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ABSTRACT: This paper developes effective algorithms for computing the domains in a
parameter space where a differential equations which admits an invariant torus has a
periodic solution with fixed rotation number. The algorithms are based on the
method of Lie transforms and have been implemented on a computer. The algorithms
are applied to two variations of van der Pol's equation.
INTRODUCTION

This is a summary of the results contained in [ 4 ]. The majority of the liter-
ature on invariant tori for ordinary differential equations does not concern itself
with the flow oa the tori itself, since the work of Poincare and Denjoy have shown
that these flows can be quite varied and complicated. However, we choose a specific
class of equations with the goal of developing an effective procedure for obtaining
quanitative information.

The prototype has been the forced van der Pol equation. Therefore, we illus-
trate our procedure by studying this equation and a system of two weakly coupled
van der Pol equations introduced by Linkens [3] in a study of the electrical activi-
ty of the human gastrointestinal tract. For the forced van der Pol equation there
are several studies on harmonic entrainment but few when the forcing frequency and
natural frequency are considerably different. Hayashi [2] and others have con-
sidered the cases when thé ratio of the natural and forcing frequency is near 1 to 2
and 1 to 3 in detail. He found that for a small range of detuning a periodic solu-
tion with frequency near the forcing frequency exists. Since other frequency ratios

require long computations they were not considered until now.

GENERAL PROBLEM

In order to fix some definitionms, consider a system of equations of the form
x = f(x,A) (1.1)

where f is a smooth function from B™ x Bk into Rn, 8" and Bk are open balls in R"
and Rk respectively, and % = dx/dt. Suppose that for each A€ Bk the system (1.1)
has a unique, smooth, two-dimensional invariant torus TXC: Bn and that it varies

smoothly with A. Also let CX be a smooth closed curve on Tk which is a global
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cross section for the flow on TA and that CX varies smoothly with A. Thus to the flow
flow on T we may associate a real number p(A)-the rotation number. Also p(A) is
rational if and only if the flow on TA has a periodic solution. Let FA be another
smooth, closed curve on T, which varies smoothly with A and is such that CA and I‘)L
form a base for the first homology group of TA' If p(X) is rational, say p(A) = p/q

where (p,q) = 1, then the periodic solution on T, are homologous to pCy + qu' Thus
a rational rotation number has a simplé geometric interpretation: if the rotation
number is p/q where (p,q) = 1 then the periodic solutions of (1.1) on Tx wind p times

around CA and q times around FA before closing.

Following Bushard we define the p/q entrainment domain to be Ap/q = p_l(p/q).
Since p is a continuous, Ap/q is closed in Bk. Clearly distinct rational numbers

give rise to disjoint entrainment domains.

Even though the rotation number is continuous in A it will not be differentiable
in general. This is due to the "locking-in phenomenon" of the "entrainment of fre-
quency phenomenon'. Restricting our attention to the flow on the two-dimensional
torus a periodic solution has 2 characteristic multipliers 1 and H,u > 0., Ifp#1
the periodic solution is called hyperbolic - a source if p > 1 and a sink if
0 < u< 1. If a periodic solution is hyperbolic, an easy application of the implicit
function theorem implies that small perturbations of the equations have a periodic
solution with the same rotation number. Thus if for A= AO equation (1.1) has a
hyperbolic periodic solution with rotation number p/q then AO is an interior point
of Ap/q' In general one expects that most periodic solutions are hyperbolic. For
generic one parameter families of flows on a torus, it is a consequence of the work
of Sotomayor that the entrainment domains are unions of nontrivial closed intervals
and these intervals do not cluster. Thus generically the rotation number as a
function of a single parameter has the essential qualitative features of the Cantor
ternary function.

Bushard [1] has shown that there are positive numbers €

. §  and continuous
0* "0
functions

a,b 2 I=[-e5,e]+3=1[p/q- 89> P/a+ 8]
such that a(0) = b(0)

]

p/q and

]

Ap/q (T xJ) = {(e,w) :'O S esepanda(e) v < be)l

That is close to (0,p/q) the entrainment domain, Ap/q’ is a sector bounded above and

below by continuous curves which pass through (0,p/q). The two curves a and b will
be called the local boundary curves for Ap/q and the set Ap/q[\ (I x J) will be the

local boundary sector of Ap/a'

In order to calculate these domains we develop an algorithm based on the method
of Lie transforms which transform a system of equations of the form
% = Ax + g(x,¢€) 2.1)
where A is diagonalizable, g(x,0) = 0 and g has a formal expansion in € with

coefficients which are polynomials in x into a system
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. v = Ay + h(y,e) 2.2)

where h is of the same form as g with the additional property that h(eAty,e) = h(y,e)

With A. Deprit we have written a PL/I program which performs the aigebraic
manipulations to effect the transformation described above. The abundance of ex-

amples given in [4] illustrate the effectiveness of the programs and the method.
EXAMPLES
We consider two examples, the forced van der Pol equation
i+ e - 1)d + ulu = Acos uyt | 3.1)
and a pair of weakly coupled van der Pol equations
i, + é{(ul +Veku2)2 - l}ﬁl + mi(ul + edu,) = 0

(3.2)
0

i, +el(s, + ekul)2 - 1}, + mi (u, + €luy)
Both of these equations are in the form (2.1) and by a classical theorem admit an
invariant torus for small € provided vy # Wy We shall illustrate the general
theorems contained in [4] by stating them for the forced van der Pol equation (3.1)

only. Consider the first quadrant in the parameter plane (g,9Q) where @ = mi/wé .

Consider the case when p + q is odd and let m = 3p + q - 1. Ve develop

an effective finite algorithm for computing a constant C.

Theorem 2: For the forced van der Pol equation (3.1) the local
boundary curves have order of contact at least equal to
m-1.TIf C # O then the local boundary curves are analytic in € and have an order
of contact equal to m - 1. For (g,Q) interior to the local sector there are 2
stable and 2 unstable periodic solutions with rotation number p/q on the invariant
torus. For (e,2) on the boundary curves there are two semi-stable periodic solu-

tions with rotation number p/q on the invariant torus.

The functions a and.b.have expansions of the form

2, 2 2 2 m-2
Q= wl/m2 =p/q (p + Aze et Am_ze

l>‘

+ (0" ¥ 0™
We have developed a PL/I program which computes the constants Az,...,Am and C and

used this program on (3.1) when

p/q = 1/3,1/5,1/7,1/2,3/1,1/9,1/11,1/4,3/5,2/1,1/13,3/7,5/1,1/15,
1/6,2/3,5/3. :
Except for p/q = 1/7 the constant C £ 0 and this case was considered separately by
hand.
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