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Continuation of periodic solutions in three dimensions 

Kenneth R. Meyer 1 
University of Cincinnati, Cincinnati, 0H45221-0025, USA 

Abstract 

We use the methods of symplectic scaling and reduction to show that the reduced spatial three-body problem with one 
small mass is to the first approximation the product of the spatial restricted three-body problem and a harmonic oscillator. 
This allows us to prove that a nondegenerate periodic solution of the spatial restricted three-body problem can be continued 
into the reduced three-body problem with one small mass. 

The spatial three-body problem and the spatial restricted three-body problem admit two time-reversing symmetries. A 
solution which hits the fixed set of one of the symmetries at time 0 and the fixed set of the other at time T will be periodic of 
period 4T and its orbit will be symmetric with respect to both symmetries. Such solutions are called doubly symmetric. We 
prove that a nondegenerate doubly symmetric periodic solution of the spatial restricted three-body problem can be continued 
into the reduced three-body problem with one small mass. 
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1. Introduct ion  

The restricted three-body problem is said to be a l imit  of  the three-body problem as one of  the masses tends 

to zero, and so a periodic solution of  the restricted problem sometimes can be continued into the full three-body 

problem when one mass is small. Indeed, many times the existence of  a periodic solution of  a certain type is first 

established for the restricted problem and later the same type periodic solution is established in the full three-body 

problem. The spatial three-body problem has nine degrees of  freedom, whereas the spatial restricted problem has 

only three degrees of  freedom. The size difference seems large until one realizes that the three-body problem admits 

translations and rotations as symmetries and linear and angular momenta  as integrals. By holding the integrals fixed 

and identifying symmetric configurations, the problem can be reduced to a four-degree-of-freedom problem which 

we will  call  the spatial reduced three-bodyproblem or simply the reduced problem. 
Using symplectic scaling, we will show that the spatial reduced problem with one small mass is to the first 

approximation the product of  the spatial restricted problem and a harmonic oscillator. Thus it follows from standard 

results that a nondegenerate periodic solution of  the spatial restricted problem whose period is not a multiple of  2zr 

1 E-mail: ken.meyer@uc.edu. Partially supported by grants from the National Science Foundation and the Taft Foundation. 

0167-2789/98/$19.00 Copyright © 1998 Elsevier Science B.V. All rights reserved 
P11S0167-2789(97)00219-4 



K.R. Meyer/Physica D 112 (1998) 310-318 311 

can be continued into the reduced three-body problem. Hadjidemetriou [4] established a similar result for the planar 
problem. Also see [6,9,11] for some generalizations and variations. As a corollary, the near collision nondegenerate 

periodic solutions of the spatial restricted problem established by Belbruno [2] can be continued into the reduced 
three-body problem. 

We also show that a nondegenerate doubly symmetric solution of the restricted problem whose period is not a 
multiple of 2:r can be continued into the reduced problem. This result shows that the doubly symmetric periodic 
solutions of the restricted problem found in [5] can be continued into the reduced problem. This class of peri- 
odic solutions of the three-body problem was first established in [15] and that paper was the motivation of this 

investigation. 

2. Scaling and reduction 

In this section we make a series of symplectic changes of variables in the three-body problem which show how 

to look at the spatial restricted problem as the limit of the spatial reduced problem with one small mass. To the first 
approximation the reduced problem with one small mass is separable, i.e. the Hamiltonian of the reduced problem 
to the first approximation is the sum of the Hamiltonian of the restricted problem and the Hamiltonian of a harmonic 

oscillator. 
The three-body problem in three dimensional space is a nine-degree-of-freedom problem. By placing the center 

of mass at the origin and setting linear momentum equal to zero the problem reduces to a six-degree-of-freedom 
problem. This is easily done using Jacobi coordinates. The Hamiltonian of the three-body problem in rotating (about 

the z-axis) Jacobi coordinates (uo, Ul, u2, vo, Vl, v2) is 

H--[]vol[~ uT j v  ° q- ][Vll]___~ 2 _ uT j v  1 mOral 

2M0 2M1 II u 1 II 

Iiv2112 u~ Jv2 mlm2 m2mo (1) 

-~ 2M2 Ilu2 oeOUl[I Ilu2-Jr Otlulll' 

where ui, vi E ~3, 

Mo = m o  -t- ml  -kin2, M1 = m o m l / ( m o  --I- ml) ,  

M2 = m2(m0 + m l ) / ( m o  + ml  + m2), 

oto = mo/(mo q- ml), Oil = ml/(mo q- ml), 

and 

J = - 1  0 . 
0 0 

In these coordinates u0 is the center of mass, v0 the total linear momentum, and total angular momentum is 

A ~ u 0 x / ) o - l - u 1  x I)1 - I - u 2  x 0 2 .  

See [11] for details. 
The set where u0 ----- v0 ---= 0 is invariant and setting these two coordinates to zero affects the first reduction. Setting 

u0 = v0 = 0 reduces the problem by three degrees of freedom. 
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We consider angular momentum to be nonzero. One way to reduce the problem by two more degrees is to hold 

the vector A fixed and eliminate the rotational symmetry about the A axis. Another  way to reduce the problem is 

to note that Az,  the z-component  of  angular momentum, and A = II A II, the magnitude of  angular momentum are 

integrals in involution. Two independent integrals in involution can be used to reduce a system by two degrees of  

freedom, see [16]. In either case we pass to the reduced space as defined in [8] or [7]. 

Assume that one of  the particles has small mass by  setting m2 = e 2 where e is to be considered as a small 

parameter. Also set m0 = / z ,  ml  = 1 - / z  and 1) = / x ( 1  - / z )  so that 

M1 = 1) -----=/a.(1 - / x ) ,  M2 = 82/(1 q -  8 2 )  = 8 2 - -  8 4 -'1- " • " , 

OtO ~---/./, , Ot 1 = 1 - - / z .  

The Hamil tonian becomes 

H=K+B, 

where 

1 
g = ~--1) H1)I II 2 -- uTJ1)I  --  1) 

Ilulll 

and 

/ r~  _ _  ( 1  or- e 2) 82(1 - -  / Z )  

2e 2 111)2112 - u Y J v 2  Ilu2 --/*uxll 
82/Z 

Ilu2 + (1 - / ~ ) u l l l  " 

K is the Hamil tonian of  the Kepler problem in rotating coordinates. We can simplify K by making the scaling 
ui --+ ui,  vi --+ vvi ,  K --+ v - l  K ,  I21 --+ v - l  lYl, 821) -1  --+ 82 so that 

and 

1 1 
g = ~111)1112 - u l T J 1 ) I  - -  IlUl[~ (2) 

/~ _ (1 + ve 2) 2 e2( 1 - 
7 ~  v2 - u ~ J v 2  t*) e2~, (3) 

Ilu2 - tZUl II Ilu2 + (1 - ~)Ul  II 

K has a critical point  at Ul = a = (1, 0, 0) T, Vl = b = (0, 1, 0) T - it corresponds to a circular orbit of  the Kepler 

problem. Expand K in a Taylor series about this point, ignore the constant term and make the scaling 

Ul --+ a + eq,  Vl ---> b + ep,  K --+ e - 2 K  

to get K = Ko + O(e) where 

1 (p2 Ko = ~ 1 .or- p2 + p2) + q2Pl -- q lP2 + 1(--2q~ + q2 + q2). (4) 

NOW scale H by the above and 

U2 = ~, 1)2 = eZt], / ' t  > 8--2/'1. 

The totality is a symplectic scaling with multiplier e - 2  and so the Hamil tonian of  the three-body problem becomes 

H e  + K0 + O(e) where K0 is given in (4) and HI~ is the Hamiltonian of  the restricted problem, i.e. 

_1 _ ~ T j r / _  (1 - -  N )  _ /z (5 )  
2117112 I1~ - 0*, 0, 0)11 I1~ + (1 - tz, 0, 0)11" 

HR 

To obtain the expansions above recall ul  = (1, 0, 0) + O(e).  
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We have already reduced the problem by using the transitional invariance and the conservation of  linear mo- 

mentum, so now we will  complete the reduction by  using the rotational invariance and the conservation of  angular 

momentum. 

Recall  that angular momentum in the original coordinates is A = u i x vl + u2 x v2 and in the scaled coordinates 

it becomes 

A = (a + eq)  x (b + ep)  -t- e2~ x t/ (6) 

and so holding angular momentum fixed by setting A = a x b imposes the constraint 

0 = a x p q- q x b 4- O(e)  = ( - q 3 ,  - P 3 ,  P2 + q l )  + O(e).  (7) 

Now let us do the reduction when e = 0 so that the Hamil tonian is H = HR + Ko and holding angular momentum 

fixed is equivalent to q3 = P3 = P2 q- ql = 0. Notice that the angular momentum constraint is only on the q, p 

variables. Make the symplectic change of  variables 

r l  = ql  + P2, R1 = P l ,  r2 : q2 q- P l ,  R2 : P2, r3 : q3, R3 : P3, (8) 

so that 

1 2 R 2 ) + r l R 2 - r  2. (9) K0 = -12 (r 2 q- R 2) q- ~ (r 3 _4_ 

Notice that holding angular momentum fixed in these coordinates is equivalent to r l  = r3 = R3 = 0, that R1 is an 

ignorable coordinate, and r l  is an integral. Thus passing to the reduced space reduces Ko to 

KO = 1(r22 + R22) • (10) 

Thus when e = 0 the Hamiltonian of  the reduced three-body problem becomes 

H = HR q- l ( r 2  q- R2), (11) 

which is the sum of  the Hamiltonian of  the restricted three-body problem and a harmonic oscillator. Here in (11) 

and henceforth we have dropped the subscript 2. The equations and integrals all depend smoothly on e and so for 

small  e the Hamil tonian becomes 

H = HR + l ( r 2  + R 2) + O(8). (12) 

We can also introduce act ion-angle  variables (I ,  0 by 

r = ~ T c o s  t, R = , v / ~ s i n t ,  

to give 

H = HR + I + O(e).  (13) 

The spatial three-body problem on the reduced space with one small mass is approximately the product o f  the spatial 

restricted problem and a harmonic oscillator. 

3. Continuation of nondegenerate periodic solutions 

A periodic solution of  a conservative Hamil tonian system always has the characteristic multiplier  +1  with 

algebraic mult ipl ici ty at least 2. I f  the periodic solution has the characteristic multiplier  + 1 with algebraic multiplicity 
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exactly equal to 2 then the periodic solution is called nondegenerate or elementary. A nondegenerate periodic 
solution lies in a smooth cylinder of periodic solutions which are parametrized by the Hamiltonian. Moreover, if 
the Hamiltonian depends smoothly on parameters then the periodic solution persists for small variations of the 
parameters. See [11, pp. 133-136; 155-156] for complete details. 

Theorem. A nondegenerate periodic solution of the spatial restricted three-body problem whose period is not a 
multiple of 2yr can be continued into the reduced three-body problem. 

More precisely: 

Theorem. Let ~ = ~ (t), ~ = ~ (t) be a periodic solution with period T of the restricted problem with Hamiltonian (5) 
with multipliers +1, +1,  ill, f l l  1 , f12, fi21. Assume that T 5~ n2yr for all n ~ 7/and fll 5 k +1 and r2 ~ +1. Then 
the reduced three-body problem with Hamiltonian (12) has a periodic solution of the form ~ = ~ (t) t O(e), ~7 = 
~(t) t O ( e ) ,  r ----- O(e), R = O(e) whose period is T . tO(e) .  Moreover, its multipliers are t l ,  t l ,  fll t O ( e ) ,  f i l  1 t 
O(e), t2 t O(e), t21  t O(e), e iT t O(e), e - iT t O(e). 

Proof When e = 0 the reduced problem with Hamiltonian (12) has the periodic solution ~ = ~(t), ~ = O(t), r = 
0, R = 0 with period T. The multipliers of this periodic solution are +1,  +1, ill, f l l  1, f12, t21 ,  e i t ,  e -iT. By the 
assumption T 5& n2yr it follows that e +iT 5~ t l  and so this periodic solution is nondegenerate. The classical 
continuation theorem can be applied to show that this solution can be continued smoothly into the problem with e 
small and nonzero. See [3, p. 142] or [11, pp. 154-56]. [] 

The planar version of this theorem is due to Hadjidemetriou [4]. One of the most interesting families of nonde- 
generate periodic solution of the spatial restricted problem can be found in Belbruno [2]. He regularized double 
collisions when/x = 0 and showed that some spatial collision orbits are nondegenerate periodic solutions in the 
regularized coordinates. Thus, they can be continued into the spatial restricted problem as nondegenerate periodic 
solutions for/z 5~ 0. Now these same orbits can be continued into the reduced three-body problem. 

4. Continuation of doubly symmetric periodic solutions 

Very few nondegenerate periodic solutions of the spatial restricted problem have been established rigorously, but 
there are interesting families of periodic solutions which have been established using symmetry arguments. Jefferys 
[5] used two time-reversing symmetries of the spatial restricted problem to establish the existence of periodic 
solutions which are symmetric with respect to two planes in phase space - hence the name doubly Symmetric 
periodic solutions. 

Write the Hamiltonian of the restricted problem in components by letting ~ = (x, y, z), ~ = (X, Y, Z) so that 

H R =  I ( X 2 - t - y 2 t z  2) t ( y X - x Y ) -  
z 

1 - - / z  /z 
{(2: --/x) 2 t y2 t Z2} 1/2 -- {(x -- 1 t / - t )  2 q- y2 -t- Z2} 1/2" 

(14) 

This Hamiltonian is invariant under the two anti-symplectic reflections: 

"1~1 : (X, y, Z, X, Y, Z) > (x, --y, -Z ,  --X, Y, Z), 
"1~2 : (x, y, Z, X, Y, Z) > (x, - y ,  z, - X ,  Y, - Z ) .  

(15) 
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These symmetries arc time-reversing symmetries of  the problem, so if (x(t) ,  y(t),  z(t),  X( t ) ,  Y(t),  Z(t))  is a 
solution, then so are ( x ( - t ) ,  - y ( - t ) ,  ± z ( - t ) ,  - X ( - t ) ,  Y ( - t ) ,  T Z ( - t ) ) .  The fixed set of  these two symmetries 

are Lagrangian subplanes, i.c. 

~1 m_ {(X, 0, 0, 0, Y, Z)}, /22 = {(x, 0, z, (}, Y, 0)}, 

are fixed by the symmetries 7~1, 7~.2. If  a solution starts in one of  these Lagrangian planes at time t = 0 and hits the 
other at a later time t = 1 then the solution is 4T-periodic and the orbit of  this solution is carried into itself by both 
symmetries - see [ 121. We shall call such a periodic solution doubly symmetric. If  the orbit meets these Lagrangian 
planes transversally then we shall call it a nondegenerate doubly symmetric periodic solution. Geometrically, an 
orbit hits £1 if it hits thc r-axis  perpendicularly and it hits/29 if it hits the x, z-plane perpendicularly. 

To be more specific, let 

C~(t, a, [3, y) ,  f ( t ,  e¢, [3, y) ,  ~(t, ~, [3, y) ,  X( t ,  a, [3, y) ,  Y(t ,  e~, [3, y) ,  2 0 ,  06 [J, y) )  (16) 

be a solution which stm-ts at (~, 0, 0, 0, [3, y)  6/21 when t = 0, i.e. 

:~(o, a ,  [3, }/) = a ,  ) ( 0 ,  ~ ,  [3, y )  = 0, ~(o ,  a ,  [3, ?,) = 0, (17)  
2(o,,x.[3, y )=0 ,  ~({},a,[3,×)=[3, 2(o,,~,[3,×)=×. 

The solution with ot = ~o, [3 = [3o, Y = Yo will be doubly symmetric periodic with period 4T if it hits the 122 plane 
after a time T, i.e. 

.~(T, or0, [30, Vo) = 0, )((T, u0, [3o, Yo) = 0, 7_(T, o~0, [30, Y0) = 0. (18) 

This solution will be nondegenerate if the Jacobian 

(T, e~0, [3o, Y0) (19) 
~}(t, o~, [3, y )  

has rank 3. 
It follows from the implicit function theorem that nondegenerate doubly symmetric periodic solutions lie in a 

one parameter family. Also, a nondegenerate doubly symmetric periodic solution can be continued in the parameter 
#.  In general, a nondegcnerate doubly symmetric periodic solution may not bc nondegenerate in the sense of  the 
previous section, i.e. a nondegenerate doubly symmetric periodic solution rnay have all its multipliers equal to 1. 
Also, a one-parameter family of  nondegenerate doubly symmetric periodic solutions may not be locally isolated 
since there may be nearby non-symmetric periodic solutions. 

in a similar manner the Hamiltonian of the three-body problem is invariam under reflections. Let ui = (xi, Yi, zi), 
vi = (Xi, Yi, Zi) for i = 0, 1, 2. Then the Hamiltonian H in (1) is invariant under the two reflections 

"]~1 : (Xi, Yi, Zi, Xi,  Yi, Zi) ?' (xi, --yi, --Zi, --Xi,  Yi, Zi) for i = 0, 1, 2, 
7~2 : (xi, Yi, zi, Xi,  Yi, Zi) - ;" (xi, - y i ,  zi, - X i ,  Yi, --Zi) for i = 0, 1, 2. 

In coordinates (rj, I'2, 1"3, Ri, R2, R3) used above in (8) these reflections are 

7-~1 : (rl, r2, 1"3, R1, R2, R3) ----> (rl, --1_.2, - r 3 ,  - R I ,  R2, R3), 
7~2 : (rl, r2, r3, RI, R2, R3) --> (rl, - r 2 ,  r3, - -RI ,  R2, --R3). 

It is easy to see that Ko in (9) is invariant under these reflections. 

(2o) 

(21.) 
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Our local coordinates on the reduced space are (~, r, tl, R) = (x, y, z, r, X, Y, Z, R) (recall r = r2, R = R2) and 
so the reflections on the reduced space are 

~1  : (x, y, z, r, X, Y, Z, R) > (x, --y,  - z ,  r, - X ,  Y, Z, --R),  

7-¢2 : (x, y, z, r, X, Y, Z, R) > (x, --y,  z, r, - X ,  Y, --Z,  --R).  (22) 

These symmetries are time-reversing symmetries of  the reduced problem; therefore, if (x (t), y (t), z (t), r (t)X (t), 
Y (t), Z(t),  R(t) ) is a solution, then so are ( x ( - t ) ,  - y ( - t ) ,  4-z(--t), r ( - t ) ,  - X  (--t), Y ( - t ) ,  7zZ(- t ) ,  -R ( - - t )  ). 
The fixed set of  these two symmetries are Lagrangian subplanes: 

/21 = {(x, 0, 0, r, 0, Y, Z, 0)}, /22 = {(x, 0, z, r, 0, Y, 0, 0)}. 

Again, if a solution of  the reduced problem starts in one of  these Lagrangian planes at time t ---- 0 and hits the other 
at a later time t = T then the solution is 4T-periodic and the orbit of  this solution is carried into itself by both 
symmetries - doubly symmetric periodic solutions. 

Let 

(:~(t, or, fl, y, 3), y(t ,  ~, fi, y, 3), ~(t, ~, fl, y, 3), 7(t, oe, fl, y,  3), 

J~(t, ~, fi, y, a), I?(t, or, fi, y, 3), Z(t ,  o~, fl, y, 3), R(t, o~, fl, y, 3)) (23) 

be a solution which starts at (~, 0, 0, a, 0, fi, y, 0) 6/21 when t = 0, i.e. 

~(o, o~, t~, ~, 3) = or, 7(o, oe, t~, y, a) = o, ~(o, o~,/3, ×, 3) = o, ~(o, oe, ¢~, ×, 3) = 3, 
(24) 

2(o ,  o e , ~ , × , 3 ) = o ,  Y ( o , ~ , ~ , y , O = ~ ,  2 ( o , o ~ , , t ~ , × , O = × ,  k ( o , ~ , ~ , × , a ) = o .  

The solution with o~ = o~o, fi = flo, Y = Yo, 3 ---- 3o will be doubly symmetric periodic with period 4T if it hits the 
/22 plane after a time T, i.e. 

y(T,  ao, rio, Yo) = 0, X(T,  ao, rio, Yo) = 0, Z(T,  oto, rio, Yo) = 0, /~(T, oto, rio, Yo) = 0. (25) 

This solution will be nondegenerate if the Jacobian 

0(7, 3), Z, /~)  " r  
~,-a-7-fl-~ ~) ( , oto, rio, yo, 3o) (26) 

has rank 4. 

It follows from the implicit function theorem that nondegenerate doubly symmetric periodic solutions of  the 
reduced problem lie in a one parameter family etc. 

Theorem. A nondegenerate doubly symmetric periodic solution of  the spatial restricted three-body problem whose 
period is not a multiple of  2zr can be continued into the reduced three-body problem. 

More precisely: 

Theorem. Let ~ = ~ (t), 77 = O(t) be a nondegenerate doubly symmetric periodic solution with period 4T of  the 
restricted problem with Hamiltonian (5). Assume that 4T ~ n2rr for all n ~ 77. Then the reduced three-body 
problem, the system with Hamiltonian (12), has a nondegenerate doubly symmetric periodic solution of  the form 

= ~(t) + 0(6) ,  7 /=  fl(t) + O(e), r = O(~), R = O(e) whose period is 4T -t- O(e). 
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Proof When e = 0 the reduced problem with Hamiltonian (12) has the doubly symmetric periodic solution 
---- ~(t), t / =  0(t), r = 0, R = 0 with period 4T. Let the general solution of the restricted problem which starts 

in/21 be (16) satisfying (17). Let the given doubly symmetric periodic solution ~(t), 0(t) correspond to 

d = d O ,  /3=riO, ~ = ~ ' 0 ,  

SO that (19) has rank 3. 
When s = 0 the general solution of the restricted problem which starts in 121 is 

(~(t, ot, fi, y),f~(t,d, fl, y),~(t ,d,  fi, y), r(t, 3) -- 8cost ,  
(X(t,d,/3, g) , f ' ( t ,d ,  fl, g) ,2(t ,d, /3,  g), R(t, 3)=--Ssint .  (27) 

This solution with oe0,130, )I0, 6 = 0 hits 122 when t = T and so satisfies Eqs. (25). Clearly the Jacobian 

3(y, 2 ,  Z,/~) "T, ( 3(y, 2, 2) 
~ , - a - [ - f i - ~  ( do,/30, Yo, O) = ik O(t, d,/3, y) (T, do,/30, To) 0 J (28) 

0 - sin T 

has rank 4 when T is not a multiple of st, and so this doubly symmetric periodic solution is nondegenerate when 
s = 0. By the implicit function theorem Eqs. (25) can be solved for s not zero but small. [] 

5. Appl icat ion f rom Jefferys to Soler 

Jefferys [5] considers the spatial restricted problem (5) as a perturbation of the Kepler problem in rotating 
coordinates by treating the mass ratio parameter/z as a small parameter. He shows that there are doubly symmetric 
circular solutions of the Kepler problem with arbitrary inclination which are nondegenerate and so can be continued 
into the restricted problem for small nonzero/z. 

Soler [15] considers the three-body problem with two small masses and one large mass. For him the three-body 
problem is a pemlrbation of two Kepler problems. He selects a circular orbit from each of the two Kepler problems 
with arbitrary relative inclination such that the pair is a nondegenerate doubly symmetric periodic solution of the 
two Kepler problems. Thus, he proved that there are truly three-dimensional periodic solutions of the three-body 
problem. Jefferys' paper is cryptic, but Soler's paper is a model of clarity. 

Since both Jefferys and Soler use a variation of Delaunay-Poincar6 variables, we need a coordinate-free definition 
of nondegenerate doubly symmetric periodic solution of the restricted problem. The phase space of the spatial 
restricted problem is an open subset of •6 considered as a symplectic manifold. Note that an anti-symplectic 
involution like ~1 or 7~2 always has a Lagrangian manifold as a fixed set - see [10]. Thus, E1 and E2 are three- 
dimensional Lagrangian submanifolds and (d, t ,  y) used in the definition of nondegenerate doubly symmetric 
periodic solution are just coordinates in the Lagrangian manifold El.  The image 2- of/21 under the flow of the 
restricted problem is locally a four-dimensional submanifold. It may intersect itself. 

If  Z intersects the other Lagrangian manifold/22 then the point of intersection lies on a doubly periodic solution. 
Say the point of intersection comes from the point with coordinates (d, 0, 0, 0, fi, y) on £1 as given in (16)-(18). 
Then (19) is just the condition that these two manifolds meet transversally. This gives an intrinsic definition of 
nondegenerate doubly symmetric periodic solution. 

Jefferys uses his variation of Delaunay-Poincar6 variables to define the local coordinates on Lagrangian subplanes 
E1 and/22. He also expresses the transversality condition (19) in these coordinates. He then selects a doubly 
symmetric circular orbit of the Kepler problem with arbitrary inclination and shows that it is nondegenerate. Thus, 
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it can be  cont inued into the spatial restr icted three-body p rob lem as a nondegenera te  doubly  symmet r ic  per iodic  

solut ion for  sma l l /x .  

Thus,  the theorem of  the last sect ion impl ies  that Jef ferys '  orbits can be cont inued into the reduced  three-body 

p rob l em for  e small  and nonzero.  These  are o f  course  Soler ' s  solutions. 
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