gbc’ have negative real parts

for all > O. If ioj oj real, is a characteristic root of A + r-I/bq’ when
br # 0 or of A (q’A’b)-ibq’A"+ when r q q’A’-b 0

and q’A’nb # O, then Im c’A(ico)-b 0 and c’A (i)-b >= O.
We shall consider only the case where r # 0, since the other case is very

similar. Since a 0 we may take 1. Then

qq’ + D (A’B + BA) A*(io)B + BA (io),

nd

q’A(io)-b ] + b’A*(io)-IDA(ioo)-b 2Reb’BA(io)-b.
Now the characteristic polynomial of A + r-nbq’ is

A (z) [{ 1 r-leq’A (z)-lb}
and so

r r-/q’A (ia,i)-b b’BA (ioi)-b 1/2c’AA (io.)-lb.
Since -%/; + q’A (io.)-1b 0 by Lemma 2(f), b’A (io)-DA (ioi)-b O.
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Thus

r + 2 Re c’AA(i)-lb Re ojc A(ij)-Ib 0
or

Im c’A (i)-b O.

Since the linear system 2 {A bc’}x is asymptotically stable for
’dall > 0, the theorem of Nyquist gives c (io)-b >_ O.

The above theorem can be modified several ways"

(i) If the matrix A has some characteristic roots on the imaginary axis
then Lemmas 2 and 3 can be used to prove asymptotic stability in a manner
similar to that found in [5] and [6]. In particular, we have the following.
THEOREM 1’. If A has 2s simple, distinct, nonzero pure imaginary charac-

teristic roots, the characteristic root zero of multiplicity p where p O, 1, 2,
and all other characteristic roots having negative real parts, then (3.1) is
asymptotically stable in the large, provided:
(1) there exist two nonnegative constants a and , a -- > O, such that
T(z) (a -- z)c’A (z)-b is a positive real function, and if io, real, is a
characteristic root of A, then the residue of (a -- z)c’A (z)-b at io is posi-
tive;
(2) if p 2, then lim0 z:c’A (z)-lb O,
(3) when a O, the characteristic roots of A tbc’ have negative real
parts for all t > O,

(4) if A is singular and a 0 then 4(r) dr -- as i( ---+ .
In order to prove this theorem one first changes coordinates such that

the system (3.1) takes the form

21 Alx- b1(z),

2 Ax b:(a),

2 Ax b(z),

Cl X -- C X2 -- Cwhere xl, bl, cl are r-vectors, x, b, c re 2s-vectors nd A1, A re
r X r, 2s X 2s mtrices, respectively. The vectors x, c nd b are p-vectors
and A is p X p mtrix, where p 0, 1, 2. The characteristic roots of A
M1 hve negative rel prts, the characteristic roots of A are M1 simple
nonzero pure imaginary numbers and the characteristic root of A is zera

ThemtrixA= (O) ifp= lndA=( )ifp=2. Let

V x, B1 x @ x2 B2 x2 @ xa Ba xa + 5 Jo (r) dr,
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where B1 is given by Lemma 2 as in the above and B. is given by Lemma

if p 0, Ba a if p 1, Ba (; )ifp 2. Thus,3and Ba=0

B1, B2, and Ba are r X r, 2s X 2s and p X p symmetric matrices, respec-
tively, and V is positive definite. One can proceed as before with only very
minor changes in the argument.

(ii) If () is restricted so that 0 < z$(z) < kz for 0, then instead
of adding and subtracting a$(z) from -l? one can subtract a4(z)
( /-1()). The proof carries over and the theorem remains the same

except that c’A (ioo)-lb is replaced by c’A (ioo)-b + k-1 (see [9]).
(iii) Let us make the change of variables y(t) e-Xtz(t), where x(t)

is a solution of (3.1) and X is any real number such that X > Re X,
i 1, n, and X, i 1, ..., n, are the characteristic roots of A.
Note that X may be positive or negative and the characteristic roots of A
may have positive or negative real parts. Then y(t) satisfies the equation

(3.5) (A XI)y be-Xtex y).

Let V y’By and then the derivative of V along the trajectories of (3.5) is

_fz _y’{ (A XI)’B + B(A XI)}y

-t- 2{Bb 1/2c} ’ye-Xt(eXtc’y) -t-c’ye-Xtrb(eXtc’y).
As before there exists a B such that V is positive definite and -1? =>: 0
for all y, provided

Tl(Z) c’(A XI)(z)-lb c’A(z + X)-lb

is a positive real function. Thus y(t) is bounded and the bound depends
on 11 I1.

THEOREM 2. /f X is as defined above and T(z) c’A(z - X)-b is a
positive real function, then there exists a nonnegative monotone scalar function
K(.) such that x(t) <= K(II xo II)ex, where x(t) is the solution of (3.1)
such that x O Xo
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