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Abstract. We investigate the dynamics of various problems defined by Hamiltonian systems of two and three
degrees of freedom that have in common that they can be reduced by an axial symmetry. Specifically,
the systems are either invariant under rotation about the vertical axis or can be made approximately
axially symmetric after an averaging process and the corresponding truncation of higher-order terms.
Once the systems are reduced we study the existence and stability of relative equilibria on the reduced
spaces which are unbounded two- or four-dimensional symplectic manifolds with singular points. We
establish the connections between the existence and stability of relative equilibria and the existence
and stability of families of periodic solutions of the full problem. We also discuss the existence of
KAM tori surrounding the periodic solutions.

Key words. averaging, normalization, reduced space, angular momentum, periodic solutions, KAM tori, de-
generate KAM theories, polar and polar-nodal coordinates, planar and spatial restricted N-body
problems, radiation pressure, rotating double material segment, Hénon’s isochrone, spring pendulum
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1. Introduction. We will discuss a common thread that runs through several applica-
tions of Hamiltonian mechanics. Most of these applications are small perturbations of the
Hamiltonian

(1.1) G = G(x, y) = x2y1 − x1y2,

where x ∈ R2 stands for the coordinates and y ∈ R2 for the momentum conjugate to x. The
reader will recognize that G appears in a Hamiltonian as an angular momentum, a Coriolis
term, a magnetic term, a spin term, or even as the Hamiltonian of two harmonic oscillators.

Our analysis looks at the flow on the reduced (orbit) space defined by the Hamiltonian
G in the same spirit as [65]. In particular, we prove some results on the reduced system,
extracting qualitative conclusions about the full system. We are interested in establishing the
existence of periodic solutions, their stability, and the persistence of KAM tori.

More specifically, we deal with several examples that include different cases of the planar
and spatially restricted N -body problems, as well as other examples that can be cast into a
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special class of the restricted three-body problems. To all of these examples we apply high-
order normalization in order to make them approximately axially symmetric. We also apply
the theory to two cases that can be reduced without applying averaging, namely, the Hénon’s
isochrone and the spring pendulum. We obtain new periodic solutions and invariant tori for
all the problems considered.

Background material on Hamiltonian systems, averaging, reduction of symmetric Hamil-
tonians, invariant theory, the restricted three-body problem, KAM theory, normal forms,
stability, etc., can be found in [2, 4, 7, 12, 49, 61].

The key point of this paper is the combination of different techniques such as averaging,
normal forms, reduction theory, or degenerate KAM theorems to deal with the analysis of
Hamiltonian systems which are either axially symmetric or approximated by axially symmetric
systems. This analysis is performed in several steps. We start with a certain Hamiltonian that
is invariant under rotation about the vertical axis or that can be approximated by an axially
symmetric Hamiltonian after applying averaging theory. We apply singular reduction to get
the reduced Hamiltonian written in terms of the invariants associated with the axial reduction.
This Hamiltonian is studied (its equilibria, stability character, and possible bifurcations) by
means of standard techniques. Some features about the flow of the full system related to the
existence of periodic solutions and invariant tori are established using Reeb’s theorems [56]
and KAM theory [4, 61].

In order to prove the existence of KAM tori in the examples tackled in the paper, we have
applied different versions of KAM theorems that are valid for degenerate systems. Indeed,
these tori appear around the relative equilibria of center type; thus we need to use KAM
theory after reducing a symmetric system, discussing the relative equilibria, and analyzing
their stability. Recently there has been considerable progress on degenerate KAM theorems;
see, for example, the papers by Féjoz [25, 26], Chierchia and Pinzari [10], and the references
therein. However, the proof of the existence of KAM tori in the comet case of the spatially
restricted three-body problem that we show in section 4 has been made possible thanks to a
recent result by Han, Li, and Yi [29], valid for very highly degenerate Hamiltonian systems.

In section 2 we study the integral manifolds, the reduced space defined by the Hamiltonian
G, and the invariants associated with the corresponding symmetry. The treatment here is
geometric in nature.

The purpose of section 3 is to introduce the planar restricted three-body and N -body
problems and investigate the comet case when the infinitesimal is far from the primaries. The
comet problem is seen to be a small perturbation of the Hamiltonian G by appropriate scaling.
Specifically for the planar restricted N -body problems we establish the existence of orbitally
stable near-circular periodic solutions of large radii surrounded by KAM 2-tori. The results
extend to any (small) perturbation of the planar Kepler problem in rotating coordinates. Most
of these results are not particularly new, but we think the approach is.

In section 4 several three-degrees-of-freedom Hamiltonians are studied, which are again
small perturbations of the Hamiltonian G. In particular we partially generalize the results
of section 3 to the spatial circular restricted three-body and restricted N -body problems,
concluding the existence of elliptic near-circular periodic solutions of large radii. As in the
planar case, the results extend to any small perturbation of the spatial Kepler problem in
rotating coordinates. However, concerning the existence of KAM tori enclosing the periodic



PERIODIC SOLUTIONS AND KAM TORI OF HAMILTONIANS 819

solutions the situation is more degenerate than in the planar case, and we need to use a
theorem of Han, Li, and Yi. Thus, we need to specify the perturbation in order to make the
computations. Explicitly, we deal with the spatial comet case of the restricted three-body
problem, the radiation pressure problem, and the rotating double material segment problem,
showing the existence of KAM 3-tori in all the cases. Here not only is the approach new, but
also many of the results.

We deal with two more examples in section 5, where we do not need to apply averaging
theory to obtain the periodic solutions and invariant tori. More specifically we treat the
isochrone problem of Hénon, which was introduced to model the motion of the stars in our
galaxy, and the spring pendulum, a system that analyzes the motion of a particle attached to
a spring under a constant gravitation field. Both examples can be reduced by axial symmetry
and therefore are treated by the methods of our paper. Thus, for the two problems we get
periodic solutions and analyze their stability. We also obtain KAM 3-tori for the spring
pendulum.

The paper is closed by section 6, devoted to the conclusions.
All the symbolic manipulations involved in the computations of Lie transformations, nor-

mal forms, changes of coordinates, Taylor expansions, and so on have been made with the soft-
ware Mathematica, Version 8, on a MacBook Pro. The Mathematica function TeXForm[]

has been used to transfer all the expressions into LATEX, avoiding therefore possible mistakes
in the translation of the formulae.

For self-completeness of our presentation we summarize the results of paper [65] in relation
to the particular contexts to which they are applied.

We start with (M,Ω), a symplectic manifold of dimension 2n, and H0 : M → R, a smooth
Hamiltonian which defines a Hamiltonian vector field Y0 = (dH0)

# with symplectic flow φt
0.

Let I ⊂ R be an interval such that each h ∈ I is a regular value of H0 and N0(h) = H−1
0 (h)

is a connected circle bundle over a base space (i.e., the reduced space) B(h) with projection
π : N0(h) → B(h). Assume that all the solutions of Y0 in N0(h) are periodic. Then the
following results hold:

(i) The base space B(h) inherits a symplectic structure ω from (M,Ω); i.e., (B(h), ω) is
a symplectic manifold.

(ii) If ε is a small parameter, the Hamiltonian H1 : M → R is smooth, such that Hε =

H0 + εH1, Yε = Y0 + εY1 = dH#
ε , Nε(h) = H−1

ε (h), and φt
ε is the flow defined by Yε.

Let the average of H1 be

H̄ =
1

T

∫ T

0
H1(φ

t
0)dt,

which is a smooth function on B(h), and let φ̄t be the flow on B(h) defined by Ȳ =
dH̄#. If H̄ has a nondegenerate critical point at π(p) = p̄ ∈ B(h) with p ∈ N0,
then there are smooth functions p(ε) and T (ε) for ε small with p(0) = p, T (0) = T ,
p(ε) ∈ Nε, and the solution of Yε through p(ε) is T (ε)-periodic.

(iii) If p and p̄ are as in the previous item and if the characteristic exponents of Ȳ (p̄) (that
is, the eigenvalues of the matrix A = J∂2H̄/∂y2(p̄), where J denotes the standard
skew-symmetric matrix) are λ1, λ2, . . . , λ2n−2, then the characteristic multipliers of
the periodic solution through p(ε) are 1, 1, 1 + ελ1T + O(ε2), 1 + ελ2T + O(ε2),
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. . . , 1 + ελ2n−2T +O(ε2),
(iv) If one or more of the characteristic exponents λj is real or has nonzero real part, then

the periodic solution through p(ε) is unstable. If the matrix A is the coefficient matrix
of a parametrically stable system, then the periodic solution through p(ε) is elliptic.

(v) If p and p̄ are as before, suppose there are symplectic action-angle variables (I1, . . . ,
In−1, ϕ1, . . . , ϕn−1) at p̄ in B(h) such that

(1.2) H̄ =

n−1∑
k=1

ωkIk +
1

2

n−1∑
k=1

n−1∑
j=1

CkjIkIj +H#,

where the ωk are nonzero, Ckj = Cjk, and H#(I1, . . . , In−1, ϕ1, . . . , ϕn−1) is at least
cubic in I1, . . . , In−1. Assume that detCkj �= 0. That is, assume the system has been
put into Birkhoff normal form and that the “twist” condition is satisfied, and assume
that the period varies with H0 in a nontrivial way. Then near the periodic solutions
given above there are invariant KAM tori of dimension n. In particular, when n = 2
the periodic solution is orbitally stable.

Points (i)–(v) correspond respectively to Theorems 2.1 and 2.2, Corollaries 2.2 and 2.3, and
Theorem 2.5 of subsection 2.3 of [65]. Proofs and details appear in [65]. We do not need
the compactness assumption on N0(h) and B(h), as the results (i)–(v) are local in nature;
compare with [65].

2. The Hamiltonian G. Since this paper considers various systems that are perturbations
of G, it is appropriate that we spend some time looking at this Hamiltonian.

One way that (1.1) arises is by the introduction of rotating symplectic coordinates, so let
us return to fixed coordinates (q, p) by

x = eJ(t−t0)q, y = eJ(t−t0)p, J =

[
0 1

−1 0

]
.

The Hamiltonian G(x, y) = −xTJy becomes G(q, p) ≡ 0; thus q and p are constants. The
transformation is orthogonal, and so r1 = ‖x‖ = ‖q‖, r2 = ‖y‖ = ‖p‖ are constants of the
motion. Without trepidation we introduce nonsymplectic polar coordinates

x1 = r1 cos θ1, x2 = r1 sin θ1, y1 = r2 cos θ2, y2 = r2 sin θ2.

The angles θ1, θ2 are not well defined since the orientation of the qp-frame of reference is not
uniquely defined (e−Jt0 is arbitrary), but the angle between q and p is a constant. Thus, the
systems whose Hamiltonian is G have three geometric integrals of motion,

r1, r2, θ1 − θ2.

We return to rectangular coordinates by being mindful of the d’Alembert character [32, 49]
and defining

(2.1)
a1 = r21 = x21 + x22, a2 = r22 = y21 + y22 ,

a3 = r1r2 cos(θ1 − θ2) = x1y1 + x2y2, a4 = r1r2 sin(θ1 − θ2) = x2y1 − x1y2 = G.
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The familiar trigonometry identity cos2 φ+ sin2 φ = 1 yields

(2.2) a23 + a24 = a1a2, a1 ≥ 0, a2 ≥ 0.

Specifying a1, a2, a3, and a4 subject to the constraints (2.2) uniquely specifies an orbit
because the constraints a1 ≥ 0, a2 ≥ 0 allow one to solve for r1 ≥ 0 and r2 ≥ 0, and the
constraint a23 + a24 = a1a2 allows one to uniquely solve for cos(θ1 − θ2) and sin(θ1 − θ2) and
hence the angle θ1 − θ2.

Since a1, a2, and a3 are integrals for the system whose Hamiltonian is G = a4 we have

(2.3) {a1, a4} = {a2, a4} = {a3, a4} = 0,

and a direct computation gives

(2.4) {a1, a2} = 4a3, {a3, a2} = 2a2, {a3, a1} = −2a1.

By making the linear symplectic change of coordinates

x1 =
1√
2
(u1 − v2), y1 =

1√
2
(u2 + v1),

x2 =
1√
2
(u2 − v1), y2 =

1√
2
(u1 + v2),

the Hamiltonian becomes

(2.5) G = G(u, v) = 1

2
(−u21 + u22 − v21 + v22),

thus manifesting that the Hamiltonian (1.1) is equivalent to the quadratic part of a Hamil-
tonian system with semisimple 1 : −1 resonance. The bifurcations related to Hamiltonian
systems enjoying this resonance are dealt with in [36, 39].

On the integral manifold where G = γ > 0 we have

u22 + v22 − 2γ = u21 + v21 = ρ2.

So above each point P in the u2v2-plane outside the (blue) circle of radius
√
2γ there is a

circle of radius ρ in the u1v1-plane, and above each point p on the blue circle there is a point
(the origin) in the u1v1-plane; see Figure 1(a). Thus above the (green) dashed ray in the
u2v2-plane through p and P there lies the whole u1v1-plane. Letting the ray rotate all the
way around in the u2v2-plane, we get a solid torus, S1×R2. When G = γ < 0 the picture is the
same with the subscripts reversed. Thus, the energy surface G = γ �= 0 is a three-dimensional
hyperboloid that is homeomorphic to a solid torus.

Now imagine the energy surface G = γ as γ → 0. The inner (blue) circle tends to a point,
and so the algebraic variety where G = 0 is not a manifold but is homeomorphic to a solid
torus with the blue circle identified with a point, i.e., S1 × R2/(S1 × (0, 0)); see Figure 1(b).

From (2.5) the equations of motion in the uv-space are

u̇1 = −v1, u̇2 = v2,

v̇1 = u1, v̇2 = −u2,
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Figure 1. The integral manifold.

which are two harmonic oscillators of period 2π. Thus after t increases by 2π, both oscillators
return to their initial value. So each orbit intersects the plane above the (green) dashed ray
once and only once. Thus the reduced (orbit) space is homeomorphic to R2. When γ = 0 the
reduced space is not smooth since it is a cone. Hence, a reduction process associated with the
fact that G is converted into an integral of motion is regular provided that γ �= 0, and singular
when γ = 0. Regular reduction theory was first introduced in [45] (see also [44]), whereas
singular reduction appeared for the first time in [3].

Looking at the reduced space from another perspective, the invariants a1, a2, a3, a4 subject
to the constraints (2.2) uniquely specify an orbit. After fixing G = a4 = γ, the reduced space
is

(2.6) Rγ = {(a1, a2, a3) : a1a2 − a23 = wTSw = γ2, a1 ≥ 0, a2 ≥ 0},

where

w =

⎡
⎣ a1

a2
a3

⎤
⎦ , S =

⎡
⎣ 0 1/2 0

1/2 0 0
0 0 −1

⎤
⎦ ;

this is shown in Figure 2. It is a two-dimensional hyperboloid of revolution—revolving about
the line a1 = a2. To put this quadratic surface into standard form, rotate the a1, a2 axes by 45◦

and scale a3 by letting a1 =
1√
2
(ξ+η), a2 =

1√
2
(−ξ+η), a3 =

1√
2
ζ, so that η2−ξ2−ζ2 = 2γ2,

which is a two-dimensional hyperboloid of revolution that is homeomorphic to the plane when
γ �= 0 and is a cone when γ = 0. This reduced space and the invariants associated with
the reduction appeared in [12] in the setting of singular reduction theory. See also [54] for a
classification of reduced spaces related to Hamiltonian systems of two degrees of freedom.

We remark that all the points of R0 account for the rectilinear motions, as in this case the
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Figure 2. The reduced space. On the left: γ �= 0. On the right: γ = 0.

angular momentum is zero. Additionally, the cone point (0, 0, 0) reconstructs to the origin of
R4, whereas for the rest of the points of Rγ (with γ having any value) a circle S1 is attached.

The symmetry group of the reduced space defined by (2.6) is

S = {M ∈ Gl(3,R3) : (Mw)TS(Mw) = wTSw,∀w ∈ R3} = {M ∈ Gl(3,R3) : MTSM = S},

and its algebra is

∫ = {N ∈ gl(3,R3) : NTS + SN = 0}

with the three generators

D =

⎡
⎣ 1 0 0

0 −1 0
0 0 0

⎤
⎦ , E =

⎡
⎣ 0 0 2

0 0 0
0 1 0

⎤
⎦ , F =

⎡
⎣ 0 0 0

0 0 2
1 0 0

⎤
⎦ .

Lie brackets satisfy [E,F ] = 2D, [D,E] = E, [D,F ] = −F , which are the standard bracket
relations for the generators D, E, F of sl(2,R), the algebra of the special linear group Sl(2,R);
see [38].

Mapping a1 → −2E, a2 → 2F, a3 → −2D sets up a Lie algebra isomorphism between the
algebra generated by a1, a2, a3, and sl(2,R). That is, the brackets in (2.4) merely reflect the
symmetry of the reduced space.

3. Two-degrees-of-freedom comet problems. The planar circular restricted three-body
problem describes the motion of an infinitesimally small particle moving in the plane under
the influence of the gravitational attraction of two finite particles that revolve around each
other in a circular orbit with uniform velocity. The two finite particles, called the primaries,
have mass μ > 0 and 1 − μ > 0. Let x ∈ R2 be the coordinate of the infinitesimal particle
in a uniformly rotating coordinate system, and y ∈ R2 the momentum conjugate to x. The
rotating coordinate system is chosen so that the particle of mass μ is always at (1 − μ, 0)
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and the particle of mass 1 − μ is at (−μ, 0). The Hamiltonian governing the motion of the
infinitesimal particle in these coordinates is

(3.1) H =
1

2
‖y‖2 − xTJy − U,

where x, y ∈ R2 are conjugate, U is the self-potential

(3.2) U =
μ

d1
+

1− μ

d2
,

and di is the distance from the infinitesimal body to the ith primary, or

(3.3) d21 = (x1 − 1 + μ)2 + x22, d22 = (x1 + μ)2 + x22.

The term −xTJy = G in the Hamiltonian H reflects the fact that the coordinate system
is not a Newtonian frame but a rotating system. It gives rise to the Coriolis force in the
equations of motion.

A generalization is the planar restricted N -body problem with N ≥ 4, defined as follows.
Let b1, . . . , bN−1 ∈ R2 be a central configuration of the (N − 1)-body problem, i.e.,

bi =
N−1∑
j=1

mj(bj − bi)

‖bj − bi‖3
, i = 1, . . . , N − 1, and

N−1∑
j=1

mjbj = 0,

where m1, . . . ,mN−1 are the masses of the primaries normalized so that m1+ · · ·+mN−1 = 1.
The planar restricted N -body problem describes the motion of an infinitesimally small particle
moving in the plane under the influence of the gravitational attraction of the primaries of mass
mi at bi in a frame that rotates with uniform velocity. The Hamiltonian governing the motion
of the infinitesimal particle in these coordinates is the same as (3.1) but with

(3.4) U =
N−1∑
j=1

mj

‖bj − x‖ .

See [46] for more details about this generalization.
In order to study the motion when the infinitesimal is far from the primaries, we introduce

a small parameter ε. In the Hamiltonian (3.1), scale the variables by x → ε−2x, y → εy; this
is symplectic with multiplier ε. This symplectic scaling procedure will be used throughout
the paper many times; see [46, 48] for a discussion of scaling. This scaling, as with others,
exploits the fact that the potential is homogeneous and gives yet another example for the
general discussion found in [9]. The Hamiltonian becomes

(3.5) Hε = −xTJy + ε3
(
‖y‖2
2

− 1

‖x‖

)
+O(ε5).

We remark that when N = 3 the higher-order terms start at order O(ε7).
Now ε small means that the infinitesimal is near infinity, and (3.5) says that near infinity

the Coriolis force dominates, and the next most important force looks like a Kepler problem
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with all the primaries at the origin. We point out that, in the context of the comet problem, we
cannot allow the angular momentum to be zero because then the motion would be rectilinear,
but the scaling is meaningful only if the infinitesimal is bounded away from the origin and
infinity.

We write (3.5) in terms of the invariants (2.1) to get

Hε = a4 + ε3
(
a2
2

− 1
√
a1

)
+O(ε5).

To obtain the Hamiltonian on the reduced space Rγ where a4 = γ, we drop this constant
as well as the terms O(ε5) and divide by ε3 to obtain

(3.6) H̄ =
a2
2

− 1√
a1

.

The phase portrait of the flow on the reduced space can be obtained by intersecting the level
surfaces of (3.6) with the constraint surface (2.2), as illustrated in Figure 3.

Figure 3. Two views of the flow of the comet problem.

The equations of motion are

(3.7) ȧ1 = 2a3, ȧ2 = −2a3(a1)
−3/2, ȧ3 = −(a1)

−1/2 + a2,

which can be obtained from ȧi =
∑

j{ai, aj}∂H̄/∂aj and the brackets in (2.4). Provided that
γ �= 0, these equations have a unique equilibrium point on Rγ at

(3.8) a1 = γ4, a2 =
1

γ2
, a3 = 0.
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Note that a1 = r21 so r1 = γ2, and the equilibrium point is related to circular-like motions.
The procedures in subsections 2.2 and 2.3 of [65] show that this problem has two families

of linearly stable (elliptic) periodic solutions, as we will detail below. We will also prove the
existence of KAM 2-tori around the periodic solutions.

We start by introducing planar Delaunay coordinates [7], (�, g, L,G), where � represents the
mean anomaly, g the argument of the pericenter, L > 0 the action related with the semimajor
axis a by L =

√
a, and G = x1y2 − x2y1 the angular momentum (thus G = −a4 ≡ −γ). We

stress that |G| ≤ L and |G| = L only for circular motions. The Hamiltonian (3.6) in terms of
the Delaunay elements yields

(3.9) H̄ = − 1

2L2
.

Now, we define Poincaré-like coordinates for one-degree-of-freedom systems as functions of
Delaunay coordinates. In fact, as we want to analyze the dynamics in a neighborhood of the
equilibrium point and this equilibrium is related with circular motions, we define

(3.10) Q =
√

2(L± γ) sin �, P =
√
2(L± γ) cos �,

where the sign “+” applies for γ < 0 (prograde motions), whereas the sign “−” is used when
γ > 0 (retrograde motions).

The inverse of (3.10) is

(3.11) L =
1

2
(Q2 + P 2 ∓ 2γ), � = ±tan−1

(
Q

P

)
.

The sign of � is taken to be positive or negative depending on the signs of Q and P . We
remark that for the circular motions � is not well defined, but then Q = P = 0. Indeed,
the transformation (3.10) extends analytically to the origin of the QP -plane, provided that
Q and P written in terms of � and L and all the computations that we have to carry out
satisfy the d’Alembert characteristic; see details in [32] and also a related example in [43]. As
the d’Alembert characteristic is maintained, one can conclude that circular motions can be
analyzed properly with these Poincaré-like coordinates and that all the expressions are valid
in a neighborhood of the circular trajectories. It is also straightforward to prove that the
Poisson bracket {Q,P} = 1, and thus they are symplectic variables.

Now, the Hamiltonian H̄ in terms of Q and P is

(3.12) H̄ = − 2

(P 2 +Q2 ∓ 2γ)2
.

We take the convention that when the signs “±” or “∓” appear in a formula involving γ or
G, the upper sign applies for γ < 0 (G > 0), and the lower sign applies for γ > 0 (G < 0).

The analysis of the stability of the equilibrium point (3.8) is translated to the study of
the stability of the equilibrium (0, 0) in the two sets of coordinates Q, P , but since

(3.13) H̄ = − 2

(P 2 +Q2 ∓ 2γ)2
= − 1

2γ2
∓ 1

2γ3
(P 2 +Q2)− 3

8γ4
(P 2 +Q2)2 +O(6),
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H̄ is a perturbation of the harmonic oscillator; therefore (0, 0) is parametrically stable. The
parametric stability study of the equilibrium implies, following Theorem 2.2 and Corollaries
2.2 and 2.3 of [65] (see also the last paragraphs of section 1), that for Hamiltonian (3.5) there
are two families of elliptic periodic motions, both nearly circular, one prograde and the other
retrograde. The families of periodic motions are parameterized by γ. Since the eigenvalues of
the quadratic part of H̄ are γ−3ı, −γ−3ı, the corresponding nontrivial characteristic multipliers
of the periodic solutions are 1 + ε3γ−3T ı + O(ε5) and 1 − ε3γ−3T ı + O(ε5). Finally, after
rescalings, the periods T of these periodic solutions are near 2πε−1.

The existence of KAM 2-tori follows from the expression (3.13). Indeed, after introduc-
ing action-angle coordinates (I, ϕ) through Q =

√
2I sinϕ, P =

√
2I cosϕ, and taking into

account that γ = −G, we can rewrite the Hamiltonian of the restricted problem in the comet
case around the equilibrium point (3.8), arriving at

Hε = −G− ε3
(

1

2(I ±G)2

)
+O(ε5),

and the second derivative of the term factorized by ε3 with respect to I yields

− 3

(I ±G)4
,

which is a twist term that does not vanish. Therefore, by Theorem 2.5 of subsection 2.3 in
[65] (see also the last paragraphs of section 1), there are invariant KAM tori of dimension
two, and the periodic solutions of the previous paragraphs are orbitally stable. We remark
that Theorem 2.5 of [65] applies for properly degenerate Hamiltonian systems such that the
perturbation removes the degeneracy, a case studied by Arnol’d, Kozlov, and Neishtadt [4].

In particular, our procedure simplifies previous approaches dealing with the existence of a
twist term that appeared in [37] for the restricted three-body problem. Besides, the treatment
undertaken in the previous paragraphs is valid for the restricted N -body problem (see [46])
and generalizes the symmetric periodic solutions of large radii found by Moulton [50] in the
planar restricted three-body problem. More specifically, we have proved the following result.

Theorem 3.1. For N ≥ 3, the Hamiltonian of the planar restricted N -body problem given
by (3.1) with self-potential U given by (3.4) (or given by (3.2) if N = 3, i.e., in the case of
the planar circular restricted three-body problem) has two families of near-circular periodic
solutions that are elliptic with characteristic multipliers 1, 1, 1 + ε3γ−3T ı + O(ε5), and 1 −
ε3γ−3T ı + O(ε5). The radii and periods of these solutions are very large, ‖x‖ ≈ ε−2G2 (or
‖x‖ ≈ ε−2γ2) and T (ε) ≈ 2πε−1. The families of periodic solutions are enclosed by KAM
2-tori; therefore these periodic solutions are also orbitally stable.

This theorem can be applied to any (small) perturbation of the rotating planar Kepler
problem since we have needed only to make use of the explicit expression of the terms factorized
by ε3 in (3.5), that is, the Kepler-like term. Thus, regardless of the higher-order terms, our
deductions can be applied to other types of planar Hamiltonians that can be written in the
form (3.5) where the terms of order ε3 do not necessarily correspond to the restricted problem.
Examples that can be cast in this form appear in many different contexts. We shall treat some
of them in section 4 when dealing with some three-dimensional cases.
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Recently Llibre and Stoica [41] considered planar comet- and Hill-type restricted N -body
problems where the interaction potential between the infinitesimal particle and the primaries is
taken to be a finite sum of terms of the form r−αi with αi > 0 ∀i. In particular, they conclude
that if the infinitesimal particle is far from the primaries, and the long range dominant term
β/rα of the potential is such that β < 0 and α �= 2, then there exist two one-parameter
families of large nearly circular periodic solutions. These solutions are elliptic KAM stable
for 0 < α < 2 and unstable for α > 2. This result generalizes our Theorem 3.1, but our
approach is more straightforward. In fact, the case we have considered corresponds to α = 1
and β = −1, and then the families of periodic solutions and KAM tori and the stability are
the same.

4. Three-degrees-of-freedom comet problems. In this section we consider Hamiltonian
systems that are three-dimensional perturbations of the term G.

4.1. Reduced space. We take x ∈ R3 representing the coordinates, and y ∈ R3 desig-
nating the associated momenta. We start by considering the invariant ai’s associated with
a reduction process of a three-degrees-of-freedom Hamiltonian vector field. Apart from the
“planar invariants” of section 2 we need to take into account possible invariants due to the
introduction of x3, y3. Since both x3 and y3 are independent of G, we can incorporate them
into the list of invariants. We get

(4.1)

a1 = x21 + x22, a2 = y21 + y22,

a3 = x1y1 + x2y2, a4 = x2y1 − x1y2 = G,

a5 = x3, a6 = y3.

We remark that for the spatial problems −G does not represent the magnitude of the angular
momentum but its third component, that is, the scalar product of the angular momentum
vector with the unit vector in the vertical direction x3.

The constraints for the invariants are the same as for the planar case, i.e.,

(4.2) a23 + a24 = a1a2, a1 ≥ 0, a2 ≥ 0.

Fixing the value of a4 = γ, the reduced phase space is given by the identity and inequalities
of (4.2); that is, after setting G = a4 = γ, one has

(4.3) Tγ = {(a1, a2, a3, a5, a6) : a1a2 − a23 = γ2, a1 ≥ 0, a2 ≥ 0},

representing a four-dimensional symplectic manifold; see [11] and also [52]. As in the planar
case, the manifold is noncompact and is regular provided that γ �= 0. Hence, a reduction
process that leads to this space lies in the context of singular reduction theory. It is also
not hard to deduce that geometrically this manifold is the Cartesian product of Rγ and the
x3y3-plane; that is, Tγ = Rγ ×R2. In particular, after computing the gradient of the identity
in (4.2), we deduce that when γ = 0 the gradient becomes zero if and only if a1 = a2 = a3 = 0,
whereas a5 and a6 can take any value. This means that the singular points on the manifold
T0 are the points of the type (0, 0, 0, a5, a6). Thus, the set of singular points is the two-
dimensional set {(0, 0, 0, 0)}×R2 . The motions related to the points T0 are of polar type; i.e.,
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their projections onto the x1x2x3-space are perpendicular to the x1x2-plane. In particular,
all rectilinear solutions correspond with points on the space T0, and the rectilinear solutions
occurring in the x3y3-plane are in correspondence with points on {(0, 0, 0, 0)}×R2 . The point
(0, 0, 0, 0, 0) corresponds to the origin of R6.

The Poisson brackets of the invariants are the same as those given in (2.4), but incorpo-
rating a5 and a6. We get

(4.4) {ai, a5} = {ai, a6} = 0 for i = 1, . . . , 4, {a5, a6} = 1.

4.2. Spatial perturbations of G plus a Kepler term. We consider Hamiltonian systems
of three degrees of freedom of the form

(4.5) Hε = −(x1y2 − x2y1) + ε3
(
‖y‖2
2

− 1

‖x‖

)
+O(ε5).

That is, we study Hamiltonians that have as the dominant term the Coriolis force; its first
perturbation the Kepler Hamiltonian and the rest of the terms appear as perturbations at
higher order. We have placed the higher-order terms at O(ε5), but the power may change for
other cases.

An example is the spatial circular restricted three-body problem in the comet case [47, 35],
where the small parameter is introduced in exactly the same way as in the planar restricted
three-body problem in section 3. Another example is the spatially restricted N -body problem
with N ≥ 4, which can be stated as its planar version of section 3. A particular case of the
spatially restricted N -body problem considers that the N−1 primaries with equal mass m are
in a central configuration at the vertices of an (N−1)-regular polygon; see [40]. Other related
comet-like problems include the elliptic restricted three-body problem when the infinitesimal
particle is very far from the two primaries [55], but in the present paper we do not deal with
time-dependent Hamiltonians. We will say no more about these examples, but other examples
will be discussed later in this section.

After dropping the terms of order O(ε5) and the constant a4 = γ and multiplying by ε−3,
the Hamiltonian H̄ in terms of the invariants ai is

(4.6) H̄ =
1

2
(a2 + a26)−

1√
a1 + a25

.

Now, making use of the Poisson brackets (2.4) and (4.4) yields the corresponding equations
of motion,

(4.7)

ȧ1 = 2a3, ȧ2 = − 2a3
(a1 + a25)

3/2
, ȧ3 = − a1

(a1 + a25)
3/2

+ a2,

ȧ5 = a6, ȧ6 = − a5

(a1 + a25)
3/2

,

which have a unique relative equilibrium at

(4.8) a1 = γ4, a2 =
1

γ2
, a3 = 0, a5 = 0, a6 = 0.
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As in the planar case, we avoid γ = 0 because the infinitesimal particle should be far from the
primaries. This equilibrium is related to circular coplanar motions (coplanar meaning that
they lie in the equatorial plane defined by the motion of the primaries) as a5 = a6 = 0 and
r1 ≡ r = γ2 is constant.

Polar-nodal coordinates [15, 16] are a set of symplectic variables (r, ϑ, ν,R,Θ,K), where
r stands for the radial distance from the origin to the particle, ϑ represents the argument of
latitude, ν accounts for the right ascension of the node, whereas R is the conjugate momentum
of r. Additionally, Θ = ‖Θ‖ is the magnitude of the angular momentum vector, and K is
the third component of Θ, so 0 ≤ |K| ≤ Θ ≤ L and K = −γ. Thus, the spatial Delaunay
coordinates are given by (�, g, ν, L,Θ,K). We remark that K corresponds to the action G of
the planar Delaunay elements.

We could introduce Poincaré-like coordinates in terms of the Delaunay elements, as in the
previous section, but we prefer to work with Poincaré-like coordinates related to polar-nodal
coordinates. The reason for our preference is that, in contrast to the planar situation, in order
to obtain the twist condition for proving the existence of KAM 3-tori we need to normalize
explicitly the terms of order O(ε5), and this will be executed more easily using polar-nodal
coordinates, as we shall see in the examples. For the moment we drop the higher-order terms,
although we will need them later on. As we deal with near-coplanar motions we define

(4.9)
Q1 =

√
2(Θ ± γ) sinϑ, Q2 = r,

P1 =
√
2(Θ ± γ) cos ϑ, P2 = R,

where the positive sign is used for prograde motions and the negative sign for retrograde
motions. Note that for each sign (4.9) represents a set of symplectic coordinates.

The inverse of (4.9) is given by

(4.10)

Θ =
1

2
(Q2

1 + P 2
1 ∓ 2γ), r = Q2,

ϑ = ±tan−1

(
Q1

P1

)
, R = P2,

where the sign of ϑ must be taken positive or negative depending on the signs of Q1 and P1.
For equatorial motions (|γ| = Θ) the angle ϑ is undefined, but then Q1 = P1 = 0. As

long as all the expressions we are handling as well as the transformation (4.9) exhibit the
d’Alembert characteristic for Q1 and P1, the transformation (4.9) is extended analytically to
the subset Q1 = P1 = 0. This was stated by Henrard [32] (see also [43]), and it is the case
here. Hence (4.9) together with (4.10) are well suited for analyzing the relative equilibria
related with equatorial periodic solutions. Another way of proving that the extension of (4.9)
incorporating Q1 = P1 = 0 is analytic is by expressing the coordinates having singularities as
explicit analytic functions of analytic first integrals. This approach was taken in [1], where
a set of Poincaré-like coordinates were proved to be analytically extended to their singular
points.

The relationship between the invariants ai and the local coordinates of Tγ valid for motions
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of equatorial type is given through

(4.11)

Q1 =
21/2a5

√
a2a

2
5 − 2a3a5a6 + a1a

2
6 + γ2

√√
a2a

2
5 − 2a3a5a6 + a1a

2
6 + γ2 ± γ√

a1 + a25
√

a2a25 − 2a3a5a6 + a1a26
,

Q2 =
√
a1 + a25,

P1 =
21/2(a1a6 − a3a5)√

a1 + a25

√√
a2a25 − 2a3a5a6 + a1a26 + γ2 ∓ γ

,

P2 =
a3 + a5a6√
a1 + a25

.

As in the planar case, we adopt the convention that when the signs “±” or “∓” appear in
an expression involving γ or K, the upper sign applies for γ < 0 (K > 0) and the lower sign
applies for γ > 0 (K < 0).

Using (4.10), the Hamiltonian (4.6) in terms of the polar-nodal coordinates is given by

H̄ =
1

2

(
R2 +

Θ2

r2

)
− 1

r
,

while in the variables Qi, Pi the Hamiltonian H̄ reads as

(4.12) H̄ =
P 2
2

2
+

(P 2
1 +Q2

1 ∓ 2γ)2

8Q2
2

− 1

Q2
.

Thus, we linearize H̄ around the equilibrium point (4.8), shifting the origin of the coordinates
to the equilibrium point. This is achieved by the linear change

(4.13) Q1 = εQ̄1 +Q0
1, Q2 = εQ̄2 +Q0

2, P1 = εP̄1 + P 0
1 , P2 = εP̄2 + P 0

2 ,

where Q0
1, Q

0
2, P

0
1 , and P 0

2 are the values of the Qi’s and Pi’s at the equilibrium. The change is
symplectic with multiplier ε−2. Since the trajectory is of equatorial type, then Q0

1 = P 0
1 = 0.

It is easy to prove that P 0
2 = 0 and Q0

2 = K2 = γ2 (as Q0
2 and P 0

2 are respectively the values
of r and R at the equilibrium). This implies that the equilibrium in the variables (4.9) is
(0, γ2, 0, 0). After applying the linear change to H̄ and multiplying by ε−2, we expand the
result in powers of ε, taking only the terms independent of ε, which is equivalent to truncating
Hε at the power ε3. Then we drop the constant terms, arriving at

(4.14) H̄2 =
1

2γ6

(
∓γ3(P̄ 2

1 + Q̄2
1) + γ6P̄ 2

2 + Q̄2
2

)
,

which represents two quadratic Hamiltonian systems. We see that the convention for the
sign as in the previous section implies that H̄2 is positive definite. The eigenvalues are
γ−3ı, γ−3ı,−γ−3ı,−γ−3ı which, together with the feature that the eigenvectors form a ba-
sis of R4, reflect the fact that equations (4.14) are in semisimple 1 : 1 resonance.
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This is enough to conclude that the equilibrium point (4.8) is linearly and parametrically
stable. Then, Theorem 2.2 and Corollaries 2.2 and 2.3 of [65] establish that the Hamiltonian
(4.5) has two families of elliptic periodic motions, both nearly circular and coplanar, one
prograde and the other retrograde. The families of periodic motions are parameterized by γ.
The periods T of these periodic solutions are near 2πε−1.

However, we cannot guarantee the existence of KAM tori around the equilibrium point as
we did in the planar case. The reason is that, considering only terms up to the power three
in ε, the associated twist term is still too degenerate, and we would need that the quadratic
terms of (4.14) leave the 1 : 1 resonance. In other words, we need to take into account the
higher-order terms in order to get the appropriate twist condition. This means that we need
to explicitly compute the terms factorized by ε5 (or by ε7) to conclude the existence of KAM
tori. This will be done for the comet case of the restricted three-body problem and for two
more cases in the forthcoming subsections.

At this point we have proved the following result.
Theorem 4.1. The spatial Hamiltonian system defined by the Hamiltonian (4.5) (in partic-

ular the spatially restricted N -body problem and the spatial circular restricted three-body prob-
lem) has two families of near-circular near-coplanar elliptic periodic solutions. Their charac-
teristic multipliers are 1, 1, 1 + ε3γ−3T ı+O(ε5), 1 + ε3γ−3T ı+O(ε5), 1− ε3γ−3T ı+O(ε5),
and 1−ε3γ−3T ı+O(ε5). The radii and periods of these solutions are very large, ‖x‖ ≈ ε−2K2

(or ‖x‖ ≈ ε−2γ2) and T (ε) ≈ 2πε−1.
In fact these are the same periodic solutions that we found in the planar problem in section

3. What is new is the characteristic multipliers and the parametric stability. Theorem 4.1
shows that one can take any perturbation of the rotating spatial Kepler problem and establish
the existence and linear stability of the periodic solutions. So, regardless of the higher-order
terms, the theory can be applied to other types of spatial Hamiltonians that can be cast in
the form (4.5), where the terms of order ε5 do not necessarily correspond to the restricted
problem. To our knowledge this result is new.

If the problem has an additional discrete symmetry as in the restricted three-body problem,
then the methods of [35, 40] can be used to establish the existence of inclined periodic solutions.
See, for example, the arguments of subsection 2.4 in [65].

4.3. KAM 3-tori in the comet spatially restricted three-body problem. In the spatially
restricted three-body problem, the higher-order terms of (4.5) start at ε7. Thence, we begin
by computing the normalized Hamiltonian, that is, the average of (4.5) with respect to ν up
to terms factorized by ε7. By means of an averaging procedure based on Lie transformations
[14], the resulting Hamiltonian is
(4.15)

Hε = −K + ε3
(
1

2

(
R2 +

Θ

r2

)
− 1

r

)
− ε7

(1− μ)μ

8Θ2r3

(
Θ2 − 3K2 − 3(Θ2 −K2) cos(2ϑ)

)
+O(ε11).

We remark that, although in the unnormalized Hamiltonian there are nonnull terms factorized
by ε9, after normalization over ν, the terms that follow those factorized by ε7 appear at the
eleventh power of ε.

Now we apply the change of coordinates (4.9) to the Hamiltonian Hε, dropping its first
term and the remainder O(ε11) (but we will incorporate them later), dividing by ε3, and
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replacing K by −γ; we end up with the Hamiltonian

(4.16)

H̄ε =
P 2
2

2
+

(P 2
1 +Q2

1 ∓ 2γ)2

8Q2
2

− 1

Q2

− ε4(1− μ)μ
P 4
1 − P 2

1Q
2
1 − 2Q4

1 ∓ 4γ(P 2
1 − 2Q2

1 ∓ γ)

4Q3
2(P

2
1 +Q2

1 ∓ 2γ)2
.

We apply the linear change (4.13) to the Hamiltonian H̄ε. This time, since we are taking into
account the terms of order seven in ε, in the Qi and Pi coordinates the equilibrium point is
no longer (0, γ2, 0, 0). Indeed, it is given by

(Q0
1, Q0

2, P 0
1 , P 0

2 ) =

(
0,

1

2

(
γ2 +

√
γ4 − 3ε4μ(1− μ)

)
, 0, 0

)
.

The above means that when incorporating the terms of order ε4 in (4.16), the estimate of the
radii of the near-circular near-coplanar solutions provided by Theorem 4.1 is slightly improved:
the solutions remain circular and coplanar with radii (γ2 +

√
γ4 − 3ε4μ(1− μ))/2.

As before, we shift the origin to the equilibrium and scale variables with the multiplier
ε−2. The resulting Hamiltonian is expanded in powers of ε. After dropping constant terms,
we get

(4.17) H̄ε =

9∑
j=2

εj−2H̄j +O(ε8),

where each H̄j is a homogeneous polynomial in P̄i’s and Q̄i’s of degree j. In particular,

(4.18) H̄2 = ∓2γ4 + 3ε4μ(1− μ)

4γ7
P̄ 2
1 ∓ γ4 + 3ε4μ(1− μ)

2γ7
Q̄2

1 +
1

2
P̄ 2
2 +

2γ4 + 3ε4μ(1− μ)

4γ10
Q̄2

2,

and we do not write down explicitly the higher-order terms that depend on γ. Additionally,
H̄j, j = 3, 4, 5, include terms factorized by ε4. We remark that if we drop in H̄2 the terms
factorized by ε4, the resulting Hamiltonian is the same as that of (4.14); thus the inclusion of
the terms O(ε7) in (4.15) (or equivalently, the inclusion of terms O(ε4) in (4.16)) makes sure
that H̄2 is no longer in 1 : 1 resonance.

The next step is the passage to action-angle coordinates and the removal of the angles.
This can be achieved by introducing the symplectic transformation

(4.19)

Q̄1 = 21/4

√√
2γ4 + 3ε4(1− μ)μ√
γ4 + 3ε4(1− μ)μ

I1 sinϕ1,

Q̄2 = 23/4(∓γ)5/2

√
I2√

2γ4 + 3ε4(1− μ)μ
sinϕ2,

P̄1 = 23/4

√ √
γ4 + 3ε4(1− μ)μ√
2γ4 + 3ε4(1− μ)μ

I1 cosϕ1,

P̄2 =
21/4

(∓γ)5/2

√√
2γ4 + 3ε4(1− μ)μ I2 cosϕ2,
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which converts H̄2 into

H̄2 = ∓4γ4 + 9ε4(1− μ)μ

4γ7
I1 ∓

4γ4 + 3ε4(1− μ)μ

4γ7
I2.

The Hamiltonians H̄i with i > 2 are finite Fourier series in ϕ1 and ϕ2 whose coefficients are
polynomials in

√
I1 and

√
I2.

We need to construct a normal form with the aim of eliminating the angles ϕ1 and ϕ2. This
is performed through Lie transformations [14]. It takes seven steps in the Lie transformation
to include the terms factorized by ε7 in (4.17). In all the intermediate steps one needs to
expand all the resulting expressions up to powers ε7, then drop higher-order terms. We do
not print the explicit expressions of the generating functions as they are very large finite
Fourier series in ϕ1 and ϕ2, but the transformed Hamiltonian yields

(4.20)

H̄ε = ∓ 1

γ3
(I1 + I2)−

3ε2

2γ4
(I1 + I2)

2 ∓ ε4

4γ7

(
3(1− μ)μ(3I1 + I2) + 8γ2(I1 + I2)

3
)

− ε6

8γ8

(
3(1− μ)μ(29I21 + 20I1I2 + 4I22 ) + 20γ2(I1 + I2)

4
)
+O(ε8).

The normal form computed above does not substantially modify the higher-order terms in
the sense that terms of order O(ε8) get converted into terms of the same order. Thus, after
rescaling the actions by means of Ii → ε−2Ii for i = 1, 2, multiplying H̄ε by ε3, and dividing
it by the multiplier ε−2, incorporating the unperturbed part of the initial Hamiltonian and
grouping terms factorizing by powers of ε, we arrive at

(4.21)
Hε = −K − ε3

2K6
(I1 + I2)

(
5(I1 + I2)

3 ∓ 4K(I1 + I2)
2 + 3K2(I1 + I2)∓ 2K3

)

− 3ε7(1− μ)μ

8K8

(
29I21 + 20I1I2 + 4I22 ∓ 2K(3I1 + I2)

)
+O(ε11).

The dependence of Hε on the angles ν, ϕ1, and ϕ2 occurs for the first time at terms of the
order O(ε11). This Hamiltonian is valid in the neighborhood of the relative equilibrium (4.8).

The estimates of the solutions’ periods and the characteristic multipliers of Theorem 4.1
can be improved if one uses the Hamiltonian (4.21), including the terms of order ε7, but we
do not compute them explicitly.

Another look at (4.21) shows that if the terms O(ε7) are dropped from the Hamiltonian, we
end up with an analysis that would only involve terms of up to power three in ε, manifesting the
degeneracy in the actions. That is to say, the corresponding determinant of the Hessian with
respect to I1 and I2 is zero, giving the same conclusion as stated in the previous subsection. So,
the terms factorized by ε7 have to be computed explicitly in order to check the nondegeneracy
condition needed to establish the existence of KAM tori.

However, due to the fact that the first two perturbations of −K appear scaled at order
three and seven (multiple scales) and the third order is degenerate, when applying the iso-
energetic KAM theorem, the twist term is too high and one cannot conclude the existence of
the KAM tori straightforwardly. The situation is similar to the Lunar case of the restricted
three-body problem [62, 65]. For these problems, Han, Li, and Yi [29] have elaborated a
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theorem that works in the case of Hamiltonian systems with high-order proper degeneracy
[29]. At this point we should also mention Féjoz’s papers [25, 26] because they contain KAM
theorems that look for many of the degenerate problems investigated here. However, we have
preferred to use the main theorem of [29] as it can be applied directly to the cases we handle
in this paper. We make use of it in order to prove the occurrence of the invariant 3-tori.

We state the result of Han, Li, and Yi in order to make it clear that our system satisfies
the required hypotheses.

We start with a Hamiltonian system of the form

(4.22) H(I, ϕ, ε) = h0(I
n0) + εm1h1(I

n1) + · · ·+ εmaha(I
na) + εma+1p(I, ϕ, ε),

where (I, ϕ) ∈ Rn × Tn are action-angle variables with the standard symplectic structure
dI ∧ dϕ, and ε > 0 is a sufficiently small parameter. The Hamiltonian H is real analytic,
and the parameters a, m, ni (i = 0, 1, . . . , a) and mj (j = 1, 2, . . . , a) are positive integers
satisfying n0 ≤ n1 ≤ · · · ≤ na = n, m1 ≤ m2 ≤ · · · ≤ ma = m, Ini = (I1, . . . , Ini), for
i = 1, 2, . . . , a, and p depends on ε smoothly.

The Hamiltonian H(I, ϕ, ε) is considered in a bounded closed region Z × Tn ⊂ Rn × Tn.
For each ε the integrable part of H,

Xε(I) = h0(I
n0) + εm1h1(I

n1) + · · ·+ εmaha(I
na),

admits a family of invariant n-tori T ε
ζ = {ζ} × Tn, with linear flows {x0 + ωε(ζ)t}, where, for

each ζ ∈ Z, ωε(ζ) = ∇Xε(ζ) is the frequency vector of the n-torus T ε
ζ and ∇ is the gradient

operator. When ωε(ζ) is nonresonant, the n-torus T ε
ζ becomes quasi-periodic with slow and

fast frequencies of different scales. We refer to the integrable part Xε and its associated tori
{T ε

ζ } as the intermediate Hamiltonian and intermediate tori, respectively.

Let Īni = (Ini−1+1, . . . , Ini), i = 0, 1, . . . , a (where n−1 = 0, hence Īn0 = In0), and define

Ω =
(
∇Īn0h0(I

n0), . . . ,∇Īnahna(I
na)
)

such that, for each i = 0, 1, . . . , a, ∇Īni denotes the gradient with respect to Īni .
We assume the following high-order degeneracy-removing condition of Bruno–Rüssmann

type (so named by Han, Li, and Yi, giving credit to Bruno [8] and Rüssmann [59, 60], who
provided weak conditions on the frequencies guaranteeing the persistence of the invariant tori,
although V. I. Arnold seems to have been the first who pointed out the importance of this
type of nondegeneracy condition), the so-called condition (A): there is a positive integer s
such that

Rank
{
∂α
I Ω(I) : 0 ≤ |α| ≤ s

}
= n ∀ I ∈ Z.

For the usual case of a nearly integrable Hamiltonian system of the type

(4.23) H(I, ϕ, ε) = X(I) + εp(I, ϕ, ε), (I, ϕ) ∈ Z × Tn ⊂ Rn × Tn,

condition (A) given above generalizes the classical Kolmogorov nondegenerate condition that
∂ω(I) be nonsingular over Z, where ω(I) = ∇X(I); Bruno’s nondegenerate condition that
Rank {ω(I), ∂ω(I)} = n ∀ I ∈ Z; and the weakest nondegenerate condition guaranteeing such
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persistence, provided by Rüssmann, that ω(Z) should not lie in any (n − 1)-dimensional
subspace. The Rüssmann condition is equivalent to condition (A) for systems like (4.23); see
[29] for details. However, Bruno or Rüssmann conditions do not apply to Hamiltonian (4.22),
as it is too degenerate.

The following theorem gives the right setting in which one can ensure the persistence of
KAM tori for Hamiltonians like (4.22).

Theorem 4.2 (Han, Li, and Yi [29]). Assume the condition (A), and let δ with 0 < δ < 1/5
be given. Then there exists an ε0 > 0 and a family of Cantor sets Zε ⊂ Z, 0 < ε < ε0,
with |Z \Zε| = O(εδ/s), such that each ζ ∈ Zε corresponds to a real analytic, invariant, quasi-
periodic n-torus T̄ ε

ζ of the Hamiltonian (4.22), which is slightly deformed from the intermediate

n-torus T ε
ζ . Moreover, the family {T̄ ε

ζ : ζ ∈ Zε, 0 < ε < ε0} varies Whitney smoothly.
We have been assured by the authors of [29] that the above theorem can be applied to

Hamiltonian systems with finite smoothness using standard arguments of KAM theory; thus
we can use it for the examples of this subsection.

At this point we can apply the above result to our Hamiltonian (4.21). We have the
following numbers: n0 = 1, n1 = n2 = 3, a = 2, m1 = 3, m2 = m = 7. Moreover, h0 = −K,
h1 is composed of the terms of Hε factorized by ε3, whereas the terms of h2 are given by the
terms of Hε factorized by ε7. Then,

Ω ≡ (Ω1, Ω2, Ω3, Ω4, Ω5) =

(
∂h0

∂K
,
∂h1

∂I1
,
∂h1
∂I2

,
∂h2

∂I1
,
∂h2

∂I2

)
.

Now, we form the matrix ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω1
∂Ω1

∂K

∂Ω1

∂K

Ω2
∂Ω2

∂I1

∂Ω2

∂I2

Ω3
∂Ω3

∂I1

∂Ω3

∂I2

Ω4
∂Ω4

∂I1

∂Ω4

∂I2

Ω5
∂Ω5

∂I1

∂Ω5

∂I2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

After replacing the concrete values of the Hamiltonians, hi, and the partial derivatives in
the above matrix, using (4.21), we deduce that its rank is three. This readily implies that
there are KAM 3-tori related with the equilibrium point (4.8).

Setting b =
∑a

i=1 mi(ni − ni−1), we obtain b = 6. Further, we have got s = 1, and thus
εsb+δ = ε6+δ < ε7. According to Remark (2) of [29] (p. 1422), the excluded measure for the
existence of quasi-periodic invariant tori is improved to an order of εb, that is, to ε6.

Thus, we have proved the following result that, so far, was not known.
Theorem 4.3. The Hamiltonian of the spatial restricted three-body problem has invariant

KAM 3-tori surrounding the near-circular near-coplanar periodic solutions of very large radii
encountered in subsection 4.2. If ε is the small parameter introduced in (4.5) to measure the
length of the periodic solutions (i.e., ‖x‖ ≈ ε−2K2 or its improved value ‖x‖ ≈ ε−2(K2 +
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√
K4 − 3ε4μ(1− μ))/2), the excluding measure for the existence of invariant tori is of the

order of ε6.

4.4. KAM 3-tori in other spatial problems. In this subsection we present two examples
of Hamiltonian systems with three degrees of freedom that can be cast in the form (4.5), and
therefore we can apply the same techniques we have introduced in this section to prove the
existence of periodic solutions and invariant tori.

As mentioned in the introduction, Hamiltonians of type (4.5) appear in many situations.
Apart from the spatially restricted three-body problem, one also has the attitude of a non-
spherical spacecraft [22], the trapping mechanisms of hydrogen atoms in crossed or parallel
electric and magnetic fields [18, 63], the artificial satellite with tesseral harmonics [53], the
radiation pressure problem (or orbiting dust) [17], and the motion of a particle subject to the
gravity potential of two orthogonal rotating straight lines [5]. The last two will be treated in
this subsection.

4.4.1. Radiation pressure. The orbiting dust problem models the effect of radiation pres-
sure on dust particles revolving around an idealized planet itself in a planar circular orbit
around a star. The origin is set at the center of mass of the star-planet pair. The x1x2-plane
is identified with the planet’s orbital plane, and the mean motion of the planet around its star
is normalized to one.

The Hamiltonian of the problem was derived in [17] (see also [19] for a different but related
treatment). In a synodic frame that rotates with the dust particle around the planet, in such
a way that the dust particle lies on the axis x1, the Hamiltonian is a conservative system and
is given by

(4.24) H =
‖y‖2
2

− 1

‖x‖ − (x1y2 − x2y1) + kx1,

where k > 0 is a parameter designating the strength of the radiation. The introduction of
the Coriolis term is the price paid for making the system autonomous. An illustration of the
problem is given in Figure 4.

The expression of the Hamiltonian is equivalent to the so-called microwave ionization
problem [34, 66], in which a hydrogen atom is perturbed by a circularly polarized microwave
field with the electron orbit lying in the plane of polarization. This system is described in a
co-rotating frame by the autonomous Hamiltonian (4.24).

We assume that the particle is far away from the planet to see “comet”-type behavior. We
also assume that the strength provoked by the radiation pressure is small, so that we define
k = ε3f . Use the same scaling as in the spatially restricted three-body problem in the comet
case, i.e., scale by x → ε−2x, y → εy and multiply H by the multiplier ε. Rearranging terms
in powers of ε, we get

(4.25) Hε = −(x1y2 − x2y1) + ε2fx1 + ε3
(
‖y‖2
2

− 1

‖x‖

)
.

Note that the resulting Hamiltonian corresponds to the class of systems that are perturbations
of the Coriolis term. However, it is not in the same form as (4.5) since the perturbing term
ε2fx1 is in between.
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Figure 4. Orbiting dust problem. The points S, P , and d stand respectively for the star, the planet, and the
dust particle. The force FRP refers to the radiation pressure of the star acting on the particle, whereas FG refers
to the gravitational force of the planet on the particle. The angular velocity ω is taken as equal to one. While
the motions of the star and the planet occur in the same plane, d is allowed to move in the three-dimensional
space around P in a “perturbed” ellipse.

We normalize Hε with respect to ν, arriving at order ε16 through a Lie transformation.
The averaged Hamiltonian reads as

(4.26)
Hε = −K + ε3

(
1

2

(
R2 +

Θ

r2

)
− 1

r

)
+

ε7f2

2

+ ε13
f2

8Θ2r3

(
Θ2 − 3K2 − 3(Θ2 −K2) cos(2ϑ)

)
+O(ε17).

A glimpse at Hε reveals now that the averaged Hamiltonian is of the required format, the
same as in the comet case of the spatially restricted three-body problem, since the term of
order ε7 can be dropped. Thus, after removing the constants and dropping higher-order terms,
the Hamiltonian vector field corresponding to (4.26) written in the invariants ai has a unique
relative equilibrium in Tγ related to circular equatorial motions. As a consequence, the theory
of [65] applies, and Theorem 4.1 also holds, leading to the existence of two families of elliptic
near-circular near-equatorial periodic solutions with very large radii and very large periods.

The next goal is the analysis of the invariant KAM tori surrounding the periodic solutions.
We can apply mutatis mutandis the same steps as in subsection 4.3, although with some slight
variations. We do not need to give the full details. For instance, the linear transformation
(4.13) is replaced by

(4.27) Q1 = ε2Q̄1 +Q0
1, Q2 = ε2Q̄2 +Q0

2, P1 = ε2P̄1 + P 0
1 , P2 = ε2P̄2 + P 0

2 ,
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where

(Q0
1, Q0

2, P 0
1 , P 0

2 ) =

(
0,

1

2
(γ2 +

√
γ4 − 3ε10f2), 0, 0

)
.

First of all, the Hamiltonian (4.26) is written in terms of Qi’s and Pi’s. Then, using
(4.27), the Hamiltonian is expressed as a function of Q̄i’s and P̄i’s. Next, the corresponding
Hamiltonian is expanded in powers of ε up to the power sixteen, and the Hamiltonian in the
coordinates Q̄i and P̄i is formed by the sum of homogeneous polynomials up to degree nine
in Q̄i’s and P̄i’s. Then we use action-angle coordinates in order to prepare the Hamiltonian
with the aim of eliminating the angles ϕ1 and ϕ2 through a Lie transformation, in a fashion
similar to that given in subsection 4.3. The Lie transformation is carried out to order eight;
that is, eight steps are performed. This time in the intermediate process all the expansions
are truncated at order ε17.

After rearranging the final Hamiltonian where we have rescaled conveniently, we get

(4.28)
Hε = −K − ε3

2K6
(I1 + I2)

(
5(I1 + I2)

3 ∓ 4K(I1 + I2)
2 + 3K2(I1 + I2)∓ 2K3

)

− 3ε13f2

8K8

(
29I21 + 20I1I2 + 4I22 ∓ 2K(3I1 + I2)

)
+O(ε17).

The Hamiltonian (4.28) is the same as (4.21) except for a few constants and also for the fact
that the third term of Hε is of order thirteen in ε instead of order seven.

The application of Han, Li, and Yi’s theorem is almost the same as that of subsection
4.3 but with m2 = m = 13. However, b = 6 and s = 1; thus the estimate of the excluding
measure for the existence of quasi-periodic invariant tori is the same as in the comet case.

We notice that, due to the expression of P 0
1 , the radii of the periodic solutions are slightly

modified when one includes the terms factorized by ε13. The periods and characteristic mul-
tipliers can also be improved, but we do not write down the explicit formulae for them. We
have obtained the following result.

Theorem 4.4. The Hamiltonian of the radiation pressure (4.24) has two families of near-
circular near-equatorial periodic solutions that are elliptic with characteristic multipliers 1, 1,
1+ ε3γ−3T ı+O(ε13), 1+ ε3γ−3T ı+O(ε13), 1− ε3γ−3T ı+O(ε13), and 1− ε3γ−3T ı+O(ε13),
where the periods are T (ε) ≈ 2πε−1. If η = (γ2+

√
γ4 − 3ε10f2)/2, the radii of these solutions

are very large, ‖x‖ ≈ ε−2η.
Moreover, there are invariant KAM 3-tori surrounding the near-circular near-equatorial

periodic solutions of very large radii, and if ε is the small parameter introduced in (4.5) to
measure the length of the periodic solutions, the excluding measure for the existence of the
invariant tori is of the order of ε6.

4.4.2. A rotating double material segment. In order to approximate the gravity field
of irregular nonspherical celestial bodies, Bartczak and Breiter [5] introduced a model that
consists of two perpendicular segments that can have different lengths and masses. It extends
the case of the potential produced by a finite straight line [57, 58]. By irregular bodies we
mean cigar-shaped or ellipsoid-resembling objects.

We consider two segments of lengths l1 and l2 and masses m1 and m2. The segment of
length l1 is oriented along the axis x1, while the one of length l2 is oriented along the axis x2.
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We assume that the double segment rotates uniformly with constant angular velocity ω = 1
about an axis perpendicular to the x1x2-plane, that is, about the (fixed) axis x3. This is a
natural assumption since the celestial body mimicked by the perpendicular straight segments
is supposed to rotate. We fix the center of mass O (the intersection of the two segments) at
the origin of the frame. Then Ox1x2x3 is a synodic frame, and the x1x2-plane is fixed in it.
A sketch of the system is given in Figure 5.

Figure 5. Double material segment in rotation. We set the angular velocity ω to 1. It is supposed that the
two segments remain in the x1x2-plane, whereas P moves in three-dimensional space.

In this frame, the potential of the double segment is given by

(4.29) V = − μ1

2l1
log

(
s1 + 2l1
s1 − 2l1

)
− μ2

2l2
log

(
s2 + 2l2
s2 − 2l2

)
,

where
s1 =

√
‖x‖2 + 2l1x1 + l21 +

√
‖x‖2 − 2l1x1 + l21,

s2 =
√

‖x‖2 + 2l2x2 + l22 +
√

‖x‖2 − 2l2x2 + l22,

and μ1 = Γ2m1, μ2 = Γ2m2 with Γ the universal gravitational constant that can be normalized
to one. Moreover, m = m1 + m2 is supposed to be the total mass of the celestial body
approximated by the double segment, and we can rescale it to be 1. Finally, the center of
mass is taken as the intersection of the two straight lines.

The interest of this problem lies in the mission analysis of spacecraft to very irregular
comets and asteroids and the question of how to efficiently approximate their potentials. After
defining appropriate momenta y associated with x, the Hamiltonian of a massless particle
(typically the spacecraft) attracted by the double segment is

(4.30) H =
‖y‖2
2

− (x1y2 − x2y1) + V,
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with V given by (4.29).
If we assume that the massless particle is very far away from the segment, we use the

same scale as used in the comet case of the restricted three-body problem; i.e., we scale by
x → ε−2x, y → εy and multiply H by the multiplier ε. Expanding H in powers of ε, we arrive
at a Hamiltonian that reproduces the same pattern as (4.5). Hence, a first consequence of the
dynamics of Hamiltonian (4.30) is that there is a unique relative equilibrium of the averaged
Hamiltonian in the reduced space Tγ related to circular equatorial trajectories. Specifically,
we can apply the theory of [65] and Theorem 4.1 holds, leading to the existence of two families
of elliptic near-circular near-coplanar periodic solutions with very large radii and periods.

Next we try to obtain KAM 3-tori around the periodic solutions by applying the same
steps as in subsection 4.3.

The average of H with respect to the argument of the node is given by
(4.31)

Hε = −K + ε3
(
1

2

(
R2 +

Θ

r2

)
− 1

r

)
+ ε7

k

24Θ2r3

(
Θ2 − 3K2 − 3(Θ2 −K2) cos(2ϑ)

)
+O(ε11),

with k = l21m1 + l22(1−m1). This is very similar to the averaged Hamiltonian of the spatially
restricted three-body problem in the comet case and to that of the radiation pressure.

The computations that follow are very similar to those of subsection 4.3. Indeed, we need
to push the calculations to the same power in ε and the same degree in the actions.

When taking into account the terms of order ε7, the expression of the equilibrium point
in the local coordinates Qi and Pi is

(Q0
1, Q0

2, P 0
1 , P 0

2 ) =

(
0,

1

2
(γ2 +

√
γ4 − ε4k), 0, 0

)
.

Therefore, the radii of the periodic solutions are modified after incorporating the terms of
order ε7. The periods and characteristic multipliers of the periodic solutions are also modified,
although we do not write down the new values.

The resulting Hamiltonian (compare with (4.21) and (4.28)) is

(4.32)
Hε = −K − ε3

2K6
(I1 + I2)

(
5(I1 + I2)

3 ∓ 4K(I1 + I2)
2 + 3K2(I1 + I2)∓ 2K3

)

− ε7k

8K8

(
29I21 + 20I1I2 + 4I22 ∓ 2K(3I1 + I2)

)
+O(ε11).

We apply again Han, Li, and Yi’s theorem, as for the comet case, and the radiation pressure
with the same values of b and s. Thus, we conclude the following.

Theorem 4.5. The Hamiltonian of the double material segment given by (4.30) has two
families of near-circular near-equatorial periodic solutions that are elliptic with characteristic
multipliers 1, 1, 1 + ε3γ−3T ı + O(ε7), 1 + ε3γ−3T ı + O(ε7), 1 − ε3γ−3T ı + O(ε7), and 1 −
ε3γ−3T ı + O(ε7), where the periods are T (ε) ≈ 2πε−1. If η = (γ2 +

√
γ4 − ε4k)/2, the radii

of the periodic solutions are very large, ‖x‖ ≈ ε−2η.
Moreover, there are invariant KAM 3-tori surrounding the near-circular near-equatorial

periodic solutions of very large radii, and if ε is the small parameter introduced in (4.5) to
measure the length of the periodic solutions, the excluding measure for the existence of the
invariant tori is of the order of ε6.
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5. Two Hamiltonians invariant under the symmetry induced by G.
5.1. The isochrone model. The isochrone model was introduced to the astronomical field

by Hénon in 1959 [31] as a model for globular clusters with spherical symmetry. Since then
it has been used by many authors in astronomy. The isochrone was used in [21] to model the
galaxy and extract conclusions concerning its formation process. They chose the isochrone
to represent the motion of stars for the case where the galaxy is in dynamical equilibrium.
Then, they studied the dynamics in a contracting galaxy, taking into account what properties
of a stellar orbit are preserved throughout time. From these studies and the data available at
the moment they concluded that the galaxy was formed by a very rapid collapse. For a few
other works where the isochrone has been used in galactic dynamics, the reader is referred to
[23, 13, 64].

The Hamiltonian of the problem is given by

(5.1) H =
1

2
‖y‖2 + V,

where V is the potential

(5.2) V = − 1

b+
√

‖x‖2 + b2

and x, y ∈ R3 are conjugate coordinates. The parameter b > 0 is a scaling of the radius
‖x‖ that gives the extent of the region where the potential resembles that of a homogeneous
body. In the case where b = 0 the Kepler potential is recovered. The isochrone model has
a spherical potential, and spherical potentials are very useful when modeling the motions of
stars belonging to globular clusters, which are nearly spherical. If we fix a value for the energy
H = h, the radial period is given by

Tr =
2π

(−2h)3/2
.

The isochrone is a minimally superintegrable model [6, 64]. This means that as the system
is defined in three-dimensional space (six-dimensional taking into account positions and mo-
menta), it has four functionally independent integrals of motion, which are the energy and
the three components of the angular momentum.

In all spherical potentials a typical orbit is a planar rosette that does not close; i.e., it
is a quasi-periodic orbit. The motion is confined to a ring determined by the pericenter and
apocenter distances. For the isochrone model, the commensurability relation between the
radial ωr and the angular ωφ frequencies is given by

ωφ

ωr
=

1

2

(
1 +

Θ√
Θ2 + 4b

)
,

where Θ denotes the modulus of the angular momentum vector. This relation is a rational
number only for some particular values of Θ and b.

Our aim in this paper is to obtain periodic solutions for any value of Θ �= 0 and b, using the
techniques developed in this paper. We treat the Hamiltonian as a three-degrees-of-freedom
system, as the isochrone is usually taken as the unperturbed part of a Hamiltonian whose
perturbation terms are of three degrees of freedom [13, 64].



PERIODIC SOLUTIONS AND KAM TORI OF HAMILTONIANS 843

We start by pointing out that H is invariant with respect to the symmetry induced by
G. In fact, H is invariant under the group SO(3) of rotations, which implies that the angular
momentum vector is kept fixed by the flow, but we are interested in the axial symmetry. This
allows us to rewrite H in terms of the invariants ai without resorting to averaging theory. The
reduced Hamiltonian in the space Tγ reads

(5.3) H =
1

2
(a2 + a26)−

1

b+
√

a1 + a25 + b2
.

The equations of motion related to this Hamiltonian have two equilibria. One is the point
with coordinates ai = 0 ∀ i ∈ {1, . . . , 6}, which is an equilibrium provided that γ = 0, and the
other one is given by

(5.4)

a1 =
γ

2

(
γ(γ2 + 4b)∓ (γ2 + 2b)

√
γ2 + 4b

)
,

a2 =
2γ

γ(γ2 + 4b)∓ (γ2 + 2b)
√

γ2 + 4b
,

a3 = 0, a5 = 0, a6 = 0,

where the upper sign is taken if γ > 0 and the lower when γ < 0. The point ai = 0 ∀ i
corresponds with the origin of R6 and hence does not lead to any periodic solution, whereas
the other point gets reduced to the origin of R6 when γ = 0. Thus, from now on we continue
our analysis with γ �= 0.

We apply Theorem 2.2 and Corollaries 2.2 and 2.3 of [65] (see also the last paragraphs of
section 1) and conclude that the equilibrium (5.4) is related to a family of periodic solutions
of the Hamiltonian (5.1) that depends on the parameter γ �= 0. The periodic solutions are
either prograde if γ < 0 or retrograde if γ > 0. We stress that, as we have not performed any
perturbative analysis so far, the solutions are indeed truly circular and equatorial with their
radii given by

√
a1.

Now we study the stability of the periodic solutions through the stability analysis of the
equilibrium point (5.4) in Tγ . Since the periodic solutions are circular and equatorial, we
begin by making use of the coordinates (4.9). The Hamiltonian H reads as

(5.5) H =
P 2
2

2
+

(Q2
1 + P 2

1 ∓ 2γ)2

8Q2
2

− 1

b+
√

Q2
2 + b2

,

and the equilibrium point (5.4) is

(Q0
1, Q0

2, P 0
1 , P 0

2 ) =

(
0,

√
γ

2

(
γ(γ2 + 4b)∓ (γ2 + 2b)

√
γ2 + 4b

)
, 0, 0

)
.

Next we shift the origin of the coordinates to the equilibrium, introducing a small parameter
ε through

(5.6) Q1 = εQ̄1 +Q0
1, Q2 = εQ̄2 +Q0

2, P1 = εP̄1 + P 0
1 , P2 = εP̄2 + P 0

2 .

Introducing the change (5.6) into the Hamiltonian (5.5), expanding the result in powers of ε
including terms factorized by ε2, and dropping constant terms, we arrive at a Hamiltonian
whose quadratic terms are
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(5.7) H2 = ± 2

B(B ∓ γ)2
(P̄ 2

1 + Q̄2
1) +

1

2
P̄ 2
2 +

32

(B ∓ γ)6
Q̄2

2,

where we have used B =
√

γ2 + 4b. Note that B > |γ| as b > 0.
The characteristic exponents of the linear Hamiltonian vector field related to (5.7) are

(5.8) λ1,3 = ± 4ı

B(B ∓ γ)2
, λ2,4 = ± 8ı

(B ∓ γ)3
,

which implies that the point (5.4) is linearly stable in Tγ . Moreover, since the 1 : −1 resonance
cannot occur as it would imply that B = |γ|, we conclude that the equilibrium is parametrically
stable. The linear stability analysis implies that the periodic solutions are elliptic. Indeed, we
do not need to have parametric stability, as the reduction we have performed was exact; that
is, it does not involve any truncation process. Furthermore, for the same reason we conclude
that the nontrivial characteristic multipliers of the periodic solutions are known exactly, and
their values are eλ1 , eλ2 , e−λ1 , and e−λ2 .

Finally, by inspection of the coefficients of (5.7) it is easy to see that H2 is positive definite
when γ < 0, whereas it is indefinite for γ > 0. Therefore, applying the Dirichlet criterion [49]
for negative values of γ, the equilibrium point is nonlinearly stable for the prograde periodic
solutions. This implies that the family of periodic solutions with γ negative is also nonlinearly
stable.

The periodic solutions have period Tφ = 2π/ωφ. Taking that into account for the periodic
solution Θ = |γ|, and fixing a value of H in (5.1), say h < 0, we get

(5.9) Tφ =

√
2πB

(−h)3/2(B ∓ γ)
.

Finally we prove the existence of invariant 2-tori surrounding the periodic solutions. In
general, an integrable Hamiltonian of n degrees of freedom has 2n − d independent integrals
of motion, and the system is superintegrable if n > d. Thus, the phase space of an integrable
Hamiltonian is fibered by invariant d-tori [51, 24, 30]. Moreover, the local representative
H of the Hamiltonian in any local system of (generalized) action-angle coordinates depends
on the d actions alone. For the isochrone problem we get n = 3 and d = 2, and explicit
expressions of the action-angle coordinates have been found in [27] (see also [6]) after solving
the corresponding Hamiltonian–Jacobi equation. In particular, a set of actions is defined
through

(5.10) I1 =
1√
−2h

+
1

2

(
Θ−

√
Θ2 + 4b

)
, I2 = Θ, I3 = K,

that, together with their conjugate angles that we do not write down, are derived with detail in
[27]. In particular, when b → 0 these action-angle coordinates reduce to the spatial Delaunay
elements.

Then, the isochrone Hamiltonian (5.1) can be written as

(5.11) H = − 2

(2I1 − I2 +
√

I22 + 4b)2
.

Now, in order to prove the existence of 2-tori, it is enough to check the usual nondegeneracy
condition on Hamiltonian (5.11). Thus, since the determinant
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(5.12) det

⎡
⎢⎢⎢⎣

∂2H
∂I21

∂2H
∂I1∂I2

∂2H
∂I2∂I1

∂2H
∂I2

⎤
⎥⎥⎥⎦ = − 768b

(I22 + 4b)3/2(2I1 − I2 +
√

I22 + 4b)7

is different from zero, it is enough to ensure that there are 2-tori surrounding the periodic
orbits. The frequencies of these tori are ωi = ∂H/∂Ii for i = 1, 2.

Thus, we end up with the following result.
Theorem 5.1. The Hamiltonian of the isochrone model given by (5.1) has two families of

circular equatorial (prograde and retrograde) periodic solutions that are elliptic with character-
istic multipliers 1, 1, eλ1 , eλ2 , e−λ1 , and e−λ2 , where the λi’s are defined in (5.8). The periodic
solutions are also nonlinearly stable for γ < 0. The periods of the solutions are the values Tφ

given in (5.9), and their radii are ((γ2(γ2 +4b)± γ(γ2 +2b)
√

γ2 + 4b)/2)1/2. Moreover, there
are invariant 2-tori surrounding the circular equatorial periodic solutions.

We could explore the existence of periodic solutions and invariant tori by reducing out
the SO(3) symmetry instead of the axial symmetry. However, by doing so we end up with
a Hamiltonian system of two degrees of freedom that has no isolated equilibria, a fact which
prevents us from applying the techniques we have used above to get the periodic solutions
together with their stability character. Alternatively, we could apply two reductions (related
to the axial and spherical symmetries) to Hamiltonian (5.1) in order to obtain a system of
one degree of freedom and then study it. Thus, we would get the same periodic solutions and
2-tori.

5.2. The spring pendulum. The spring pendulum, also called swing spring or elastic
pendulum, is a mechanical system that exemplifies the motion of a point particle attached
to a spring under a constant vertical gravitation field. The spring has one end fixed, a mass
attached at the other end, and a constant vertical gravitation field acting upon it. The
swing spring owes its name to the fact that, for appropriate initial conditions, the mass can
either swing like a pendulum or bounce up and down like a spring. However, if in linear
approximation near the equilibrium, the frequencies of the swinging and springing motion are
in resonance, and the two types of motions are intricately intertwined. The long history of
the model is well described in [42]; see also [33].

The system is represented through the Hamilton function

(5.13) H =
1

2
‖y‖2 + x3 +

κ2

2

(
1− 1

κ2
− ‖x‖

)2

.

The parameter κ is related to the equilibrium and unstretched lengths of the spring, respec-
tively l and l0, by κ = l/(l − l0). Thus, κ > 1 since the frequency of the spring oscillation
is bigger than the frequency of the small amplitude pendulum oscillations; that is, l ≥ l0.
Dullin, Giacobbe, and Cushman [20] performed the analysis of monodromy for the spring
pendulum when κ = 2. Gutiérrez-Romero, Palacián, and Yanguas [28] showed the occur-
rence of Hamiltonian Hopf bifurcations when κ > 1 and κ ∈ R \ Q using generalized normal
forms. Furthermore, the latter also showed that the dynamical system of the swing spring has
monodromy.
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The Hamiltonian (5.13) is invariant under rotation abut the axis x3; therefore H defines,
in fact, a two-degrees-of-freedom system. Here our task is to discuss the existence of periodic
solutions and KAM tori for any value of κ > 1 using reduction and KAM theories.

The reduced Hamiltonian in the invariants ai and the reduced phase space Tγ reads

(5.14) H =
1

2
(a2 + a26) + a5 +

κ2

2

(
1− 1

κ2
−
√

a1 + a25

)2

.

The associated vector field is

ȧ1 = 2a3, ȧ2 = −2(1− κ2(1−
√

a1 + a25))a3√
a1 + a25

, ȧ3 = a2 −
(1− κ2(1−

√
a1 + a25))a1√

a1 + a25
,

ȧ5 = a6, ȧ6 = −1− (1− κ2(1−
√

a1 + a25))a5√
a1 + a25

.

(5.15)

The possible critical points of (5.15) have to satisfy the conditions a3 = a6 = 0; additionally,
a5 �= 0, as then ȧ6 = −1. Thus, there cannot be equatorial motions. A closer look at (5.15)
yields the points (i) a1 = a2 = a3 = a6 = 0, a5 = −1, which is valid if and only if γ = 0,
and (ii) a1 = a2 = a3 = a6 = 0, a5 = 1 − 2/κ2, valid if and only if γ = 0 and κ >

√
2. Both

are isolated equilibria. For both equilibria the modulus of the angular momentum, which in
terms of the invariants ai is given through

Θ =
√

a1a26 + a2a25 + a24 − 2a3a5a6,

is zero. Thus these points are in the singular part of the reduced space, i.e., are points on
T0, so they are reconstructed to families of equilibrium points of the system defined by (5.13).
In particular, (i) corresponds to the point (x, y) = (0, 0,−1, 0, 0, 0), whereas (ii) corresponds
to the family of points (x, y) = (0, 0, 1 − 2/κ2, 0, 0, 0) parameterized by κ. We also check
that there are no other types of motions related to γ = 0. We recall that the point (i) is
precisely the one used to study the characteristic feature of this system’s dynamics, namely,
the stepwise precession of its azimuthal angle [42, 33, 20, 28].

The search of other possible relative equilibria for γ = 0 does not give more points than
those given above, so from now on we concentrate on the existence of possible relative equilibria
when |γ| > 0 and κ > 1. We start by writing down a1 and a2 in terms of a5, using that the
ai’s are critical points of (5.15) and satisfy (4.2):

(5.16)

a1 = −κ2a25(a5 + 1)(κ2(a5 − 1) + 2)

(κ2a5 + 1)2
,

a2 =
κ2|a5|(a5 + 1)(κ2(a5 − 1) + 2)(|κ2a5 + 1| − κ2|a5|)

(κ2a5 + 1)2
.

Imposing that a1 > 0 (a1 = 0 would lead to the points (i) and (ii)) and a2 ≥ 0, it is easy to
conclude that −1 < a5 < min{0, 1 − 2/κ2}.

At this point the computations become very cumbersome using the invariants, so we
resort to local coordinates. We distinguish between near-equatorial and nonequatorial types
of motions. For the former we express the Hamiltonian H in the coordinates (4.9), finding
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no solutions, which is in agreement with the fact that a5 < 0. For the latter we use the set
of (analytic) polar-nodal coordinates that act as rectangular coordinates, from which we will
define action-angle coordinates

(5.17) Q1 = r, Q2 = ϑ, P1 = R, P2 = Θ.

The Hamiltonian (5.13) in the coordinates Qi, Pi is

(5.18) H =
1

2

(
P 2
1 +

P 2
2

Q2
1

)
+Q1

√
1− γ2

P 2
2

sinQ2 +
κ2

2

(
1− 1

κ2
−Q1

)2

,

and its related vector field yields

(5.19)

Q̇1 = P1,

Q̇2 =
P2

Q2
1

+
γ2Q1

P 2
2

√
P 2
2 − γ2

sinQ2,

Ṗ1 = κ2
(
1− 1

κ2
−Q1

)
+

P 2
2

Q3
1

−
√

1− γ2

P 2
2

sinQ2,

Ṗ2 = −
√

1− γ2

P 2
2

Q1 cosQ2.

Taking into account that P2 cannot reach the value ∓γ as 0 < |γ| < Θ and that Q1 is strictly
positive, an inspection on (5.19) reveals that the equilibrium points satisfy Q0

2 = −π/2,
P 0
1 = 0, whereas P 0

2 is a root of the equation

(5.20) 1− P 0
2√

(P 0
2 )

2 − γ2
− κ2

(
1− P 0

2 ((P
0
2 )

2 − γ2)1/6

(∓γ)2/3

)
= 0,

while Q0
1 has to be taken as

(5.21) Q0
1 =

P 0
2 ((P

0
2 )

2 − γ2)1/6

(∓γ)2/3
.

In the above formulae the positive sign is valid for γ < 0 (prograde solutions), and the negative
sign applies when γ > 0 (retrograde solutions). Our aim is to prove that (5.20) has a unique
root P 0

2 when P 0
2 > |γ| > 0 and κ > 1; thus we will show that there is a unique relative

equilibrium of the equations of motion (5.19).
Instead of seeking a value P 0

2 we write κ as a function of it. The concrete value is

(5.22) κ = (∓γ)1/3

√
P 0
2 (
√

(P 0
2 )

2 − γ2 − P 0
2 ) + γ2

((P 0
2 )

2 − γ2)(P 0
2 ((P

0
2 )

2 − γ2)1/6 − (∓γ)2/3)
.

Now, from (5.22), the condition κ > 1 is equivalent to saying that

(5.23) P 0
2 <

√
γ2 ∓ γ.
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On the other hand, the denominator of (5.22) does not vanish if and only if

(5.24) ∓γ �= (P 0
2 )

2

√
2

√√
(P 0

2 )
4 + 4− (P 0

2 )
2.

Thus, both conditions (5.23) and (5.24) are satisfied, provided that

(5.25) 0 <
1

2

(√
4(P 0

2 )
2 + 1− 1

)
< ∓γ <

(P 0
2 )

2

√
2

√√
(P 0

2 )
4 + 4− (P 0

2 )
2 < P 0

2 .

The value of κ in terms of γ and P 0
2 is valid if and only if (5.25) holds; in other words, as κ > 1

is a fixed value, there is a unique P 0
2 satisfying the constraints (5.22) and (5.25). Hence, we

conclude that apart from the equilibria (i) and (ii), there is a relative equilibrium point that
is obtained as a root of the equations of motion (5.15) with a3 = a6 = 0, while a1, a2, and a5
can be approximated numerically for concrete values of γ and κ combining (5.20), (5.21), and
(5.22) with (5.15). This relative equilibrium does not bifurcate for any specific combination
of κ and γ.

Further, the equilibrium point is isolated, depends on κ > 1 and γ �= 0, and, by Theorem
2.2 and Corollaries 2.2 and 2.3 of [65] (see also the last paragraphs of section 1), leads to two
families of periodic solutions, one of prograde type if γ < 0 and another of retrograde type
when γ > 0. These periodic solutions are circular, their projections in the coordinate space
are parallel to the x1x2-plane and are located below this plane, and they are usually called
halo orbits. The distances between the planes where the orbits live and the equatorial plane
is given by the value that a5 takes, which is obtained using (5.16), (5.21), and (5.22), yielding

(5.26) a5 = −
(
±γ ∓ (P 0

2 )
2

γ

)2/3

;

this value is limited to the interval (−1,min{0, 1 − 2/κ2}). The corresponding values of a1
and a2 in terms of γ and P 0

2 are

(5.27) a1 = (∓γ)2/3((P 0
2 )

2 − γ2)1/3, a2 =
(∓γ)4/3

((P 0
2 )

2 − γ2)1/3
.

More specifically, when ∓γ tends to the right-hand side of (5.24), the distances of the periodic
solutions from the x1x2-plane vary in (max{0, 2/κ2 − 1}, 1), while their radii (given by

√
a1)

are cumbersome expressions in terms of κ and γ. Additionally, the periodic solutions end
up in the equilibrium point (i) as long as γ → 0. On the other hand, when ∓γ approaches
(
√

4(P 0
2 )

2 + 1 − 1)/2, the distances of the periodic solutions from the x1x2-plane tend to 1
and their radii tend to

√∓γ. We conclude that for each value of P 0
2 obtained from (5.20)

there are two families of periodic solutions (prograde and retrograde) parameterized by γ and
restricted to the constraints (5.25). The period of the solutions is 2π.

We need to manipulate the Hamiltonian (5.18) in order to analyze the stability of the
periodic solutions. The origin of the coordinates is shifted to the equilibrium, introducing at
the same time a small parameter ε through

(5.28) Q1 = εQ̄1 +Q0
1, Q2 = εQ̄2 +Q0

2, P1 = εP̄1 + P 0
1 , P2 = εP̄2 + P 0

2 ,
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where the values of Q0
1, Q

0
2, P

0
1 , and P 0

2 are those of the equilibrium point.
Next H is expanded in powers of ε including terms factorized by ε2, the constant terms

are dropped from the Hamiltonian, and we arrive at a Hamiltonian whose quadratic terms are
(5.29)

H2 =
1

2
P̄ 2
1

+
(∓γ)2/3(3(∓γ)8/3 − P 0

2 ((P
0
2 )

2 − γ2)1/6((P 0
2 )

2 + 3γ2) + (P 0
2 )

2((P 0
2 )

2 − γ2)2/3)

2(P 0
2 )

2((P 0
2 )

2 − γ2)2/3((∓γ)2/3 − P 0
2 ((P

0
2 )

2 − γ2)1/6)
Q̄2

1

+
(∓γ)4/3(4(P 0

2 )
2 − 3γ2)

2(P 0
2 )

2((P 0
2 )

2 − γ2)4/3
P̄ 2
2 +

((P 0
2 )

2 − γ2)2/3

2(∓γ)2/3
Q̄2

2 −
3γ2

(P 0
2 )

2
√

(P 0
2 )

2 − γ2
Q̄1P̄2,

where κ has be expressed in terms of P 0
2 and γ by means of (5.22).

The eigenvalues related to H2 are

(5.30) λ1,3 = ±

√
A+

√
B

C
, λ2,4 = ±

√
A−

√
B

C
,

with
(5.31)

A = (∓γ)2/3D7/3(P 0
2 )

4(P 0
2 +D)

(
4(∓γ)2/3 −D1/3(5P 0

2 −D)
)
,

B = (∓γ)D14/3(P 0
2 )

6(P 0
2 +D)2

(
12(∓γ)5/3D2 + 12(∓γ)1/3D11/3P 0

2 + (∓γ)1/3D8/3(P 0
2 )

2

+ 4(∓γ)5/3(P 0
2 )

2 − 6(∓γ)1/3D5/3(P 0
2 )

3

+ 9(∓γ)1/3D2/3(P 0
2 )

4

− 4(∓γ)D1/3
(
3D3 + 3D2P 0

2 −D(P 0
2 )

2 + 3(P 0
2 )

3
))

,

C = 2D11/3(P 0
2 )

4(P 0
2 +D)(D1/3P 0

2 − (∓γ)2/3),

and D =
√

(P 0
2 )

2 − γ2 > 0. An important feature is that for all the admissible values of γ
and P 0

2 one has that A < 0, while B, C > 0. Moreover, A2 > B; thence the characteristic
exponents λ1,3 and λ2,4 are pure imaginary numbers. Indeed, it is not easy to prove this
assertion, but as we know that the relative equilibrium does not bifurcate, the characteristic
exponents remain purely imaginary for all possible combinations, and this is enough to ensure
that A, B, C, and D do not change sign for values of P 0

2 and γ where (5.25) holds. So, we
give particular values of κ > 1 and γ �= 0, compute P 0

2 from (5.20), and check that the values
of A, B, and C are as expected and, more importantly, that the corresponding signs are not
going to change for all the admissible values of the parameters.

The eigenvectors of the vector field related to H2 form a basis of R4, and we can build a
linear change of coordinates to bring H2 to diagonal form. We do not detail the computations,
as they are customary but long. The final form of the quadratic Hamiltonian is

(5.32) H2 =
ω1

2
(P̃ 2

1 + Q̃2
1) +

ω2

2
(P̃ 2

2 + Q̃2
2),
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where ω1ı = λ1, ω2ı = λ2, and ω2 > ω1 > 0 ∀ κ > 1 and γ �= 0. Higher-order terms given by
H3,H4, . . . are transformed using the same linear change, and they are factorized respectively
by ε, ε2, . . . .

As a consequence, the equilibrium point (Q0
1,−π/2, 0, P 0

2 ), with Q0
1 and P 0

2 given in (5.20)
and (5.21), is linearly and parametrically stable. The linear stability means that the families
of periodic solutions are elliptic. Note that as in the isochrone model, we have not used
averaging theory; thus we do not really need the parametric stability to conclude the linear
stability of the periodic solutions. Hence, we can say that the exact nontrivial characteristic
multipliers of the periodic solutions are eλ1 , eλ2 , e−λ1 , and e−λ2 .

The Hamiltonian H2 is positive definite; thus the equilibrium point is always nonlinearly
stable. This means that the periodic solutions are nonlinearly stable for all possible values of
κ > 1 and γ �= 0.

Finally, we remark that H2 can be in resonance; i.e., there can be positive integers p and
q such that qω2 = pω1. In particular, when the distance of a halo orbit from the equatorial
plane approaches 1, then ω2/ω1 tends to 2, although this distance cannot occur. However,
other resonances can also take place. For instance, looking for a possible value of γ such that
the resonance 3 : 2 holds, we pick b = 2 and solve the nonlinear system given by the two
equations 3ω1 = 2ω2 and (5.20) for the unknowns γ and P 0

2 , yielding γ = −0.30947808 . . . ,
P 0
2 = 0.59681220 . . . . The nonnull invariants of the corresponding periodic solution are a1 =

0.29217167 . . . , a2 = 0.32780962 . . . , a4 = γ, and a5 = −0.89128462 . . . .
In order to apply KAM theory we need to introduce action-angle coordinates as follows:

(5.33)
Q̃1 =

√
2I1 sinϕ1, P̃1 =

√
2I1 cosϕ1,

Q̃2 =
√
2I2 sinϕ2, P̃2 =

√
2I2 cosϕ2.

These transform H into a new Hamiltonian such that its quadratic terms are given by

(5.34) H2 = ω1I1 + ω2I2.

Now, KAM theory can be applied if we exclude the resonant cases. We set γ = −K and
assume that the transformed Hamiltonian expressed in terms of the actions I1, I2, and K is
given by Hε = H2 +O(ε2). The Hamiltonian H2 is degenerate in the sense of Arnold, but we
apply the iso-energetic version of the KAM theorem, determining

(5.35) det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2H2

∂I21

∂2H2

∂I1∂I2

∂2H2

∂I1∂K

∂H2

∂I1

∂2H2

∂I2∂I1

∂2H2

∂I22

∂2H2

∂I2∂K

∂H2

∂I2

∂2H2

∂K∂I1

∂2H2

∂K∂I2

∂2H2

∂K2

∂H2

∂K

∂H2

∂I1

∂H2

∂I2

∂H2

∂K
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

X

Y
,

and one needs to study whether X/Y can be zero or not. In particular the specific values of
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X and Y are

X = (±K)4/3(P 0
2 +D)2

(
−9D6

(
(P 0

2 )
2 − 10

)
+ 21(±K)2/3D17/3P 0

2 − 12(±K)4/3D16/3

+ 18D5P 0
2

(
7(P 0

2 )
2 + 19

)
− 3(±K)2/3D14/3

(
115(P 0

2 )
2 + 24

)
+ 309(±K)4/3D13/3P 0

2 + 2D4(P 0
2 )

2
(
69(P 0

2 )
2 + 61

)
− 2(±K)2/3D11/3P 0

2

(
235(P 0

2 )
2 + 36

)
+ 602(±K)4/3D10/3(P 0

2 )
2

− 6D3(P 0
2 )

3
(
(P 0

2 )
2 + 58

)
− 12(±K)2/3D8/3(P 0

2 )
2
(
5(P 0

2 )
2 − 6

)
+ 206(±K)4/3D7/3(P 0

2 )
3 − 3D2(P 0

2 )
4
(
3(P 0

2 )
2 + 70

)
+ (±K)2/3D5/3(P 0

2 )
3
(
25(P 0

2 )
2 + 72

)
− 22(±K)4/3D4/3(P 0

2 )
4

+ 6D(P 0
2 )

5 − 3(±K)2/3D2/3(P 0
2 )

6 + 5(±K)4/3D1/3(P 0
2 )

5

− 2(P 0
2 )

6
)2

and

Y = 36D6
(
D1/3P 0

2 − (±K)2/3
)4

×
(
−2304(±K)2/3D10 + 36D28/3

(
(P 0

2 )
2 + 2

)
− 2304(±K)2/3D9P 0

2

+ 3072(±K)4/3D26/3 + 3D25/3P 0
2

(
49(P 0

2 )
2 + 120

)
− 648(±K)8/3D8

+ 3072(±K)4/3D23/3P 0
2 + 6D22/3(P 0

2 )
2
(
43(P 0

2 )
2 + 116

)
− 1400(±K)8/3D7P2

+ 6176(±K)10/3D20/3 +D19/3(P 0
2 )

3
(
265(P 0

2 )
2 + 552

)
− (±K)8/3D6

(
4888(P2)

2 − 2021K2 − 384
)
+ 4640(±K)10/3D17/3P 0

2

+ 4D16/3(P 0
2 )

4
(
45(P 0

2 )
2 − 14

)
− (±K)8/3D5P 0

2

(
2984(P 0

2 )
2 − 943K2 − 384

)
+ 4238(±K)16/3D14/3 + 3D13/3(P 0

2 )
5
(
39(P 0

2 )
2 − 152

)
− (±K)14/3D4

(
2021(P 0

2 )
2 − 365K2 − 480

)
+ 2302(±K)16/3D11/3P 0

2

+ 2(P 0
2 )

6D10/3
(
65(P 0

2 )
2 − 236

)
− (±K)14/3D3P 0

2

(
943(P 0

2 )
2 − 111K2 − 288

)
+ 1225(±K)22/3D8/3 +D7/3(P 0

2 )
7
(
111(P 0

2 )
2 − 392

)
− (±K)20/3D2

(
365(P 0

2 )
2 − 144

)
+ 446(±K)22/3D5/3P 0

2

+ 12D4/3(P 0
2 )

8
(
3(P 0

2 )
2 − 20

)
− 3(±K)20/3DP 0

2

(
37(P 0

2 )
2 − 16

)
+ 127(±K)28/3D2/3 − 64D1/3(P 0

2 )
9 + 12(±K)26/3

)
.

At this point it is hard to check when X/Y is properly defined and when it can be zero,
although generically it does not vanish. We stress that D =

√
(P 0

2 )
2 −K2 and P 0

2 is a root of
(5.20); thus, given κ and K, the determinant takes a unique value X/Y . We have plotted in
Figure 6 the quotient X/Y for 0 < |K| < P 0

2 . The curves marked by the red arrows show the
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Figure 6. The sign of the quotient X/Y in terms of K and P 0
2 .

values for which X/Y = 0. These curves separate the regions for which X/Y > 0 (in blue)
and the two regions for which X/Y < 0 (the small white strips inside the curves X/Y = 0).

We conclude that, excepting the curve where X/Y = 0 and the combinations of κ and
γ that lead to resonances, the Hamiltonian of the spring pendulum is iso-energetically non-
degenerate, and there are families of KAM 3-tori surrounding the periodic solutions we have
discussed above. Indeed, the invariant tori form a majority of each level of the energy. Thus,
we end up with the following result, which to the best of our knowledge is new.

Theorem 5.2. For κ > 1 and γ �= 0, the Hamiltonian of the spring pendulum given in
(5.13) has two families (prograde and retrograde) of circular periodic solutions in the phase
space TR3 such that their projections in the coordinate space are in planes parallel to the
x1x2-plane and below this plane. The distances of these planes to the x1x2-plane are given by
(5.26), where a5 is in the interval (−1,min{0, 1− 2κ2}) and P 0

2 is a root of (5.20). The radii
of these solutions tend to

√∓γ when a5 approaches −1 and tend to zero if a5 tends to zero.
The periods of the periodic solutions are 2π. These solutions are elliptic with characteristic
multipliers 1, 1, eλ1 , eλ2 , e−λ1 , and e−λ2 , where the λi’s are defined in (5.30). The periodic
solutions remain also nonlinearly stable.

Moreover, when the quotient X/Y of (5.35) does not vanish and the values of κ and γ
(or K) do not lead to a resonant situation, there are invariant KAM 3-tori surrounding the
circular halo periodic solutions, and these tori form a majority of each level of the energy. If
ε is the small parameter introduced in (5.28), the excluding measure for the existence of the
invariant tori is small when ε is small.

6. Concluding remarks. We study Hamiltonian systems of two and three degrees of free-
dom that are invariant with respect to rotation about the vertical axis. The systems can
enjoy this symmetry originally, or averaging theory can be used so that after truncation of
higher-order terms the resulting systems become axially symmetric.
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We discuss the existence of relative equilibria and their stability on the reduced spaces
which are unbounded symplectic manifolds with singular points whose dimension is either two
or four. Once the flows on the reduced spaces are understood we reconstruct the dynamics
of the unreduced systems, establishing the existence and stability character of the families of
periodic solutions related to the relative equilibria and with the application of some KAM
theorems to conclude the persistence of families of KAM 2-tori or 3-tori surrounding the
families of periodic solutions.

The main features of our paper are the following:
• Reduction theory has been used to analyze the dynamics of different problems on the

reduced spaces Rγ and Tγ . This has been possible because the Hamiltonian functions
have been written in terms of the invariants related to the axial symmetry, i.e., the
polynomials ai, which globally parameterize the reduced spaces.

• We have dealt with some problems of different types. First we treated the comet cases
of the circular restricted three-body and the restricted N -body problems when the
infinitesimal particle is supposed to move near infinity. We have also dealt with the
radiation pressure problem and the double material segment, which can be modeled
similarly to the spatial comet case of the circular restricted three-body problem. The
theory has also been applied to two other problems that enjoy axial symmetry and do
not need any normalization procedure, the so-called Hénon’s isochrone and the spring
pendulum. We have obtained new periodic solutions for all the problems considered,
and KAM tori in all the cases except the isochrone problem.

• Local canonical coordinates have been used in combination with global invariants in
order to deal with the stability of the relative equilibria and as a first step towards
the construction of action-angle coordinates needed to apply the KAM techniques. In
particular we have used Delaunay-like planar and polar coordinates for the problems
of two degrees of freedom, and polar-nodal coordinates for three-degrees-of-freedom
systems. These variables have been very useful as they usually lead to short expressions
for the expansions around the relative equilibria.

• Three versions of KAM theorems have been applied in order to deal with the different
degeneracies of the problems. In particular, we have used an iso-energetic version
of the KAM theorem, another version to deal with properly degenerate Hamiltonian
systems, and a recent result of Han, Li, and Yi [29] that works well in the case of
Hamiltonian systems with high-order proper degeneracy. In particular for systems
with three or more degrees of freedom, Han, Li, and Yi’s theorem is crucial in order to
achieve the existence of KAM tori when the perturbation appears at different scales.

Acknowledgments. We would like to thank the referees for their constructive comments.
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