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The equations of motion for N vortices on a sphere were derived by V. A. Bogolomov in 1977. References to related
work can be found in the book by P. K. Newton. We use the equations of motion found there to discuss the stability of
a ring of N vortices of unit strength at the latitude z together with a vortex of strength κ at the north pole. The regions
of stability are bounded by curves κ = κ(z). These curves are computed explicitly for all values of N .

When the stability of a configuration changes, for example by varying the strength of the vortex at the north pole,
bifurcations to new configurations are possible. We compute the bifurcation equations explicitly for N=2, 3 and 4. For
larger values of N the complexity of the formal computations becomes too great and we use a numerical value for the
latitude instead. We thus derive the bifurcation equations in a semi numerical form. As expected the new configurations
look very similar to those which had been found previously for the planar case.

1. Introduction

The original interest in the motion of vortices can be traced to the work of Helmholtz [27] in the
second half of the nineteenth century. Many of his contemporaries, in particular J. J. Thomson
[25, 26], believed that vortex theory could be used to explain the structure of the atom. When it
became clear that this approach was wrong the interest in this area diminished, except for those
working in fluid mechanics, see for example [9, 11].

It was V. A. Bogomolov in 1977 who derived the equations of motion of point vortices on a sphere
[3, 5]. He considered the case of a non rotating and of a rotating sphere. The later case can be used
as a simple model for the motion of cyclones and hurricanes in the atmosphere of a planet [4, 23, 15].
Since the three vortex problem on the sphere is integrable it has received special attention [7, 12, 22].

In the last 20 years interest in the motion of point vortices in a plane and on the sphere has
increased significantly when it was realized that there are lot of similarities between the N -body
problem of celestial mechanics and the N -vortex problem in an ideal fluid, see for example [8, 20]. It
was Kirchhoff [13] who formulated the N -vortex problem in the framework of Hamiltonian mechanics.
It is this connection to celestial mechanics that gave rise to a large number of papers and even books
on this topic in recent years. Of special interest is the book by P. Newton [21] with an extensive list
of references to relevant papers.
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The problem to be considered here is the motion of N point vortices on a sphere of radius one.
Let Γj be the strength and xj(t) be the position of the j-th vortex. The equation of motion of this
vortex under the influence of the other vortices is given by

ẋj =
N
∑

i6=j

Γi

2π

xi × xj

|xj − xi|2
,

where |xj − xi| is the chordal distance between the two vortices. In order to avoid writing the factor
2π we set κj = Γj/2π and refer to it as the strength of a vortex.

The position of a vortex on the sphere can also be given in cylindrical coordinates, that is, by the
distance of the vortex to the equatorial plane and by its longitude. As long as none of the vortices
is near a pole of the sphere the equations of motion can be given by a Hamiltonian function in these
coordinates. We will use this approach in section 3 in order to determine the stability of a ring of
vortices at a fixed latitude.

A vortex at the north pole destroys the Hamiltonian nature of the system of differential equations.
Nevertheless, the function remains an integral of motion. It allows us to determine in section 4 how
the stability of the ring of vortices changes when there is a vortex at the north pole, whose strength
varies. Whenever there is a change in stability, bifurcations to new configurations can be expected.
This approach is exploited in sections 6 and 7. Sections 5 and 8 are added for completeness sake, as
the problem of three vortices on sphere is integrable and it has been discussed before, see for example
[12] and [17].

The stability of N + 1 vortices on a sphere has been discussed elsewhere from different points
of view, see for example [6, 2, 16, 14]. We believe that circulant matrices are the natural tool for
the given problem and that they allow for an easier determination of the stability regions and the
determination of the bifurcation equations.

2. Preliminaries

Consider n vortices, which are at the vertices of a regular polygon. The Hessian of such a configuration
will have the following format

A =











a0 a1 a2 · · · an−1

an−1 a0 a1 · · · an−2
...

...
...

...
a1 a2 a3 · · · a0











.

This form is known as a circulant matrix, see [1]. Let ω = e2πi/n be the n-th root of unity then a
complete set of eigenvectors for such a matrix is given by the columns of















1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
...

1 ωn−1 ω2(n−1) · · · ω(n−1)2















.

Also the eigenvalues can be computed explicitly and the j-th eigenvalue is found to be

n−1
∑

k=0

akω
jk. (2.1)

Since a Hessian is symmetric, we have ak = an−k for k = 1, 2, . . . , n−1. Therefore, all eigenvalues will
be real and the set of eigenvectors are the real and imaginary parts of the eigenvectors given above.
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We will adopt the convention that the set of eigenvectors are in the order as given by the following
transformation matrix

T =

































1√
n

1
√

n/2

1
√

n/2
· · · 0 0

1√
n

cos 2π/n
√

n/2

cos 4π/n
√

n/2
· · · sin 4π/n

√

n/2

sin 2π/n
√

n/2

1√
n

cos 4π/n
√

n/2

cos 8π/n
√

n/2
· · · sin 8π/n

√

n/2

sin 4π/n
√

n/2
...

...
...

...
...

1√
n

cos (n− 1)π/n
√

n/2

cos 2(n− 1)π/n
√

n/2
· · · sin 2(n− 1)π/n

√

n/2

sin (n− 1)π/n
√

n/2

































(2.2)

The matrix has been made orthonormal by dividing the column vectors by
√
n or

√

n/2 respectively.
In writing down the above transformation matrix one has to be aware that the case n odd and the
case n even are slightly different. The horizontal dots in the above matrix should indicate that on the
left additional columns with cosine terms have to be inserted and on the right the same number of
columns with sine terms. When n is odd this completes the n× n transformation matrix. For n even
there is one more column in the middle consisting of alternating +1/

√
n and −1/

√
n. That column

comes from the same position in the complex form of the set of eigenvectors.

Other formulas, which will be used in what follows, are

n−1
∑

j=1

1

sin2 jπ/n
=
n2 − 1

3

and
n−1
∑

j=1

sin2 kjπ/n

sin2 jπ/n
= k(n− k) for k = 0, 1, . . . , n.

At that time it has to be remembered that in standard formals like

n−1
∑

j=0

sin2 2πj
n =

{

0 forn=2

n/2 forn¿2

and
n−1
∑

j=0

cos2 2πj
n =

{

2 forn=2

n/2 forn¿2

the case n = 2 is different. Therefore, the case n = 2 has to be handled separately. Although it
could be done directly without the help of circulant matrices, we will treat it in a later section for
completeness sake. For now we will assume that n > 2.

3. A ring of vortices at a fixed latitude

In this section we will discuss a ring of n vortices of unit strength at a given latitude on a sphere.
This case can be treated completely within the framework of Hamiltonian mechanics. When a vortex
near a pole of the sphere is added then the resulting differential equations are no longer Hamiltonian.

The n vortices on a sphere of radius one can be located by the cylindrical coordinates (zj , ϕj),
j = 0, 1, . . . , n− 1, where zj gives the latitude by measuring the vertical distance from the equatorial
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plane, and where ϕj gives the longitude. In these coordinates the motion of n vortices of unit strength
is given by the Hamiltonian

H1 = 1
2

n−1
∑

i=0

n−1
∑

j=i+1

ln

[

1 − zizj −
√

1 − z2
i

√

1 − z2
j cos (ϕi − ϕj)

]

. (3.1)

In our notation the zj ’s are the position coordinates and ϕj ’s are the corresponding momenta coordi-
nates, so that the differential equations are given by

żj = ∂H/∂ϕj , ϕ̇j = −∂H/∂zj , j = 0, . . . , n− 1.

where for the moment H = H1. It is obvious that the coordinates are singular near the poles and
that stationary solutions can only be found when viewed in a rotating coordinate system. Therefore,
introduce a coordinate system which rotates uniformly with angular velocity w around the polar axis.
We will stay with the same notation for the new coordinates, but the Hamiltonian (3.1) has to be
replaced by

H = H1 − w
n−1
∑

i=0

zi = (3.2)

= 1
2

n−1
∑

i=0

n−1
∑

j=i+1

ln

[

1 − zizj −
√

1 − z2
i

√

1 − z2
j cos (ϕi − ϕj)

]

− w

n−1
∑

i=0

zi.

Place n vortices of unit strength at a fixed latitude z with −1 < z < 1 and at the vertices of a
regular polygon, that is, zj = z and ϕj = 2πj/n for j = 0, 1, . . . , n − 1. Then this configuration will
be stationary in the rotating coordinate system if

w = − (n− 1)z

2(1 − z2)
. (3.3)

In order to investigate the stability of this configuration the Hessian of (3.2) or equivalently the Hessian
of (3.1) has to be computed and evaluated at the equilibrium. We find with the help of the formulas
given in section 2

∂2H1

∂zi∂zj
=

− 1

4(1 − z2)2 sin2 (j − i)π/n
for i 6= j,

∂2H1

∂z2
i

=
(n− 1)(n− 5 − 6z2)

12(1 − z2)2
,

∂2H1

∂ϕi∂ϕj
= 1

4 sin2 (j − i)π/n
for i 6= j,

∂2H1

∂ϕ2
i

= −n
2 − 1
12

,

∂2H1

∂zi∂ϕj
= 0.

In block form the Hessian consists of two circulant matrices along the diagonal. The off-diagonal
block matrices are zero. Let z stand for the vector of the latitudes. The eigenvalues of the circulant
matrix ∂2H1/∂z

2 evaluated at the equilibrium can be computed with the help of (2.1) and they are

λk =
− (n− 1)(1 + z2) + k(n− k)

2(1 − z2)2
k = 0, 1, . . . , n− 1.
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Similarly with ϕ representing the vector of the longitudes we compute the eigenvalues of ∂ 2H1/∂ϕ
2

to be

σk = −k(n− k)

2
k = 0, 1, . . . , n− 1.

It is seen that many of these eigenvalues are repeated, that is λk = λn−k and σk = σn−k for k =
= 1, . . . , bn/2c. Thus, only when k = 0 and when k = n/2 with n even are the eigenvalues simple.
The ordering of these eigenvalues is due to the use of the transformation matrix T of (2.2). If we
denote the vectors of the new variables by ζ and φ respectively then the complete transformation is
given by

z =











z
z
...
z











+ Tζ, ϕ =











0
2π/n

...
2(n− 1)π/n











+ Tφ.

The transformation is symplectic. In the new variables the origin is an equilibrium point and the
transformed Hamiltonian starts with quadratic terms in normal form:

H = 1
2

n−1
∑

k=0

λkζ
2
k + 1

2

n−1
∑

k=1

σkφ
2
k + h.o.t.

The stability of the origin is easily deduced. Since σk < 0 for k = 1, . . . , n − 1, σ0 = 0 and λ0 < 0
the stability depends on the λk being negative for k = 1, . . . , bn/2c. These eigenvalues are ordered by
increasing values so that the largest value is achieved when k = bn/2c. In order for that eigenvalue
to be negative we find the requirement that z2 > (n − 2)2/(4(n − 1)) when n is even and that
z2 > (n− 1)(n− 3)/(4(n − 1)) when n is odd. A value of z2 < 1 can only be realized by these
formulas for n < 7.

Another way of looking at the stability of a ring of vortices at distance z from the equator is to
ask where each λk changes from a positive to a negative value as z2 is increased. These values are
given in the table below for n up to 12.

n\k 1 2 3 4 5 6 7

3 0 0
4 0 1/3 0
5 0 1/2 1/2 0
6 0 3/5 4/5 3/5 0
7 0 2/3 1 1 2/3 0
8 0 5/7 8/7 9/7 8/7 5/7 0
9 0 3/4 5/4

10 0 7/9 4/3
11 0 4/5 7/5
12 0 9/11 16/11

Any value greater than one in the above table should be ignored, as it leads to a configuration, which
can not be realized. For that reason not all of these values are listed. The column two of the table
shows that the level of stability changes near the physically meaningful value of z2 = (n− 3)/(n − 1)
due to the change of signs in λ2 and λn−2. This happens for all values of n.

4. Ring with vortex at the north pole

If a vortex moves near the north pole on the sphere we can not use cylindrical coordinates and we will
have to stay with Cartesian coordinates for that vortex. We will use (xn, yn, zn) to denote the position
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of this (n+ 1)-st vortex of strength κ near the north pole. The system of differential equations in an
inertial coordinate system is now

ϕ̇k = −∂H/∂zk, żk = ∂H/∂ϕk, for k = 0, 1, . . . , n− 1
κẋn = −zn∂H/∂yn, κẏn = zn∂H/∂xn,

and was used before in [2]. The function H is now H = H1 +H2 with H1 given by (3.1) and H2 by

H2 = κ
2

n−1
∑

j=0

ln
[

1 − zjzn −
√

1 − z2
j (xn cosϕj + yn sinϕj)

]

. (4.1)

Thus the problem is no longer Hamiltonian, but H still serves as an integral of motion. If the problem
is to be considered in a uniformly rotating coordinate system, then H has to be replaced by

H = H1 +H2 −w(

n−1
∑

j=0

zj + κzn). (4.2)

A polygonal ring of n unit vortices at latitude z and a vortex of strength κ at the north pole (i.e. xn = 0,
yn = 0) is at an equilibrium if ∇H = 0. This happens when

w = − (n− 1)z

2(1 − z2)
− κ

2(1 − z)
.

We extend the vectors z and ϕ to be z̃ = (z0, z1, . . . , zn−1, yn) and ϕ̃ = (ϕ0, ϕ1, . . . , ϕn−1, xn). In
order to investigate the stability of this configuration we again compute the Hessian of H at the given
configuration. The new terms arising from H2 are

∂2H2

∂zi∂zj
= 0 for i 6= j,

∂2H2

∂z2
i

=
− κ

2(1 − z)2

∂2H2

∂ϕi∂ϕj
= 0 for 0 6 i, j 6 n− 1,

∂2H2

∂ϕj∂xn
=
κr sin 2jπ/n

2(1 − z)
0 6 j 6 n− 1,

∂2H2

∂ϕj∂yn
= −κr cos 2jπ/n

2(1 − z)
0 6 j 6 n− 1,

∂2H2

∂zj∂xn
= −κ cos 2jπ/n

2r(1 − z)
0 6 j 6 n− 1,

∂2H2

∂zj∂yn
= −κ sin 2jπ/n

2r(1 − z)
0 6 j 6 n− 1,

∂2H2

∂x2
n

=
∂2H2

∂y2
n

= κn
4

∂2H2

∂xn∂yn
= 0.
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In the above formulas we have used the abbreviation r = +
√

1 − z2. In (4.2) the last term of H will
also contribute to the second order derivatives, since zn =

√

1 − x2
n − y2

n and therefore

∂2zn

∂x2
n

=
∂2zn

∂y2
n

= −1

when xn = yn = 0.
In order to use the normal form of D2H1 we have to transform the new terms in the same way

as those of D2H1. For that purpose we extend the matrix T of (2.2) in the natural way, so that the
full transformation matrix in block form is

T̃ =









T 0 0 0
0t 1 0t 0
0 0 T 0
0t 0 0t 1









with 0 representing an n × n matrix, an n dimensional vector or even a scalar where appropriate.
In order to see what happens to the terms of D2H2 we can ignore the terms on the diagonal for a
moment. Without them the Hessian of H2 in block form is

C =









0 uϕx 0 uϕy

ut
ϕx 0 ut

zx 0

0 uzx 0 uzy

ut
ϕy 0 ut

zy 0









where uϕx is the column vector made up of ∂2H2/∂ϕj∂xn, j = 0, 1, . . . , n − 1, and similarly for the
other vectors. From

T̃ tCT̃ =









0 T tuϕx 0 T tuϕy

ut
ϕxT 0 ut

zxT 0

0 T tuzx 0 T tuzy

ut
ϕyT 0 ut

zyT 0









we see that we have to find the product T tuϕx and three other products. In each case the vector is
orthogonal to all but one column of T . Thus T tuϕx has only one nonzero entry in position n − 1 of
this vector and we call this nonzero term α. The value −α occurs in position 1 in T tuϕy. A nonzero
value denoted by β occurs in position 1 of T tuzx and in position n − 1 of T tuzy. The two nonzero
values are

α =
κr
√

n/2

2(1 − z)
β = −

κ
√

n/2

2r(1 − z)
.

Combining everything, the Hessian of H in (4.2) evaluated at the stationary solution and given in
accordance with the vector (ϕ, xn, z, yn) is













































0 0 0 · · · 0 0 0 0 0 · · · 0 0
0 σ1 0 · · · 0 0 0 0 0 · · · 0 −α
0 0 σ2 · · · 0 0 0 0 0 · · · 0 0
...

...
...

. . .
...

...
...

...
...

. . .
...

...
0 0 0 · · · σn−1 α 0 0 0 · · · 0 0
0 0 0 · · · α σn 0 β 0 · · · 0 0
0 0 0 · · · 0 0 λ0 0 0 · · · 0 0
0 0 0 · · · 0 β 0 λ1 0 · · · 0 0
0 0 0 · · · 0 0 0 0 λ2 · · · 0 0
...

...
...

. . .
...

...
...

...
...

. . .
...

...
0 0 0 · · · 0 0 0 0 0 · · · λn−1 β
0 −α 0 · · · 0 0 0 0 0 · · · β λn













































. (4.3)
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The terms along the diagonal have the values

σk = −k(n− k)

2
for k = 0, 1, · · · , (n− 1)

λk =
− (n− 1)(1 + z2) + k(n− k) − κ(1 + z)2

2(1 − z2)2
for k = 0, 1, · · · , (n− 1)

σn = λn = −κn
4

+ κw.

Since a portion of the above matrix is already in diagonal form, several eigenvalues can be read
off at once. They are

σ0 = 0

λ0 = −(n− 1)(1 + z2) + κ(1 + z)2

2(1 − z2)2

σk = −(n− k)k

2
for k = 2, . . . , n− 2

λk = −(n− 1)(1 + z2) − (n− k)k + κ(1 + z)2

2(1 − z2)2
for k = 2, . . . , n− 2

Since σk < 0 for k = 2, ..., n − 2 we need only to check that λk < 0 for the same range of indices.
Again we have λk = λn−k and the largest of these eigenvalues occurs for k = bn/2c. Six eigenvalues
of the Hessian are more difficult to determine. On closer inspection these eigenvalues follow from the
two submatrices





σ1 0 −α
0 λn−1 β
−α β λn



 and





σn−1 α 0
α σn β
0 β λ1



 .

Since λn−1 = λ1, σn−1 = σ1 and λn = σn the two submatrices have the same set of real eigenvalues
and it suffices to look just at the first submatrix. It reads in details

m3 =





















−n− 1
2

0 −κ
√

n/2
√

1 − z2

2(1− z)

0
− (n− 1)z2 − κ(1 + z)2

2(1 − z2)2
− κ

√

n/2

2(1 − z)
√

1 − z2

−κ
√

n/2
√

1 − z2

2(1 − z)
− κ

√

n/2

2(1− z)
√

1 − z2
−κ(n

4
+

(n− 1)z + κ(1 + z)

2(1− z2)
)





















.

Instead of computing the eigenvalues of m3 directly, it is easier to decide if all eigenvalues are negative
by looking at the determinants of the principal minors of the main diagonal. Since the first element
on the diagonal of m3 is already negative, the next minor will be positive if

F1(z, κ) = (n− 1)z2 + κ(1 + z)2 > 0 (4.4)

and finally we need |m3| < 0. It turns out that the expression for |m3| factors nicely into

|m3| =
κ((n− 1)z + κ(1 + z))((n − 1)z(2z − n− 2nz + nz2) + κ(2 − n+ nz)(1 + z)2)

16(1 − z2)3
.

For the numerator we require
κF2(z, κ)F3(z, κ) < 0 (4.5)
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where

F2(z, κ) = (n− 1)z + κ(1 + z), (4.6)

F3(z, κ) = (n− 1)z(2z − n− 2nz + nz2) + κ(2 − n+ nz)(1 + z)2. (4.7)

Since the functions in (4.4) to (4.7) are all linear in κ, we can plot the curves in the z-κ plane where
the functions F1, F2 and F3 are zero and thus find the regions where the three eigenvalues will be
negative. These curves found from (4.4) to (4.7) respectively are

g1 = −(n− 1)z2

(1 + z)2
(4.8)

g2 = −(n− 1)z

1 + z
(4.9)

g3 = −(n− 1)z(2z − n− 2nz + nz2)

(2 − n+ nz)(1 + z)2
. (4.10)

Fig. 1. Case n = 3. The three curves g1 = − 2z2

(1 + z)2
, g2 = − 2z

1 + z
and g3 = −2z(3 + 4z − 3z2)

(1 + z)2(1 − 3z)
defining the

regions of stability for m3. On the right the stability regions are shaded in gray.

For n = 3 the three curves are depicted on the left in figure 1, including an asymptotic line
for g3 at z = 1/3. In the same figure on the right are the regions where all eigenvalues of m3 are
negative. The regions can be found more easily by considering the condition (4.5) first. After plotting
the curves g2 and g3 the regions where (4.5) is satisfied can be broken down into F2(z, κ)F3(z, κ) < 0
when κ > 0 and F2(z, κ)F3(z, κ) > 0 when κ < 0. It will then be seen that the condition (4.4) imposes
no additional constraints, since g1(z) 6 0 for all z and furthermore g1(z) 6 g3(z) in −1 < z 6 0. It
means that F1(z, κ) = 0 and with it λ1 = 0 is not one of the places where the stability of a stationary
solution can change. This remark will be important when we consider bifurcations in Section 6. The
condition that λ0 < 0 imposes no additional constraints on the stability regions found so far.

When n = 3 there are no other constraints to be considered. When n > 3 other eigenvalues exist
and all of them need to be negative. We restrict ourselves to the largest of these eigenvalues, that is
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λbn/2c and insist that it is negative. The condition λbn/2c = 0 is linear in κ, so that from it we can
easily plot κ as a function of z. It is given by

g0 =















((n− 2)/2)2 − (n− 1)z2

(1 + z)2
for n even

(n− 1)(n− 3)/4− (n− 1)z2

(1 + z)2
for n odd

.

Fig. 2. The case n = 4. The curves g0, g1, g2 and g3 in the z–κ plane defining the stability regions. The stable

regions are shaded on the right.

For 4 6 n < 7 the function g0 has two zeros in −1 < z < 1 and also a maximum value in this
interval. This means that g0 has an asymptote to −∞ as z → −1. It allows a region of stability for
negative κ near z = −1. When n > 7 g0 tends to +∞ as z → −1 and therefore this region disappears.
For n = 4, 5, and 6 the curves g0 and g2 intersect, and to the left of that intersection point g2 is the
lower limit for the region of stability. For n > 7 the function g0 is the lower limit for all −1 < z < 1.

The case n = 7 is the dividing one, and it is here where g0 simplifies to g0 = 6(1 − z)/(1 + z).
From its asymptote at z = −1 to its zero at z = 1 this function is the lower limit for κ in the entire
interval −1 < z < 1. For all cases of n the function g3 from the determinant of m3 imposes an upper
limit on κ. This upper limit exists from the asymptote of g3 at z = (n− 2)/n to z = 1.

In the following theorem our findings are summarized. The intervals in κ where a configuration
is stable changes at certain values of z. These values are indexed by n and they are αn the positive
zero of g0(z) = 0, βn the intersection of g0(z) and g2(z) which occurs at a maximum of g0(z), and γn,
which is an asymptote of g3(z). Values of interest in −1 < z < 1 are

α4 =

√
3

3
, α5 =

√
2

2
, α6 =

2
√

5
5
,

β4 = −1
3
, β5 = −1

2
, β6 = −4

5
,

γn =
n− 2
n for all n > 3.
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Fig. 3. The case n = 5. The curves g0, g1, g2 and g3 in the z–κ plane defining the stability regions. The stable

regions are shaded on the right.

Fig. 4. The case n = 6. The curves g0, g1, g2 and g3 in the z–κ plane defining the stability regions. The stable

regions are shaded on the right.

Theorem 1. A ring of n unit vortices at the latitude z and a vortex of strength κ at the north

pole of the sphere is stable in the following regions

Case n = 3:

for −1 < z 6 (2 −
√

13)/3 when g3(z) < κ < 0 or g2(z) < κ,

for (2 −
√

13)/3 6 z < −1/3 when 0 < κ < g3(z) or g2(z) < κ,
for −1/3 6 z 6 0 when 0 < κ < g2(z) or g3(z) < κ,
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Fig. 5. The case n = 7. The curves g0, g2 and g3 in the z–κ plane defining the stability regions. The stable

regions are shaded on the right. Stability is only possible for κ > 0.

Fig. 6. The case n = 8. The curves g0, g2 and g3 in the z–κ plane defining the stability regions. The stable

regions are shaded on the right. Stability is only possible for κ > 0.

for 0 6 z 6 1/3 when 0 < κ,
for 1/3 < z < 1 when 0 < κ < g3(z).

Case n = 4, 5, or 6:

for −1 < z 6 −αn when g0(z) < κ < 0 or g2(z) < κ,
for −αn 6 z 6 βn when g2(z) < κ,
for βn 6 z 6 γn when g0(z) < κ,
for γn < z 6 αn when g0(z) < κ < g3(z),
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for αn 6 z < 1 when 0 < κ < g3(z).
Case n > 7:

for −1 < z 6 γn when g0(z) < κ,
for γn < z < 1 when g0(z) < κ < g3(z).

5. Two vortices at a fixed latitude and a vortex at the north pole

As was mentioned in Section 2 the case n = 2 requires slightly different formulas. Although a direct
treatment of this case can be found in the literature, we will use the same method as given above
for n > 2. The transformation T̃ will deliver the Hessian with invariant subspaces, which are then
analyzed more easily.

The calculations for the Hessian of H1 remain unchanged, and its eigenvalues are

σ0 = 0 σ1 = −1
2
, λ0 = − 1 + z2

2(1 − z2)2
λ1 = − z2

2(1 − z2)2

On the other hand some of the second order derivatives of H2 are different and the modified set is
listed below with i and j taking on the values 0 or 1:

∂2H2

∂zi∂zj
= 0 for i 6= j,

∂2H2

∂z2
j

=
− κ

2(1 − z)2

∂2H2

∂ϕi∂ϕj
= 0

∂2H2

∂ϕj∂x2
=

∂2H2

∂zj∂y2
= 0

∂2H2

∂ϕj∂y2
= −κr(−1)j

2(1 − z)

∂2H2

∂zj∂x2
= − κ(−1)j

2r(1 − z)

∂2H2

∂x2
2

= − κ
1 − z

∂2H2

∂y2
2

= κz
1 − z

∂2H2

∂x2∂y2
= 0.

Also different than before is the outcome of T tuϕx and the other products. When these calculations
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are performed the Hessian of H at the stationary solution will be







































0 0 0 0 0 0

0 −1
2

0 0 0 − rκ√
2(1 − z)

0 0 −κ(2 + 3z + κ(1 + z))

2(1− z2)
0 − κ

r(1 − z)
√

2
0

0 0 0 −1 + z2 + κ(1 + z)2

2(1 − z2)2
0 0

0 0 − κ

r(1 − z)
√

2
0 −z2 + κ(1 + z)2

2(1− z2)2
0

0
− κr

(1 − z)
√

2
0 0 0

κ(z + 2z2 − κ(1 + z))

2(1 − z2)







































.

(5.1)
As before we have the eigenvalue σ0 = 0 and the eigenvalue

λ0 = −1 + z2 + κ(1 + z)2

2(1 − z2)2
. (5.2)

Different are the two invariant subspaces of dimension 2 given by the matrices

m1 =









− 1
2

− rκ√
2(1 − z)

− κr

(1 − z)
√

2

κ(z + 2z2 − κ(1 + z))

2(1 − z2)









and m2 =











−κ(2 + 3z + κ(1 + z))

2(1 − z2)

− κ

r(1 − z)
√

2

− κ

r(1 − z)
√

2
−z2 + κ(1 + z)2

2(1 − z2)2











.

It turns out that the eigenvalues of m2 are reasonably simple expressions and are given by

λ1 = −z
2 + κ(1 + z)2

2(1 − z2)2
(5.3)

σ2 = −κ(2 + 3z + κ(1 + z))

2(1 − z2)
(5.4)

We have selected this notation to indicate that the eigenvalue in (5.3) reduces to the λ1 of the Hessian
of H1, that is without a vortex at the north pole.

The eigenvalues λ2 and σ1 are then those of m1. Unfortunately their expressions are somewhat
complicated. For this reason we limit ourselves to give them here in form of a series expansion in κ:

σ1 = −1
2
− 1 + z

1 − z
κ2 + · · · , (5.5)

λ2 =
z(1 + 2z)

2(1 − z)
κ+

1 + 2z

2(1 − z)
κ2 + · · · . (5.6)

On the other hand the condition that both eigenvalues are negative reduces to the condition that
the determinant of m1 is positive. This determinant is

|m1| = −κ(1 + 2z)(z + κ(1 + z))/(4(1 − z2)),

so that the condition for both eigenvalues to be negative becomes

F (z, κ) = κ(1 + 2z)(z + κ(1 + z)) < 0.
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In order to check that all eigenvalues are negative we have to add to this λ0 < 0, σ2 < 0, and λ1 < 0.
From (5.2) and (5.3) it is obvious that λ0 < λ1, so that the condition for λ0 can be ignored. The
boundaries for these conditions can be found by plotting the curves for F (z, κ) = 0, σ2 = 0 and λ1 = 0.
These equations give rise to the five curves or straight lines:

κ = 0, z = −1
2
, κ =

− z
1 + z

, κ =
− z2

(1 + z)2
, κ = −2 + 3z

1 + z
.

These curves and lines are drawn on the left in figure 7, and the regions of stability are given on the
right.

Fig. 7. The curves defining the regions of stability for n = 2. The regions of stability are shaded on the right

Surprising is that there is no region of stability for z > 0, although the two vortices without a
vortex at the north pole are stable for all values of z. How this can happen can be seen by looking at
the expressions for the eigenvalues λ2 and σ2 in (5.4) and (5.6) for small κ. It is seen from there that
λ2 and σ2 always have different signs for small values of κ when z is in the interval −2/3 < z < −1/2
or in 0 < z < 1.

6. Bifurcations of new configurations

In Section 4 we determined the stability of an equilibrium solution of (4.2). The solution consisted of
a ring of n unit vortices at a latitude z and a vortex of strength κ at the north pole. The stability
depends on the two parameters z and κ. The regions of stability were enclosed by curves in the z–κ
plane. It is natural to ask if additional configurations can bifurcate at the curves where the stability
changes.

The method to be used is the following. Given a fixed value z for the latitude find the values of κ
where the stability changes. Let κc be one of these values and set κ = κc+µ with µ a small perturbation
parameter. Put the system of equations into normal form and see if different configurations can be
found for µ 6= 0.

If u = (φ, xn, ζ, yn) is the vector made up of the 2n+ 2 coordinates then an equilibrium solution
of (4.2) is found by solving DH(u) = 0. The rank of the Hessian D2H(u) is usually 2n + 1 as seen
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from (4.3), but it is diminished, whenever the stability changes. The places where this happens is
determined by the eigenvalues of the given matrix. Except for two 3 × 3 submatrices the Hessian
is already in diagonal form. The Hessian (4.3) can be put into diagonal form with the help of an
additional noncanonical transformation.

The Hamiltonian function corresponding to the Hessian is

K = 1
2

n−1
∑

k=1

σkφ
2
k + 1

2

n−1
∑

k=0

λkζ
2
k +

λn

2
(x2

n + y2
n) + α(φn−1xn − φ1yn) + β(ζn−1yn + ζ1xn).

Recall that σn = λn, σn−k = σk and λk = λn−k for k = 1, . . . , n− 1. By completing squares we get

K = 1
2

(

n−2
∑

k=2

σkφ
2
k + λ0ζ

2
0 +

n−2
∑

k=2

λkζ
2
k + (λn − α2

σ1
− β2

λ1
)(x2

n + y2
n)

)

σ1

2
(φ1 − α

σ1
yn)2 +

σn−1

2
(φn−1 + α

σ1
xn)2 +

λ1

2
(ζ1 +

β

λ1
xn)2 +

λn−1

2
(ζn−1 +

β

λ1
yn)2.

Since σ1 = −(n− 1)/2 6= 0 dividing by σ1 is not a problem. But λ1 = − (n− 1)z2 + κ(1 + z)2

2(1− z2)2
can be

zero and it happens at the values κ = g1(z) with g1 given by (4.8). It was shown there that the stability
of an equilibrium solution can not change at κ = g1(z). Thus, we can assume that λ1 6= 0 for the
values of z and κ which we will investigate. With this in mind we can use the following noncanonical
transformation to a new set of variables (ψ, xn, ξ, yn) given by

φk = ψk ζk = ξk for k = 0, 2 . . . , n− 2,

φ1 = ψ1 + α
σ1
yn, ζ1 = ξ1 −

β

λ1
xn,

φn−1 = ψn−1 − α
σ1
xn, ζn−1 = ξn−1 −

β

λ1
yn.

This transformation brings the quadratic terms into the form

K = 1
2

(

n−1
∑

k=1

σkψ
2
k +

n−1
∑

k=0

λkξ
2
k + λ̃(x2

n + y2
n)

)

(6.1)

with
λ̃ = κF2(z, κ)F3(z, κ),

that is λ̃ = |m3| with the functions F2 and F3 defined in (4.6) and (4.7). From (6.1) it is seen that
the rank of the Hessian changes when κ = 0, or F2(z, κ) = 0 or F3(z, κ) = 0, or λk = 0 for k =
= 0, 2, 3, . . . , n− 2. As mentioned previously the case λ1 = 0 has to be excluded. Also κ = 0 has to be
excluded, since ẋn and ẏn are multiplied with κ and κ = 0 is a singularity of the differential equations.
Since λn−k = λk for k = 2, . . . , n− 2 it suffices to look at just half of these values. It also shows that
the rank of the Hessian is reduced by 2, except for k = 0. When n is even then for k = n/2 the rank
of the Hessian is also reduced only by one. Thus, the values of κ where a bifurcation is possible is
given by

κ0 = −(n− 1)(1 + z2)

(1 + z)2
originating from λ0 = 0,

κ1 = −(n− 1)z(2z − n− 2nz + nz2)

(2 − n+ nz)(1 + z)2
originating from F3 = 0,

κk =
− (n− 1)(1 + z2) + k(n− k)

(1 + z)2
originating from λk = 0,
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with k = 2, 3, . . . , bn
2
c the range of indices to be considered. There is one more value

κ̃ = −(n− 1)z

1 + z
originating from F2 = 0,

where the Hessian is degenerate. For this value we only found the trivial solution to the bifurcation
equations, that is, no new configuration nearby. Therefore, we exclude it as an uninteresting case from
what follows.

The transformation used above destroyed the Hamiltonian nature of the given system. Since we
are looking for equilibrium solutions, that is, critical points of the Hamiltonian function, the same
critical points are also found in a noncanonical coordinate system. We can thus use an additional near
identity transformation to bring this function into Sylvester normal form. This transformation will be
carried out with the help of the Lie transformation of Deprit, see [10] and [18].

Let u = (ψ, xn, ξ, yn) be the coordinate vector of the function K(u, µ), whose quadratic terms
are already in normal form. By rotating a given configuration by a fixed angle around the polar axis
another configuration is found. In order to remove this rotational symmetry we place the first vortex
on the x-axis, that is, we set ϕ0 = 0. It means that ψ0 is determined by the other variables and
K(u, µ) will not depend on ψ0. Thus, u has dimension 2n+ 1.

Let ε be a formal parameter and scale all variables including µ by ε. We then write

K?(u, µ, ε) =
∑

i=0

εi

i!
K0

i (u, µ)

where K?(u, µ, 1) = K(u, µ) and K0
i are homogeneous polynomials of degree i + 2 in the 2n + 2

variables of u and µ. The Lie transformation of Deprit, see also [19], constructs a near identity change
of variables

u = u(v, µ, ε) = v + · · ·
where u is the solution of a system of differential equations given by

du
dε

= W (u, µ, ε), u|ε=0 = v.

The vector function W has the formal expansion

W (u, µ, ε) =
∑

i=0

εi

i!
Wi+1(u, µ).

In the new coordinates write

K?(v, µ, ε) = K?(u(v, µ, ε), µ, ε) =
∑

j=0

εj

j!
Kj

0(v, µ).

The functions K? and K? are related by the double indexed array K j
i , which agrees with previously

defined values when i or j are zero. The array can be computed iteratively via

Kj
i = Kj+1

i−1 +

i
∑

k=0

(

i

k

)

[

Kj−1
i−k ,Wk+1

]

,

where [ , ] is the Lie derivative operator on functions given by

[K,W ] = ∂K
∂u

W.
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The transformed function is then obtained from K ?(v, µ, 1). By selecting Wi appropriately at each
step of the algorithm a normal form for K(u, µ) can be achieved, where K consists of a sum of
quadratic terms, plus a function G, which starts with at least third order terms and whose variables
are determined by the nullspace of the Hessian. In catastrophe theory [24] this is called the splitting
lemma. It shows that finding additional critical points of K near the origin depends on finding
additional critical points of the function G. The Hessian is never degenerate with respect to the
angular variables ψ1 to ψn−1. It means that for any critical points of K the angular variables remain
unchanged, i.e. ψ1 = · · · = ψn−1 = 0. Stated differently it means that a new configuration which is
found by this bifurcation analysis near κk is obtained from the original one by displacing the vortices
along their lines of longitude.

For κ0, and for κn/2 when n is even, the nullspace of the Hessian is one dimensional. Besides the
dependency on µ the function G depends only on ξ0 or on ξn/2 in the second case. These two cases
can be treated completely for all values of n. We do this first before considering the more interesting
cases of the two dimensional nullspaces in the next section.

When the critical value of the vorticity at the north pole is κ0 and we set κ = κ0 +µ we find that
the function G has the form

G(ξ0, µ) = aµξ2
0 + bξ3

0 + h.o.t.,

that is the desired bifurcation equation appears already among the third order terms in the normalized
function. The coefficients a and b will depend on the parameter z and they can be found analytically.
Since all terms in K0

1 can be eliminated except those which depend on ξ0 and µ we can set

zj = z + ξ0/
√
n for j = 0, . . . , n− 1 (6.2)

ϕj = 2πj/n for j = 0, . . . , n− 1

xn = yn = 0

and find the third order terms in the functions (4.2). The function simplifies to

H = 1
2

∑

i<j

ln (1 − (z +
ξ0√
n

)2)(1 − cos
2π(j − i)

n ) +
κ0 + µ

2

n−1
∑

i=0

ln (1 − z − ξ0√
n

) − wn(z +
ξ0√
n

).

The third order terms then follow from

n(n− 1)

4
ln (1 − (z +

ξ0√
n

)2) +
κ0 + µ

2
n ln(1 − z − ξ0√

n
)

to give

G(ξ0, µ) =
(n− 1)ξ3

0

6
√
n(1 − z)(1 + z)3

− µξ20

4(1 − z)2
+ h.o.t.

Besides the extremum when ξ0 = 0 another one is found from G for small µ when

ξ0 =

√
n

n− 1

(1 + z)3

(1 + z)
µ+O(µ2).

On the other hand (6.2) indicates that the latitude of all vortices of the ring is changed by the same
amount. The solution found is the same ring of vortices at a different latitude. The bifurcation
analysis has not given anything new in this case.

More interesting is the case when n is even, i.e. n = 2m, in which case we have

κn/2 = κm =
(m− 1)2 − (2m− 1)z2

(1 + z)2
.
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The bifurcation equation will have the form

G(ξm, µ) = aµξ2
m + bξ4

m + h.o.t.

The function has an extremum at

ξm =

√

− a
2b
µ+O(µ). (6.3)

It means that to first order

zj = z + (−1)jξm/
√
n for j = 0, . . . , n− 1

ϕj = 2πj/n for j = 0, . . . , n− 1

xn = yn = 0.

The equations for the zj’s show that half of the vortices move north, the other half south. In other
words the original ring of 2m vortices splits into two rings at different latitudes with m vortices each.
The bifurcation into the two rings occurs either for µ > 0 or µ < 0 depending on the signs of a and b.

The coefficient a in the function G(ξm, µ) can only come from what was called H2 and it is easily
computed to be a = −1/(4(1 − z)2). The coefficient b can be traced back to third order terms in H,
which must have the factor ξ2

m and to the fourth order term with ξ4
m in H. Due to symmetries among

the required terms only the coefficient of ξ0ξ
2
m is nonzero in H. Let us call it b3 and the coefficient of

ξ4m will be called b4, so that the terms of interest in H are b3ξ0ξ
2
m + b4ξ

4
m.

The normalization of these terms produces

b = − b23

2λ̃0

+ b4 =
b23(1 − z2)2

m2
+ b4,

where λ̃0 stands for the eigenvalue λ0 evaluated at κ = κm. The coefficients b3 and b4 can be computed
with the help of Mathematica for a given value of m. Unfortunately the general formula appears to
be complicated so that we restrict ourselves to give (6.3) for a few values of m.

Case n = 4 :

ξ2 = (1 + z)

√

− 8(1 − z2)µ

7 + 9z2
,

Case n = 6 :

ξ3 = (1 + z)(1 − z2)

√

− 54µ

184 + 56z + 15z5 − 70z3 − 50z4
,

Case n = 8 :

ξ4 = 8(1 + z)(1 − z2)

√

− µ

559 + 180z − 38z2 − 140z3 − 49z4
.

None of the denominators has a zero in the interval −1 < z < 1.

7. Bifurcations under symmetry

The Hamiltonian function H of (4.2) possesses symmetries which are not obvious in the variables
which are used in connection with the circulant matrices. With α = 2π/n the transformation is listed
here in some details:

zj = z +

√

2
n(ζ0/

√
2 + ζ1 cos jα + ζ2 cos 2jα + · · · + ζn−2 sin 2jα+ ζn−1 sin jα)

ϕj = jα+

√

2
n(φ0/

√
2 + φ1 cos jα+ φ2 cos 2jα + · · · + φn−2 sin 2jα + φn−1 sin jα)
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for j = 0, . . . , n − 1. When replacing ζj → −ζn−j for j = bn/2c + 1, . . . , n − 1 and leaving the other
ζj’s unchanged we achieve zj → zn−j. Similarly replacing φj → −φj for j = 0, . . . , bn/2c we achieve
ϕj → ϕn−j mod 2π. If in addition we set xn → xn and yn → −yn then the Hamiltonian function
(4.2) remains invariant. This symmetry will show up in the normal form when the nullspace is two
dimensional, that is in

G = G(xn, yn, µ) and in G = G(ξj , ξn−j, µ) for j = 2, 3, . . . .

Both cases can be considered together in the function G = G(x, y, µ) which has the symmetry
G(x, y, µ) = G(x,−y, µ). The discussion follows the one given in [20]. Let x = r cosϕ, y = r sinϕ.
We can expect G to have the form

G = p1r
2 + p2r

4 + · · · + q1r
d cos dϕ+ · · ·

with the p’s and q’s functions of µ and d > 2 a divisor of n. Generically we can expect these functions
to be different from zero. From the discussion of the Hessian we can expect to find p1(µ) = aµr2 + · · ·
with a a nonzero constant. We also expect that q1(0) = c is nonzero and when d = 4 then with
p2(0) = b also b 6= c will hold.

Three cases can occur:
Case d = 3:

G = aµr2 + cr3 cos 3ϕ+ · · · .
From ∂G/∂r = ∂G/∂ϕ = 0 we find ϕ = 0, π/3, 2π/3, . . . and r = ±2aµ/(3c) + · · · . Since in this case
µ can be positive and negative we can restrict ourselves to the solution with ϕ = 0, that is to

x = −2a
3c
µ+ · · · y = 0 + · · · .

The other solutions can be obtained via rotations by a multiple of π/3.
Case d > 5:

G = aµr2 + br4 + · · · + crd cos dϕ+ · · · .
Besides the extremum for r = 0 others occur when ϕ = kπ/d with k = 0, 1, . . . , 2d − 1 and r =
=
√

−aµ/(2b) + · · · . Real solutions exist only for µ > 0 when ab < 0 or for µ < 0 when ab > 0.
Different solutions are found with k = 0 or k = 1. The other solutions can be obtained from those via
a rotation.

Case d = 4:
G = aµr2 + r4(b+ c cos 4ϕ) + · · · .

New extrema can occur when ϕ = 0 or ϕ = π/4. As before ϕ = kπ/4 with k = 2, . . . , 7 gives only
solutions, which can be found from the first two by a rotation. The derivative of G with respect to r
gives 2aµr + 4r3(b ± c) + · · · = 0. It now depends on the signs of b + c and b − c. If b + c and b − c
have the same sign then new solutions are only found on one side of µ = 0. In the other case solutions
exist for µ > 0 and for µ < 0, but these solutions can not be considered to be a continuation of each
other, as was the case for d = 3.

For the function G(xn, yn, µ) we found always that d = n, but for the other cases it was less
predictable what d might be. For larger values of n the complexity of the computations prevented us
from keeping z as a formal parameter, as one has to compute terms of order n in order to obtain the
required resonance terms. For n = 3 and n = 4 at most fourth order terms are needed and the two
cases could be handled with the help of Mathematica. These two cases are also typical examples for
the cases when d = 3 or d = 4.

For n = 3 we computed

r = − 3(1 + z)4(1 − 3z)3
√

1 − z2

8z2(1 + 3z)2(9 + 20z + 3z2)
µ+ · · · .
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Of interest are the zeros and poles of this function in −1 < z < 1. The function is zero for z = 1/3,
that is where g3 has a pole. It indicates that no bifurcation is possible at this value of z. The poles
of r at z = 0 and z = −1/3 can be an indication for the fact that the stability boundaries g2 and g3
intersect each other at these values. On the other hand it is surprising that the quadratic term in the
denominator of r has a zero at z = (−10 +

√
73)/3. This value inside −1 < z < 1 does not appear to

have any relationship to features of the regions of stability.

Fig. 8. Dashed lines indicate original configuration at a latitude z = 0.6. Solid lines give new configuration,

drawn for a large value of µ = 5.0 in order to show that the vortex at the north pole has moved, as indicated

by the small solid disk. The configuration on the right is drawn for µ = −5.0

For n = 4 we also have one 2-dimensional null space and the resonance terms occur with d = 4.
Thus, we have from the bifurcation equations two values for r2. For the case ϕ = 0 we computed

r2 = − 4(1 − 2z)2(1 − z)(1 + z)7(1 − 12z2 − 32z3 − 12z4)

3z(1 + 4z)(4 + 12z − 48z2 − 219z3 + · · · + 1548288z19)
µ+ · · · (7.1)

and for ϕ = π/4 we found

r2 = − 8(1 − 2z)4(1 − z)(1 + z)7(1 − 4z − 2z2)

3z(1 + 4z)(8 − 8z − 76z2 + · · · + 448z11)
µ+ · · · (7.2)

Of interest are the real roots in −1 < z < 1 of the numerators and denominators for r. Both
numerators are zero in this interval for z = 1/2 and z = (−2 +

√
6)/2. The denominator of (7.1)

is zero when z is one of the values in the list (-0.8343, -0.5300, -0.3003, -0.25, 0). The zeros of the
denominator in (7.2) are given by one of the values (-0.3022, -0.25, 0, 0.264). All zeros indicate that
the bifurcation that existed on one side of the critical value of the vorticity now happens at the other
side.

For n > 4 we were not able to carry out the calculations with z kept as a formal parameter. The
expansion of the Hamiltonian function H into a sum of homogeneous polynomials proved to be too
time consuming, as terms through order n have to be included. Instead we selected a value for z from
the beginning, so that the coefficients of theses polynomials would be numerical values and could be
stored as floating point numbers in the computer. The computations were carried out with our own
algebraic processor Polypack. Not surprisingly the results look very similar to those obtained for the
planar problem in [20].

The computations in the planar case were considerably simplified by the use of complex variables.
The coordinates for the vortices on the sphere are given with real variables. We did not see a natural
way to simplify them with the help of complex variables. It means that for a given n we have
to manipulate twice as many variables as compared to the planar case and thus we could not go
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Fig. 9. Dashed lines indicate original configuration at a latitude z = 0.7. The kite and trapezoid on the left are

generated by the critical value κ1. The rhombus comes from κ2.

Fig. 10. Dashed lines indicate original configuration for n = 5 at z = 0.4. Bifurcations at κ1

as far in n as in [20]. Since the results look very similar to those in [20] it suffices to give here
just one sample. Figure 10 and 11 depict the bifurcations which are possible from the pentagon.
Numerical computations do not reveal where the solutions of the bifurcation equations may have
zeros or singularities unless one selects z to be exactly at one of these values. Nevertheless, the
absolute values of the coefficients give some indications.

8. Bifurcation from two vortices at a fixed latitude with a vortex at

the north pole

Although the equilibrium positions of three vortices on a sphere has been analyzed fully in [21], this
section is added for completeness sake and to show where the change of stability of an equilibrium
solution gives rise to another stationary solution. The Hamiltonian corresponding to the Hessian (5.1)
is

H2 = 1
2

(

σ1φ
2
1 + σ2x

2
2 + λ0ζ

2
0 + λ1ζ

2
1 + λ2y

2
2

)

− αφ1y2 + βζ1x2 (8.1)

where σ1, λ0, and λ1 follow from the formulas given early with n = 2, but now

α =
κ
√

1 − z2
√

2(1 − z)
β = − κ

√

2(1 − z2)(1 − z)
.
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Fig. 11. Dashed lines indicate original configuration for n = 5 at z = 0.4. Bifurcations at κ2

and

σ2 = −κ(2 + 3z + κ(1 + z))

2(1 − z2)
λ2 =

κ(z + 2z2 − κ(1 + z))

2(1 − z2)

are the values computed in Section 5 when n = 2. Again we complete squares in H2 and introduce
noncanonical variables this time by

φ1 = ψ1 + α
σ1
y2, ζ1 = ξ1 −

β

λ1
x2,

with the other variables left unchanged. The quadratic terms of (8.1) are transformed into

K = 1
2

(

σ1ψ
2
1 + λ0ψ

2
0 + λ1ψ

2
1 + (σ2 −

β2

λ1
)x2

2 + (λ2 − α2

σ1
)y2

2

)

.

When a coefficient of a quadratic term becomes zero the Hessian becomes degenerate and bifurcations
are possible. Obviously λ1 = 0 has to be excluded, due to our choice of coordinates. Since values of z
and κ where λ1 = 0 do not lead to a change of stability, this is not a restriction. Also κ = 0 reduces
the rank of the Hessian by two, but this value has to be excluded due to the form of the differential
equations as was mentioned in Section 6.

The rank of the Hessian is reduced by two when

κ = − z
1 + z

,

but the bifurcation equations have only the trivial solution as was the case for n > 3. Another place
where the Hessian becomes degenerate occurs when λ0 = 0. There the two vortices move to the same
latitude nearby, so that again it is not an interesting case. There is one more value

κ = −2z + 3z2

(1 + z)2

where the Hessian is degenerate and reduces its rank by one. The value corresponds to what was
denoted by κ1 in Section 6. In this case we find by normalizing the function through fourth order,
that for µ > 0 or µ < 0 the vortex at the north pole can move to

x2 = ±(1 + z)3

|1 + 2z|

√

√

√

√

2(1 − z2)(1 − 2z − 2z2)µ

z(4 + 4z − 8z2 − 3z3 + 4z4 − 2z5 + 4z6)
, y2 = 0.
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Fig. 12. Bifurcations when n = 2 as seen in the x − z plane. In original configuration the vortices are at the

end of the dashed line, and another one of strength κ1 at the north pole. In new configuration vortices are at

the end of the solid line, plus another one indicated by a small disk.

Since the x-axis always points to vortex 0, the whole configuration stays in the x−z plane as illustrated
in figure 12. With this the vortices remain on a great circle, which is one of the possibilities mentioned
in [21].

Since the position of the vortex at the north pole was given in Cartesian coordinates both signs of
the square root can be used. On the other hand the sign of µ is determined by the value of the terms
under the square root as it depends on z in the interval −1 < z < 1. The sign of µ has to change at
z = (−1 +

√
3)/2, which is a zero of the numerator, and it has to change at z = 0, which is the only

real zero of the denominator. Also the value z = −1/2 causes difficulties. By looking at the stability
region in figure 7 it is not surprising that z = −1/2 and z = 0 are exceptional values. On the other
hand z = (−1 +

√
3)/2 does not correspond to any special feature of the stability region.
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