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ABSTRACT. This paper announces the natural generalization to an almost
periodic system, of the horseshoe invariant set of Smale and the method
of detecting transversal homoclinic orbits of Melnikov. We use the
construction to define a skew product flow over the hull of an a.p.
function. In this way the non-autonomous equations define a dynamical

system whose structure reflects the geometry and spectra of the a.p.
forcing term.

Within the context of this skew product dynamical system we pro-
vide the natural generalization of a hyperbolic orbit and invariant
set, the stable and unstable manifolds, transversal homoclinic orbit
and the shift automorphism on a symbol space. This last object we call
a Bernoulli bundle because it is a fiber bundle with fiber maps which
are Bernoulli automorphisms. We then proceed to prove generalizations
of the Melnikov theorem for detecting homoclinic orbits, the shadowing

Temma, and Smale's theorem on the existence of the horseshoe invariant
set.

1. INTRODUCTION. This paper announces the natural generalization to an almost
periodic (a.p.) system, of the horseshoe invariant set of Smale(1963) and the
method of detecting transversal homoclinic orbits of Melnikov(1963). Detailed

~proofs will be given in Meyer and Sel1(1986b). The results are natural because

We use the Miller(1965) and Sel1(1967) construction to define a skew product

flow over the hull of an a.p. function. In this way the non-autonomous equations

define a dynamical system whose structure reflects the geometry and spectra of
;the a.p. forcing term.
: Within the context of this skew product dynamical system we provide the
f:namna1 generalization of a hyperbolic orbit and invariant set, the stable and

7 transversal homoclinic orbit and the shift automorphism on a

This last object we call a Bernoulli bundle because it is a fiber
2 bmwle With fiber maps which are Bernoulli automorphisms.

ilSymbpl space.

We then proceed to
~ Prove generalizations of the Melnikov theorem for detecting homoclinic orbits,

& theshadowing lemma, and Smale's theorem on the existence of the horseshoe
- Ivariant set.
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Homoclinic orbits and their implications for autonomous and periodic systems
have been investigated since their introduction by Poincaré. The classics in
the literature are Poincaré (1892), Birkhoff (1932), Cartwright and Littlewood
(1945), Melnikov (1963), and Smale (1963). Our work uses many of the ideas and
the method of Palmer(1984). The reader is refered to Chow and Hale(1982) and
Guckenheimer and Holmes(1983) for a detailed discussion of and historical
remarks on this vast literature.

Recently some work has appeared on almost periodic systems. In Wiggens
(1986a,1986b) the method of Melnikov and related results are generalized to cover
systems which admit an invariant torus. The detection of a transversal intersec-
tion of the stable and unstable manifold is based on a generalized Melnikov
function and the asymptotic implications are given. He gives a fairly complete
picture in the quasi-periodic case. Scheurle (1986) considers a system of a.p.
equations slightly more general than ours, but considers only one equation and
not a whole class of equations based on the hull of an a.p. function. He uses
the theory of exponential dichotomies as extended by Palmer (1984) to find par-
ticular solutions which have a somewhat random form.

II. THE HULL, CROSS SECTIONS AND BERNOULLI BUNDLES. Throughout this paper
almost periodic (a.p.) will be in the sense of Bohr (1959). Some authors, e.g.
Besicovitch(1932), refer to this as uniformly almost periodic. Let f: R » R"
{ or ch ) be an a.p. function. The spectral theory is based on the fact that the
mean

T
j' f(s) ds

=T

exists and for only a countable number of real numbers w does

M{f exp (-iwt)} # 0. This set {mk} is called the set of exponents or frequen-
cies of f. We write

M{f} = lim

. T-)eo

&
__‘-—J

f(t) ~ T A exp (i ut) (1)

where A, = M [f exp (- 1 wt)y. This series is called the Fourier Series of f.
Consider the real numbers R as a vector space over the rational numbers.

The smallest subspace S R which contains [w } is called the modulus of f. In

the case S is one dimensional, i.e. w, = ry a, where ry is rational, the functio’

f is said to be limit periodic, because in this case the function is the unifort

limit of periodic functions. The example of a limit periodic function which we

shall use throughout this paper is
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2(t) = § a eiz"(t/zk)
0

( or its real part ) where the ay are choosen so that the series converges

rapidly. The Nth partial sum of g is 2N periodic.
If S is a finite module over the integers I

, 1.e., there exists a finite set
A sees A € R such that wy

=7 G with % € I, then f is said to be
quasi-periodic. Our standard example of a quasi-periodic function will be
a(t) = aelelt 4 5 Jiupt
1 2
(or its real part ) where w]/wz is irrational.

Let C = C(R,Rn) (or = C(R,Cn) ) be the space of continuous functions from
R into R" (or Cn) with the topology of uniform convergence on compact sets (the
compact open topology). Translations define a flow on C as follows

1 RXxC »C: (1,f) »f

T
where fT(t) = f(t+1). For any f ¢ C the orbit closure of f s cal

led the hull
of f and is denoted by H(f). That is H(f) = c]{gT: T e R}. If f is a.p. then
H(f) is a compact minimal set; each element of H(f) is a.p.; 7|H(f) is equi-

continuous, and H(f) can be given a compact, connected, Abelian group structure.

We also use the space AP of almost periodic functions with sup norm 1fy. The
above results hold in this space also.

If fis a.p. and f ~ ) 3, exp (

i wkt) then fT ~ 7 3, exp (i mk(t+r)). If a
sequence of translates an

converge, say an + g, then one can use the Cantor
diagonalization procedure to select a subsequence if necessary such that

T > & (mod 21/w) for all k, as n » «

Then the Fourier coefficients of fT
n

g ~ 7 Ak exp (i wy (t+¢k)).

converge to the Fourier coefficients of g or

(2)
Thus if g ¢ H(f) there are ¢, defined (mod 2n/w ) such that (2) holds.

EXAMPLE 1. Consider q(t) = ap exp (i m]t) +a, exp (i wpt) where wy/wy s
irrational, 1In this case
H(q) =

{a1 exp 1(m]t + a]) *a, exp i(wzt + a

The map h: T2 , H(q): (a],az) >y exp i(wt + o) + ap exp T(wpt + ay) is
ontinuous, 1-1 and onto and thus a homeomorphism of topological spaces. Also
1t carries the orbits of the dynamical system

2): o; defined (mod 27)3. (3)

T2 X R » T2; ((a],az),t) > (a] + w]t,otz + “’Zt)

%0 the orbits of the translation flow an
Sroups,

d is an isomorphism of the topological
and the orbit of

The original function g corresponds to (0,0) ¢ 12
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q, {qT: T e R} corresponds to the dense Tine {(w]r, wT): T e R} on 2. See
Figure 1.

Figure 1: Quasi-periodic hull -- a torus,

EXAMPLE 2: Consider
at) = T a, exp i 2n (t/2¥) (4)
0

*
and let T, be a sequence such that L.+ uniformly where

n
*

PO = e e (12n (64 g)/2K). (5)

Or- g

We assume that rn'+ 9 (mod 2k) as n » = and so T T % (mod 2k+1) also, or
k
O = b4y (mod 27). (6)

*
It is not hard to see that the hull of g is precisely the set of functions g as
given in (5) where the ¢, are defined (mod zk) and satisfy (6).

This suggests a coordinate system for H( %) as an infinite product

o ]
X% s

where s! = [z ¢ cl Z = exp 18} is the unit circle in the complex plane and the
product has the usual product topology. We set B = 2"¢k / Zk so by (6)

*
o = Zek+] (mod 27), and we set Z = exp iek S0z = Zyye1 o Then g is given

the coordinate {20, 215 +++ } € S. Since z = 2y 41 the coordinates of ¢~ are’
in the inverse limit system

122

1 1

52:S+ S« ST L., (7)
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This is the inverse limit of a solenoid, see Hocking and Young(1961).

Let T be a solid torus in a standard embedding in R3 as given by rotating a
meridianal disk D(0) = {(x,0,z): (x-10)2 + 22 <1} about the z axis as
illustrated in Figure 2. Let 69 be the polar angle in the (x,y) plane

Figure 2: Limit periodic hull -- a solenoid.

normalized so that ¢g is défined (mod 1), and let D(¢O) be the image of D(0)
after being rotated by ¢g- In Figure 2, D(0) is shaded. Let T] be a solid

torus, lying within the interior of TO’ longitudinally encircling TO twice and

with medidianal radius 1/4 as illustrated in Figure 2. Let ¢1 be an angular

variable on T] which measures longitudinal displacement in T, and is defined
(mod 2'). (See Figure 2). As 4 traverses [0,2], the meridianal disk D(s7) in
T] encircles the z-axis twice. Note that T] intersects D(¢0) in two disks
D(41') and D(¢;") where ¢ = ¢1' = ¢;" (mod 1).

Continue in this fashion to define Tk+1 encircling the torus Ty twice with

meridianal diameter 1/4k+1 with Tongitudinal angle coordinate ¢y41 defined (mod

k+1 . ®

277). The 2-solenoid lp is simply the intersection Yo = Ty which is a non-
. k=0

€mpty, connected, compact, one-dimensional subspace of R3 and so is a "Klosed

Kurve" in the sense of Menger. However, J, is not locally connected and hence
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cannot be a topological manifold. It is clear from the above construction that
H(2), the inverse limit system S2 in (7) and XZ are all homeomorphic.

There is a standard minimal flow on J, which corresponds to the translatio
flow restricted to H(g). The flow is defined by

Pt(j"’ 2y, wes) = (eee, 2y X (i2nt/2%), ...)
which corresponds to uniform rotation about the z-axis in the solenoid FZ in
Figure 2. The solenoid obtains a continuous Abelian group or structure by com
ponent multiplication in the inverse 1imit representation and this corresponds
fo: e general Abelian group structure on the hull of any a.p. function.

A flow n: X x R » X, X a compact metric space, admits a (global) cross sec
tion Z if i) Z is a closed subset of X ii) all trajectories meet Z and iii)
there is a continuous function T: Z » R such that T(z) > 0, «(z,7(z)) ¢ Z and
n(z,t) ¢ Z for all z ¢ Z and 0 < ¢ < T(z). The function T is called the
first return time. The Poincaré map ( or section map ) is the map

P: Z s2: z » w(z,T(2)).

P is a homeomorphism of Z and defines a discrete dynamical system associated
with the flow #. Flows which admit global cross sections are precisely supen-
sions of discrete dynamical systems. It should be noted that global cross sec
tions are not unique.

The translation flow on the hull of an almost periodic function always
admits a cross section. Let f be a.p. and have a Fourier series as in (1) the
g e H(f) has a Fourier series (3) and

2

QT(t) TA exp (1w (t+ o * 1))
ITA exp (1w (g + 1) exp (i o t)

Thus the Fourier coefficient of 9, corresponding to the frequency wy is

ie

s(g.) = M(g_(t)exp(-iwt)) = A exp i w (e + 1),

which has a constantly changing argument as ¢ varies provided we # 0 and Ak #
Thus a cross section to this translation flow is given by

Z = {g e H(f): arg s(g) = 0 or ¢ =0 (mod 2n/w)}.

In this case the first return time is T = 2ﬂ/wk. Thus cross sections and
their first return times are intimately connected with the Fourier spectrum of

EXAMPLE 1: q(t) = a; exp (i w t) +a, exp (i wy t) and q*(t) e H(q): If
*
q (t) = ay exp i(wt + a]) +ay exp 1 (wp + ay) so one cross section is ay = 0
and the first return time is 2n/wy. The angle a, is a coordinate on Z so Z is
circle in the torus. The Poincaré map in this coordinate is P : ap > ap
(mz/w])zn which is an irrational map of the circle.
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EXAMPLE 2: Let ¢(t) and z*(t) be as given previously in (4) and (5). As in
the previous example we can define a cross section by requiring that the argu-
ment of one of the Fourier coefficients of z* be ‘zero, or equivalently that
4 = 0 (mod Zk) for some fixed k. To be specific consider the cross section, Z
defined by ¢g = 0 (mod 1) (the shaded disk in Figure 1)), so the first return
time is 1. The intersection of this disk and 22 is a Cantor set, and the asso-

ciated Poincaré map is the classical adding machine of dynamical systems. See
Meyer and Sel1(1986b).

L

Let Q = Qn =_£ n, ..., n}, i.e., Q is the set of bi-infinite sequences on
the symbols 1, 2, ..., n with the usual product topology. So if q ¢ Q then q =
(+e+ 995 9g> 97 -.-) or more simply written q = ... 4.199-9y ... with a decimal
point to the right of qo. Let A: Q » Q be the EDifE_EEE or shift automorphism
defined by A(q)i = Q547 1.e., A shifts the "decimal point" one unit to the
right. This is the classical Bernoulli dynamical system which has found many
applications in contemporary dynamical systems.

Given the flow = on X with section Z, and Poincaré map P: Z » Z and first
return time T: Z » R we define a Bernoulli product as the suspension of the pro-
duct of A and P. The product of A and P is simply

A*P: Q x Z » Q x Z: (q,z) » (A(q), P(z)),

and so the Bernoulli product flow is the projection of the parallel flow
v: (Qx ZxR) xR+QxZxR

: ((qu’T);t) + (q,zaﬁt)
onto the quotient space

Q**7Z = (Q x Z x R)/~
where (q,z,t+7(z)) ~ (A(q),P(z),t). We called the space Q**Z a Bernoulli
bundle.

The shift automorphism, A, has n fixed points (p],

. pn)) where Py =
---11i.dii...0 for 1 <1 <n. One can see that {P; }**Z is an invariant subset

of Q**Z which is globally flow equivalent to the original flow 7 on X. In other
words, the original flow = on X 1lifts to n copies in Q**Z,

II1.

THE MELNIKOV METHOD FOR ALMOST PERIODIC SYSTEMS. The Melnikov method
for détecting transverse homoclinic orbits in periodic systems has been
discussed by many authors since the landmark paper of Melnikov (1963).
Therefore, we shall not develop this theory in great detail nor seek great

but simply give an outline the salient features. We follow the
more leisyure development in Guckenheimer and Holmes (1983) and supplement with

9enerality,
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results on a.p. differential equations as found in Coppel1(1978), Hale(1969),
Sel1(1978) and Sacker and Sell(1974).

Consider the differential equation

X = F(x) + ¢ f(t) (8)

where x ¢ R® and F: RZ » RZ and f: R » R are smooth. Actually we shall
consider (8) as a whole class of differential equations since we shall take f
from a subset of AP, say the hull of another a.p. function.

While the theory we will describe below extends readily to the more genera
equation

X = F(x) + ef(x,t),

all of the essential features appear in the simpler equation (8). Therefore we
shall restrict our attention to (8) in this note. The general case will be
treated in a forthcoming paper, Meyer and Sell (1986b).

The unperturbed system (when ¢ = 0) is assumed to be Hamiltonian so, in par-
ticular, the trace of the Jacobian of F is identically zero. Furthermore, the
unperturbed system is assumed to have a non-degenerate saddle point at Vo € R2
and an orbit uo(t) homoclinic to Voo i.e. uo(t) *Vgas t >+ e Thus the stab]

and unstable manifold of Yo intersect along the orbit of uO. See Figure 3.

Figure 3: Unperturbed phase portrait.
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Let K be a large closed disk in RZ which contains Vo and the orbit uo(t) in
its interior, gg > 0 and ¢4 > 0 constants and L = {f ¢ AP : 1fy < zo}. Let
¢(t,x0,f,e) be the solution of (8) which satisfies ¢(0,x0,f,e) = Xg. We con-
sider F as fixed and so suppress the dependence of the solution ¢ on F for
simplicity, however f will be taken from a subset of the class of functions L.
In order to understand the underlying geometry of (8) it is useful to recall
the concept of a skew product flow. By modifying F outside the large disk
K, if necessary, we may assume that the solution ¢(t,x0,f,g) is defined for all t

when |e| < egand f e L. Let H be a subset of L invariant under the transla-
tion flow. The skew product flow on RZ X H is defined by

TR x (RE x H) »R® x H : (t.xgef) » (4(t.xg.Fue),Ty)

see Se11(1971) for the verification that § defines a flow and for a background
discussion.

When e = 0 the autonomous system has a non-degenerate saddle point at Yo and
a standard theorem on nonlinear a.p. systems, as found for example in Hale(1969)
Chapter 4, applies to (8). For some €p» equation (8) has a unique a.p. solution
v(t,foe) = vy + 0(e) for [ef < eg and f e L and the 0(e) is uniform in t ¢ Rl
and f ¢ L. From the proofs found in Hale(1969), one finds that v satisfies

V(tfe) = v(trnfie) = v (t,f,e) . (9)

Define x(f,e) = v(0,f,e) so o(t,x(f,e),f,e) = v(t,f,e) and define

V= {(x(f,e),f) ¢ REx H : f e H}. The identity (9) shows that V is an invariant
set for the m flow since

¢(t,X(f,e),f,e) = V(tsfs 3) - V(O’ft’ 5) = X(ft,€)~

The mapping ¥ : H » V : f » (x(f,e),f) is a flow equivalence by (9) also. Thus

a classical theorem from differential equations says that the skew product flow
defined by (8) has, for small e, an invariant set near {vo} x H, which is flow
equivalent to the translation flow on H.

The local stable manifold theorem states that there is a sufficiently small
8> 0 such that ‘

W?OC(f,e) = {xg:ne(t,xg,fie) - v(t,foedn < s for t > 0} (10)

is a smooth manifold. In particular, there is a smooth function

S
Wioe @ (=8,8) X H X [0,¢p) »R?
such that

s s
w]oc(fae) = {w]dc(o;fse) L0 € (‘6,6)]’,
and for fixed (f,¢) the map

S
W1OC("f’€) : ('6’6) ’*RZ
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. . S
is an embedding of the interval (-6,8). The function Wloc is smooth in all it

arguments when H is considered as a subset of AP, the space of a.p. functions

with sup norm. By backward integration W]ZC can be extended to a mapping

wS:RxHxEO,eo) -)Rz s
where w>|(-5,8) X H X [O,eo) = w?oc » With the property that for fixed (foe) t
map

w(e,foe): R » R2

is an immersion of the line R into R2. We define the set ws(f,e) by

ws(f,e) = {ws(g,f,e): o e R}. One then has the characterization:

WS (f,e) = {XO:n¢(t,x0,f,g)-v(t,f,e)n +0as t »+ o}, (11)

For the skew product flow we define

Wo(e) = {(W3(F,e),F):f ¢ H} .
By using (9) one can see that

o(t W3 (F,e),f,e) = W (e

Hence Ns(e) is an invariant set for the skew product flow and is characterized
by the formula

Wo(e) = {PeR%xH & m(t,p) »V as t » + o, (12)

w?oc’ W and WS are called, respectively, the local stable manifold, the stable
manifold and the skew stable manifold. By replacing t » 0 by t <0 in (10) and
t ++ o2by t »-oin (11) and (12) one defines the corresponding unstable mani-
u u yu

folds w]oc,w WO
Let p = (xo,f) e W(e). We define the (partial) tangent space by

S
3
TW(e) = span (2L (40,7, 6))

where Xq = ws(oo,f,e). That is we consider only the component of the tangent
space which Ties in the phase plane RZ.

If p ¢ Hs(g) Wi (e) then we say p is a ﬂEﬁEﬁZLiEiE.BQiEE (homoclinic to V)
and {n(t,p):t e R} is a homoclinic orbit. Thus n{t,p) s Vast » + o If
P e W (e)N Wi(e) and R? - prs(g) + TW(e) then we say W(e) and WY(e) inter-
sect transversally at p. If at each point p ¢ WS(e) N WY(e), the sets WS(e) and
WY(¢) intersect transversally then we say W(¢) and WY
sally and write WS(e) AR wl(e).

e) intersect transver-

The Melnikov function gives a criteria for the existence of transversal

homoclinic orbits. At a point U = uO(O) on the homoclinic orbit of the unper-
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turbed system we construct a normal line n perpendicular to F(u) and measure the
separation of the stable and unstable manifolds on this normal, see Figure 3.

For the perturbed system we let uS(O,f,e) and uu(O,f,e) denote the point on
the normal line n where, respectively, the stable and unstable manifolds meet n.
We define the separation of the stable and unstable manifold on n to be

d(f,e) = HUS(O,f,E) - uu(09f’€)" .

By a standard argument one finds that

d(fye) = e v M(f) + 0(e?)

where v = nF(i)n'liis constant, and M is the Melnikov function

MF) = (7 FO(t))  f(t)dt .

Define the zero set of M to be
L = [f ¢ H:M(f) = 0} .

We say Z is a simple zero set if

S M) e # 0
for all f ¢ Z. If Z is a non-empty simple zero set of M, then Z is a cross sec-
tion for the restriction of the translation flow to H. See Meyer and
Sel1(1986b).

If ZC H is a cross section for the translation flow x with first return
time T:Z » R, then RZ x Z is a cross section for the skew product flow 1 with
the same first return time. Define w(xo,f,s) = ¢(T(f),x0,f,g) and
n(f) = fr(f) so the Poincaré map is

v= (pon) s REX Z 5 REX 20 (x0,F) > (w(xg.F), n(f),
which is a discrete skew product dynamical system.
When ¢ = 0 the system decouples and the skew product becomes an ordinary
product. Thus if f = g of example 1 then 1 is the product of the irrational
flow on the torus as pictured in Figure 1 and flow pictured in Figure 3.

Similarly if f = ¢ of example 2, then 1 is the product of the solenoidal flow
and the flow of Figure 3.

It is easier to visualize the Poincaré map. First consider the case when
f=qof Example 1 with ¢ = 0. The cross section of the translation flow is a
circle, the diagonal of Figure 1, and the Poincaré map is an irrational rotation
of the circle with return time T. Integrate the autonomous equations when ¢ =
0 for a time T to obtain a map of the plane as shown in Figure 3. Figure 4
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X,

Figure 4: Unperturbed Poincare map.

tries to illustrate the product map. The o axis coming out of the plane of the
paper is an angular variable and should be identified (mod 2¢) since the space
is R% x Sl. The map carries a plane perpendicular to the « axis into another
such plane. The ¢ axis is an invariant circle for the map, and its stable and
unstable manifolds are the products of the loop and a circle.

In the case when f = g of example 2 with ¢ = 0 then one must use some imagi-
nation. Think of a Cantor set along the o axis in Figure 4. The Poincaré map
is similar to the above except the Cantor set of planes perpendicular to the a-
axis are shuffled by the adding machine map.

The main result of this section is:

THEOREM 1: Let the Melnikov function define a non-trivial, simple zero set

Z H. Then for each f ¢ Z there is a unique &(f,e) =Uu + 0(e) e R2 such that
(e(f,e),f) e W (e)NWY(e) for 0 < ¢ < .. The function & is continuous.

0 e T ETED then =
Moreover, if = = { (g(f,e),f) : f eZ}, & = ¥ (5) then A =VU{Y

compact invariant set for the Poincaré map VY.

}ise

1),

Outline of proof: The separation of the stable and unstable manifold in the nor
mal direction n is
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d(f:E) =0 US(O,f,e) = Uu(o,f,(-:) i
ev M(f) + 0(¢)

where v is a non-zero constant. Define a coordinate system near U in RZ

as follows: Consider the map (a,B8) us(a,f,e) + gn, where n is now a unit nor-
mal vector to F(U). This map takes a neighborhood of the origin in RZ onto a
neighborhood of U. Note that o is a coordinate along the stable manifold
essentially the time parameter), and g is a coordinate in the unit normal
direction, see Figure 5. By the fact that n is normal to F(u), (a,8) constitutes

Figure 5: Stable manifold coordinates.

direction, see Figure 5. By the fact that n is normal to F(u), (a,B) constitutes
a valid coordinate system when ¢ is small.

In this coordinate system the stable manifold has coordinates (a,0). The
unstable manifold

Uu(u,f,s) = Us(a,f,e) + d(fasa)n
= ug(asfye) + ev H(F ) + 0()

has coordinates (a,ev M(fa) + 0(52)), and so in these coordinates an intersection
of the stable and unstable manifold is obtained when ed4(fu) + 0(52) =0. In
words  G(o,f,e) = O where

G(a,f,g) = M(fa) o O(€)°

By assumption

G(0,f,0) = M(f) =0, DlG(O,f,O) # 0
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when feZ. Thus by the implicited function theorem we can solve for g = a(f,e).
In these coordinates the intersection of the stable and unstable
(asa(f, e)), which is just g(f,e).

Under the Poincaré v map the limit of (e(f,e),f) lies in V under forward ar

backward iteration since it lies on both the stable and unstable manifolds. The
A is closed and hence compact.

manifold is

IV. HYPERBOLIC SETS, THE SHADOWING LEMMA AND BERNOULLI BUNDLES.
concentrate on the Poincaré map considered as a discr

Here we shall

ete skew product dynamical
system. In this section the notation of the last section will be used in a

slightly more general setting. Let
¥= (o) RS2 > RZ: (x,F) » (y(x,F),n(f))

define a discrete skew product dynamical system where Z is an arbitrary compact
Hausdorff space. Thus v and n are homeomorphisms.,
smooth in their first argument, i.e. D1k¢(x,f)
all (x,f) e R"xz.

Furthermore assume v and Woar
is defined and continuous for

A compact, invariant set AcR"xZ is called (skew) hyperbolic if there exist:

a constant y, 0 < y < 1, and a continuous splitting of R" into EpS +E u’
P & A, such that

. S S . u u
Dyulp): Ep > E and Dyw(p): Ep > Eq
where q = y(p) and

BoDpw(p)(u) m<ywun forue Eps

L qu,‘l(p)(v) m<wnva forve Epu

THEOREM 2: The invariant set A of Theorem 1 1s skew hyperbolic.

The proof follows by standard results as found in Coppel(1978) and Palmer(1986).
For o > 0 a (skew) a-pseudo-orbit for ¥|A is a bisequence Pi=(xy,f;)1,

i ranging from -« to +w, Pieh, such that f; ., = n(f;) and d(o(xi.F5),%547) < o

for all i. Thus the sequence {fi} is an n-orbit but the components in R may

jump by as much as q.

One says a v orbit { @(y)=(y1,fi) } B-shadows an oa-pseudo-orbit

{(xi’fi)} provided d(xi,yi) < g and, of course, f1+1 = ”(fi)‘ Note that the base

orbits are the same. In this context we have:
THEOREM 3 ( The Shadowing Lemma )i If A is a compact, skew hyperbolic invariant ¢
for w: R"<Z 5 R"xZ, then for every 8 > 0 there is a a > 0 such that every a-

pseudo-orbit for | is g-shadowed by some v orbit {¥(q)3. Moreover, there is @

8g > 0 such that if 0 < g« 8g then the v-orbit given above is uniquely deter-
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mined by the a-psuedo-orbit.

paddiddutniit L

proof: A slight variation of the proof given in Meyer and Sel1(1986a).
Henceforth, assume that the Melnikov function defines a non-trivial, simple zero
cet Z H. Let A =Vu{l f(} be the hyperbolic set for the Poincare map ¥ = (y,n)

as given in Theorems 1 and 2. Let A: Q » Q be the shift automorphism on n sym-
bols as discussed in section II.

THEOREM 4: Under the above assumptions and for small e, there is an 1 ¢ I and a
compact invariant set gq RZxZ for the Poincare map v such that ¥'|o is equiva-
lent to the product map Axn: QxZ + QxZ: (q,z) » (A(q),z(n))

outline of the proof: Assume. that ¢ > 0 is so small that the conclusions of
Theorems 1 and 2 hold, so that A = Vz;{()sk} is a compact, skew hyperbolic
invariant set for the Poincaré map v: R2xZ S RZxZ. Fix e and henceforth the ¢
dependence will not be displayed. Let g = gy be as given in the uniqueness part of
the shadowing lemma and o corresponding to this g. Assume also the g is so small
that dist(so,al) > 4. Since sk >V as k » o there is a « > 0 such that
dist(Ek,V) < of/4 when |k| » k. Let N be this «/2 neighborhood of V.

Qur proof is based on Palmer's (1984) construction of an invariant Cantor set
for the Poincaré map of a periodic system. His idea is to use the shadowing lemma

instead of constructing a horseshoe a 13 Smale. Let us relabel some of the k

as follows: Set &, =5 and & = w'(2K+1)l(

£ . EO) for 1 < ¢ <n, see Figure 6.

EJ . _@-(lk'ﬂj(zl)

Eq_: ?-(zxu)(-__:")

i

Figure 6: Homoclinic Orbit
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Note that £ 0 <j <n, lie in N, Moreover the Poincaré mapping satisfies

w(2K+1)(Ej) = §.q for 1 <j <n. Furthermore for each z ¢ Z and 0 < 2, there
is a unique point gl(z) in R® with (gl(z),z) e gy and one has

P g (2),2) = (g, (P, WML 1 e e,

Given a point (q,z) e Q x Z we construct an a-pseudo orbit as follows: We
begin with (go(z),z) in g With gy = j, 1 <j <n, we jump to the point
(gj(n2K+1(z)), n2<tl(z)y dn g Next we follow the orbit through the latter
point by repeated applications of w2K+1 until we return to =,. Since
w(2K+1)j (Ej) = Ep» this occurs after j applications of T2K+?. We have thus
returned to the point (go(n(2”+1)j(z)), n(2K+1)j(z)) in Zg. With q = 2, we
then jump to the point (z (n(2K+1)(j+1)(z)),n(2K+1)(j+1)(z)) in g, and repeat
the above. By using w‘( ) with appropriate jumps from g, to
£y (when G = 2), we construct the a-pseudo orbit for negative time. In this
way we obtain an o-pseudo orbit r over the trajectory zk = nk(z) in L.

Let {J‘(P)} be the unique orbit which g-shadows r and set G(qg,z) = P.

Thus one has

G: QxZ » szZ.
By the shadowing lemma, G is continuous and one-to-one and therefore, since QxZ
compact, G is a homeomorphism onto a subset @ szZ.
It is clear that vw'|q where 1 = 2«+1 is conjugate to
A*n: QxZ » QxZ: (q,2) » (A(q),n(z)).

We thus obtain our final result:

THEOREM 5: Under the above assumptions the skew product flow for small e admits
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