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1 Introduction

The literature of Hamiltonian mechanics has several special theorems
dealing with Hamiltonian systems that admit additional integrals in in-
volution. Two examples are: (1) If a Hamiltonian system admits p
additional independent integral in involution, then the algebraic multi-
plicity of -1 as a characteristic multiplier of a periodic solution is
greater than or equal to 2(p + 1) [3]; and (2) the integration of a Hamil-
tonian system of # degrees of freedom that admits p independent integrals
in involution can be reduced to the integration of a Hamiltonian system
of n — p degrees of freedom with p parameters and additional quadra-
tures [5]. After restating (2) in modern terminology, we shall generalize
these theorems by dropping the assumption that the integrals are in in-
volution. Recall that in the important example where the integrals are the .

three components of angular momentum the integrals are not in involu-
tion.

The key to these generalizations is found in [4]. It is well known
that Hamiltonians which are invariant under a group of symmetries define
flows which have additional integrals. Thus when studying such systems
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it is natural to study the flows restricted to the set where the integrals
. are constant. Smale observed that a subgroup of the full group ‘of sym-
metries leaves these sets invariant, and thus it acts as a group of sym-
metries for the flow on the sets where the integrals are constant. It turns
out that the case when the integrals are in involution corresponds to the
case where the group is abelian and the subgroup is the full group. The
generalizations of (1) and (2) above exploit the additional symmetry
of the flow on the sets where the integrals are constant.

Section 2 contains the statements of the main results of this chapter
along with several examples. Section 3 and 4 contain the proofs of the
theorems stated in Section 2.

2 General background and main results

First, we shall review the relationship between symmetries and integrals
to fix our notation and then state the main results. For further background
and details see Abraham [1]. ,

Henceforth all manifolds, functions, etc., will be considered C®. Let
M be a 2n-dimensional symplectic manifold with symplectic form
or {, }. The form 2 defines an isomorphism between the tangent space
T ..M and the cotangent space T,,*M for each m € M; let

b: T, M — T, *M: v — o, and 4. T, ¥M — T, M: v — o¥

denote this isomorphism and its inverse. For each function H: M — R
there is a well-defined vector field (dH)* on M; (dH)* is called the
Hamiltonian vector field generated by the Hamiltonian H.

Let G be a p-dimensional connected Lie group, 4 = 7,G its algebra
and ¥: G X M — M an action of G on M such that ¥(g, -): M — M
is symplectic for all g € G. Let a € 4 and ¢ be the one-parameter sub-
group of G generated by a. Then

YR X M—M: (t, m)— Y(e¥, m)

is a local Hamiltonian flow on M and so is generated by a local Hamiltonian
flow on M and so is generated by a local Hamiltonian vector field on M.
Assume that for each ¢ € 4 there is a globally defined function F,: M—R
such that (dF,)¥ generates the flow ¥,. Let a,, ..., q, be a basis for 4
and Fy=F,, ..., F,=F,, a fixed set of functions such that (dF,)*
generates the Hamiltonian flow ¥; = ¥,.
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ReMARK In Smale [4] the manifold M is the cotangent bundle of another
manifold M, and action ¥ is the natural extension of an action ¥, of
G on M,. In this special case, he found that there always exists globally
defined functions which generate the flows u;. Also there is a natural
way to fix the constants of integrations by defining the F; to be zero
on zero covectors. Thus in this case there is a natural way to specify
the F, uniquely, and this adds to the elegance of his treatment.

Let H: M — R be a Hamiltonian such that H(¥(g, m)) = H(m), for
all me M and g € G, i.e, H is invariant under the action of G. The
fundamental result relating symmetries and integrals is:

Tueorem 1 F, ..., F, are integrals for the flow ¢ generated by H.
(See [1] for the proof.)

ExampLE 1 Let M = R* X R}, G=R3 A=R% and ¥(g (%, 7))
= (x + g,7), where g€ G = R® and (x,7) € R® X R®. Let a;, a,, a;
be the usual basis vectors for 4 = R3, then y,(¢, (%, y)) = (x + ta;, y)
is the flow generated by the Hamiltonian vector fields

% = 0L,0y = a;, y=0L/dx=0, where I,=yTa;.

Thus if H(x + g, y) = H(x, y), or equivalently H is independent of
x, the flow generated by H has the three components of linear momentum
I,,1,,1I, as integrals.

ExampiE 2 Let M = R® X R%, G = SO;, 4 = s0;, and ¥(g, (x,¥))
— (gx, gy), where g € SOz and (x,y) € R® X R® Let

0 0 0 0 0 1 0 1 0
a1:<0 0 1), a2:< 0 0 0), a3:<——1 0 O>,
0 —1 0 —1 0 0 0 0 O

be the usual basis for so;. Then the flows
wi(t, (%, 7)) = (exp a;t x, exp a;t y)
are generated by the Hamiltonian equations
& = amxe = 0J;/0y, Y= ay = —0];/0x, where J; = yTax.

Thus if H:R® X R3— R is a Hamiltonian such that H(gx, gy)
— H(x, ), for allg € G, (x,5) € R® X R® then the flow generated by H
admits the three components of angular momentum J;, J;, f5 as integrals.
Thus J = x X v is a vector-valued integral with components [y, /2, /s
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Consider the map F= (Fy, ..., Fy): M — RP and let s € R? be a
fixed regular value of F such that N = F-(s) # (. Thus N is a submani-
fold of M of dimension 27 — p. Consider

G,= {geG:¥(gn) eN for all n € N}.

Clearly G, is a closed subgroup of G and hence is a Lie group. Let 4,
be the subalgebra of A corresponding to G, and dim G, = dim A4 = ¢.
Let aq, ... ,4a, be so chosen that @y, ..., 4, is a basis for As.

<ampLE 1 N is the affine subspace of R® X R defined by (x, y) e N
if y=s for the fixed s € R®. In this case Gy = G.

Exampie 2 Lets € RPand s = 0. Then N = {(x,9) e R*X R® 1 X
— s}. One can see that N is topologically S* X R?, since if s 40, x
can be chosen as an arbitrary nonzero vector in the plane orthogonal to s
and y can be chosen on a line in this orthogonal plane. Thus % is pa-
rametrized by R* — (0) = S§' X R! and y by R.

The subgroup G is the group of rotations with axis of rotation along s.
This follows from the fact that (gx) X (gy) = g(#-X y) for all g € SO;.
Thus G, is isomorphic to SO, or St

The group Gy acts as a transformation group on N, and so it is natural
to consider the quotient space B = N/~ where is the equivalence rela-
tion defined by n, ~ n, if there is a g € G, such that gn, = 7,. We will
denote equivalence classes by [#]. In general, B may not be a manifold
but in some interesting examples it is.

Exampre 1 Here N = {(x,y) :y = s}, Gy = R% and W: R x N—N:
(g, (%, 8)) = (x + g 9). Thus B is a point!

ExampLe 2 Here N= {(x,y) € R®* X R® 1a Xy = s}, where s~ 0.
Choose coordinates in R® so that s = (0, 0, s%), s3 = 0. Then N is a subset
of {(x,y) € R® X R® 5% =y°= 0}, i.e., IV lies in a 4-dimensional co-
ordinate plane. By ignoring the last component, let us consider N as
the subset of R? % R? such that xy? — x?y? = s In R?* X R?, introduce
the canonical polar coordinates

o2 = (x')? + (x%)2, 0 = tan—! x2/x%,

R = (aiyt +a¥%)o, O =wy" — &

(in classical notation R = ¢ and 6 = ). B is obtained by holding ©
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fixed and identifying points differing only in their & coordinate. Thus B

is coordinatized by ¢, 0 < g < o0 and R, —oo < R < oo, and so B:

is topologically R® However, as seen above, B inherited a symplectic
structure do A dR from M (cf. Theorem 3).

ReMARK Example 1 is typical of the case when the integrals Fy, ..., F,
are in involution, i.e., when {F;, F;} =0, where {,} denotes the
Poisson bracket. Since {F;, F;} = 0, the function F; is an integral for
the flow y; generated by (dF;)¥. Thus w,(¢, -): N — N for all ¢, and all
j=1,...,p. Since y,;(t, m) = ¥Y(exp a;t, m) and G is connected, it
follows that ¥(g, -): N— N for all ge G. Thus G = G,. Since
d{F;, F;¥ = —[(dF;)% (dF,)*], where [, ] is the Lie bracket, it follows
that G must be abelian, If dim G = idim M = #, then dim N = =,
and one would expect that B = N/~ would be zero dimensional.

The fact that G = G, when the integrals F;, ..., F, are in involution
seems to be the special property needed to prove the two classical results
stated in Section 1.

Now let H be a Hamiltonian on M and ¢: R X M — M the flow gen-
erated by (dH)*. Let n € N < M be such that ¢(¢, %) is a nonconstant
periodic solution of least positive period 7. Since ¢(T, ) = n, dp(T, n):
T,M — T,M (here the differential is with respect to the second argument
only), and the eigenvalues of this linear transformation are called the
characteristic multipliers of the periodic solution. The characteristic
multiplier 41 is particularly troublesome in perturbation analysis, so
one would like to know its multiplicity. The first result of this paper is:

Turorem 2 If dH(n) is independent of dFy(n), ..., dF,(n), then the
geometric multiplicity of 41 as a characteristic multiplier is greater than
or equal to p -+ 1, and the algebraic multiplicity of +1 as a characteristic
multiplier is greater than or equal to p + ¢ + 2.

RemArks Since this is basically a local result, it is unnecessary to

- assume that s = F(zn) is a regular value of F. If n is a regular point of F,

ie., dFy(n), ..., dF,(n) are independent, then one can find a small
neighborhood of the periodic solution such that s is a regular value of F
restricted to that neighborhood. The first statement about the geometric
multiplicity is well known [3], so the new result is the statement about
the algebraic multiplicity. If F,, ..., F, are in involution then by the
remark above G = G, so ¢ = p. Thus Theorem 2 is a generalization of
the first classical result in Section 1.
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Thus if one is studying a periodic solution of a Hamiltonian system
with symmetries one should expect the characteristic multiplier -1 to
have a high multiplicity. The classical approach is to reduce the dimension
of the problem by using the integrals; i.e., one studies the flow on N,
If Fy, ..., F,are in involution there is a classical local reduction which
goes even further (cf. the second theorem in Section 1).

The global version of this classical result is:

For each point n € N, let W, = span{dFy(n), ..., dF,(n)} < T,*M.
Then

T.N= W, = {reT,M:f(v) =0 for all fe W,}.

Let W= {» € T,M :v=u¥, uc W,}. Since {dF;(n), dF;(n)} = 0 for
i=1,...,p,and j=1, ..., ¢, it follows that

span{dF#(n), ..., dF}(n)} < W,° N W,*
Assume that
span{dF#(n), ..., dF#@n)} = W,° N W,# for each n e N.

TuroreM 3 Let N be a fiber bundle over B with fibers G,. Then B
is a symplectic manifold with symplectic form w and if 7: N — B is the
projection dn#: w — 2| N. If b € B is such that n(n) = b, then T},B
is isomorphic to W,°/W,° N W,*.

Also one wants to study the flow on B which comes from the flow
o generated by (dH)# on M. Let N and B be as above. Since ¢ | R X N
is invariant under the action of G, ie., ¥(g, @(t, n)) = ¢(t, ¥(g, n)),
for all te R, n e N, and g € G,, the flow projects to a flow { on B.
Namely £(t, [1]) = [¢(¢, n)], where [n] € N/~ = B. Also H| N is in-
variant under the action of G,, i.e., H(n) = H(¥(g, n)), for all g € G,
and n € N. Thus K([#]) = H(n), [#] € B is a well-defined function on
B. By the assumption that N is locally trivial over B, it is clear that {
and K are smooth. The next natural result is then:

TuroreM 4 The flow ¢ on B is generated by (dK )%, where § is the
isomorphism defined by w.

Before proceeding with the proofs of these theorems, it would be in-
structive to look at a theorem of Poincaré on the existence of “periodic”
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solutions in the three-body problem. We claim no improvement on Poin-
caré’s result, but the general theorems given above give a nature inter-
pretation to his theorem [3].

ExampLE 3 (per1od1c orbits of the first kind) Consider the planar
three-body problem. Let the particles have masses m,, m;, m,; position
vectors 7,,7,, 7y, and momentums Do = my¥y, Py = myiy, Do = my¥y, TE-
spectively. The Hamiltonian of the problem is

=>: |y IPf2m, — Y T (1)

0<j<F=<2 7y —7e |l

where the gravitational constant is taken to be 1. It is clear that

H(TO"]"g’ 71+g7 £ +g’Po>P1,P2) = H(70’7’1,7’2,P0)P1a]52)
for all ge R? -

so H is invariant under the action of R? on (R?)® X (R?%) by translations
in the first arguments. As in Example 1, this implies that the total linear
momentum p, + p; 4 P, is a vector-valued integral. Let us use the
standard device of changing coordinates so that one new position vector

represents the position of the center of mass. Make the linear symplectic
change of variables

Uy = Moly - My¥y 1 My¥y, Vg = po + p1 -+ P,
Uy = —moro + (1 — my)ry — myry, vy = —(my/my)po + P, (2)
Uy = —Moty — my7y + (1 — my)ry, vy = — (my/my)py + Py

where we have assumed that m, - m, + m, = 1. After some computa-.

tions we find that the Hamiltonian in the new coordinates is independent
of uy, 80 v, is an integral (total linear momentum). By changing the
origin of our coordinate system by a Galilean transformation, we may
assume that v, = 0. By taking v, = 0 and forgetting about u,, we pass

in the classical way to the quotient space (R2)? x (R2)% The new Hamil-
tonian is

He oty LB Ry o)

my My

{ Moy M2y,

| (o + my )y + mgu, “ I mlul + (my - my)u, ||
+ _ﬂnz___} | (3)

|y — uy ||
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We wish to study the periodic solutions of this system when 7 is near 1
and m, and m, are small.

We shall consider Eq. (3) as defining the basic system to be studied.
One can see that the Hamiltonian A is invariant under the action (g,
(1ty, gy V1, V) —> (g1, LU, &1, gv,), where g € SO,, so as in Example
2 the equations defined by Eq. (3) admit the total angular momentum
J = u; X v, + uy X v, as an integral. Since J is a scalar (a one-vector)
it is clearly in involution, so SO, acts as a transformation group on

Ny = {(ul,uz,vl,‘vz) e (R*)® X (R¥? 1 ] = uy X vy + Uy X Vy)
for J#0.

It will be instructive to compute the topological type of N and B = N/~
Let O be the space of quaterians and consider (R?)* X (R?)? as co-
ordinatized by Q x Q as follows: To

(u117 u12> uzl» uzz: 7)11) rZ)12, 7)21’ 7)22) € (RZ)Z X (R2)2>
associate the pair of quaterians (v, y) € O X Q as follows:
x = u + w -+ wly + utk and Yy = v+ 0,7 — 0.5 + vtk

One computes that yx = J -+ af 4 fj - vk, where | = u; X0y + 3 X0y,
and «, f, y are combinations of the components of u,, ty, v1, V. Thus
for a given J % 0, the space N < Q X Q is given by

{(%,) e O X Q :x#40 and y = (J + oz + Bi -+ yR)x11.

Thus N is coordinatized by x € O — {0}~ S* X R'and (¢, §, ) € R%
Thus N is topologically just 5% X R*

The action of SO, on (R%) X (R?) is equivalent to the action of S5*
on O x Q given by (6, (x,3)) — (r(0)x, yr(6)7), where 0 € S' and
7(0) = cos 6 + isin 6. Thus we identify points

(%, {J + i + f + vk}a) and (r(O), {J + ai 4 fj + yE}(r(0)%)7)

on N. Note that the identified points both have the same coordinates in
the last three places, namely o, f, and . Thus B = (Q — {0}/~) X R?
where %, ~ %,(%;, , € Q) if there is a 6 € S* such that x; = 7(0)X,.
For each sphere about 0 € Q, the action (#(6), x) —r(0)x is just the
standard action giving rise to the Hopf fibration, so (Q — {0}/~)
— S x R. Thus B= 5% X R~

Return to the perturbation problem: Since these equations admit an
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additional first integral, a periodic solution will have characteristic
multipliers +1 of at least geometric multiplicity 2 and algebraic multi-
plicity 4. Thus a straightforward application of the implicit function theo-
rem would fail unless the integral and the symmetry are taken into
account. We shall accomplish this by doing the perturbation analysis on B.

Let us assume for simplicity that m, = m, = ¢ and make the change
of scale v, — ev,, v, — ev,. The new Hamiltonian becomes

e~tH = H; + O(e), (4)
where
Hy = 3{llog P+ lloa P} — oy [0 — [lup || (5)

Thus to the first approximation, the equations of motion are like two
central force problems. We note that the change of scale leaves the
position vectors #; and u, of order 1, and since v, and v, are momentum
the velocities will also be order 1.

We wish to show, following Poincaré, that the circular solutions of
this pair of central force problems can be continued into the full three
body problem for & 5= 0. In order to do this we shall use the polar co-
ordinates of Example 2 to introduce local coordinates about these periodic
solutions in B. Use the polar coordinates g;,0;, R; = ¢;, @; = 0,

=1, 2, so that
R e R ©

and /= 6, -+ 0,. Change coordinates by ¢, = }(6, 4 0), p, = (6, —0,)
Dy = 0, + 6,, O, = 60, — O,. Note that ¢, and @, are periodic of
period z. Thus

_ L n,, (@) 1 Vfnoe, (=D 1
= T{Rl + 40,2 } 3 T3 1R2 + 40,° } 0s
- (7)

Note that we have replaced @, by J, which we will consider as a constant.
The action of SO, in these coordinates is just a translation of @1, SO
we may drop ¢;. Thus we have the local symplectic coordinates g, , 0,
@y, Ry, Ry, @, on B. The equations of motion for ¢ = 0, on B are then

hm R, B UEPR 1, (oo 1

40,% . 0:% ’ 2 40.° 0. 7

oo AU FP)  (J=DP) 4 _
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Since these are the equations of first approximation, we need only com-
pute the characteristic multipliers of the circular orbits on B, and if +1
has algebraic multiplicity 2, then we can be sure by the usual continua-
tion theorems that these periodic solutions will persist when & 7 0 and ¢
small.

By the last equation, @, is a constant. Thus the equations for g4, R,
are independent and have a critical point at 0,° = (] + D,)% o,°
= (] — @,)% R, = R, = 0. These, of course, correspond to the cir-
cular orbits on B. The linearized equations about these critical points are
0; + wo; = 0, where w; = 8(J + @,)* and w, = 8(J — D,)~% The

time 7" for ¢, to increase by 7 is

po [ UEOPU 2 )
AU -GF— U+ oF

Thus the characteristic multipliers of these periodic solution on B are
+1, +1, exp o, T, exp —w,Ti, exp w,Ti, exp —w,T7. 'Thus we must
require that w;T = k2x, k € Z. If 7;,j = 1, 2, represents the period of
the two circular solutions in the central force problem, then one calculates
that

w, T = 2m7y(Ty — T1)7" and wo, I = 2mti(1y — 75)7 L
Thus the multipliers -1 will have algebraic multiplicity 2 if
7ty =1 — 1]k for ke Z. 9)

Thus if (9) is satisfied then for ¢ small, there will exist a period solution
of the full three-body problem in the reduced space B, which is near
this circular orbit. However these periodic solutions may represent quasi-
periodic solutions in the full phase space (R?)* X (R?)%

3 Characteristic multipliers
Use the notation of the previous section: Let the flow ¢ defined by
the Hamiltonian H on M be such that ¢(t, m,) is T periodic, where T

is the last positive period. Then the eigenvalues of

X =

& ,
= (T, mo): T, M — Ty, M

are called the characteristic multipliers of the periodic solution @(2, o)
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Let
0 O,
0= Om)= @Hm), ;=5 (0, m) — (ap,
t=1,...,p,
and assume that o, oy, -+« 0y are linearly independent. Since the

Poisson bracket of H with F; is zero, the flows ¢ and w; commute, so
@4, w(s, m)) = (s, p(t, m)). Differentiating this last expression with re-
spect to s and setting t =T, s = 0, m —= my yields Xo; = oy, i =1,
2, ..., p. Also g¢(t, (s, m)) = @(t, (s, m)) yields in the same way
Xog = ay. Thus o, o, ... » & are linearly independent eigenvectors
of X corresponding to the eigenvalue -1, and so the geometric multi-
plicity of -1 as a characteristic multiplier is greater than or equal to
? + 1. This proves the first and well-known part of Theorem 1.

Now H(y,(t, my)) = H (o). Differentiating this expression with re-
spect to ¢ and setting ¢ = 0 gives

0 oy,
- H(mo)(a_“’; (0, m0)> = (%) = {ag, o5} = 0.
Also {ay, g} = 0. Also

Fi(wj(t? mO)) = Fi(m0)7 for i= 1, ... b, and ] =1, ... ) 4.

Differentiating this expression with respect to ¢ and setting ¢ = 0 gives
OF; oy,
T )T (0, m)) = xt(e) = (o, 05} = 0,

Thus in summary, we have o, e, ..., ap are linearly independent
eigenvectors corresponding to the eigenvalue -1 such that {og, a;} = 0
fori=0,1, ... ypandj=0,1, ..., - The second part of Theorem 1
follows from these facts and the lemma given below. The proof of this
lemma follows the eloquent discussion of characteristic multipliers found
in [2].

Let V be a symplectie linear space and X: V' — ¥ a symplectic linear
transformation. Let 7, = ker(X — I}, It is well known that for some
least integer k one has T = Nr+1 = Mip2 = + -+, 80 let 5 = ;. The
geometric multiplicity of -1 as an eigenvalue is the dimension of M4
and the algebraic multiplicity of 41 as an eigenvalues is the dimension of

7. Let { be a subspace of #, and ¢ a subspace of ¢ such that {g {y=0.
Then we have
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Lemma 1 dim % > dim ¢ + dim &.

ReMARK The second part of Theorem 1 follows directly from this lemma
taking

¢ = span{og, 0y, ..y Op} and £ = span{ag, 0y, .., 0}

Proof Let V* be the dual of 7, X* the dual of X, &7 = range(X — )%,
Dp* = range(X* — ¥, n* = ker(X* —I), and n* = ker(X* — I)¥,
Foranyve V,letob = {v, -} € V* Forany W < V,let W= {f € V*:
f(W) =0}, and for any W < V¥, let W°= {v e V :f(v) = 0 for all
f e W}. Recalling the basic facts of the Jordan decomposition theorem,
V=n@P V*=n*DRF* F° = n* and 9° =F*:

(a) GP* < (° Since n > n; © {, we have ° > n° = GP*,

(b) & < (° Letve fandu € (. Then 0 = {v, u} = 2(u), so vb € (°.
(c) & NnGP* = {0}. Letve { <y, s0 Xov =90 or X' = v. Then
if y € V, we have

W(y) = {o,y} = (X0, 9} = {v, Xy} = (X*)(y),

so X#*pb = ob. Thus ¢F < % However & < {Pn* < ¥ and
n* N P* = {0}.

Now by (a)-(c), we have
[° > P* @ &,
dim ¢° > dim &2* - dim &b,
dim V — dim ¢ > dim ¥V — dim n* 4 dim &P,
dim * > dim ¢ - dim &,
dim 9 > dim ¢ + dim ¢&.

4 The reduced space

Again use the notation of Section 2. Since s € R? is a regular value of
F=(F,...,F)M—R, N=F-(s) is a submanifold of M and
G,= {ge G :¥(g,n)e N forall m € N} acts as a transformation group
of N. In this section, we shall explicitly use the assumption that IV is
a fiber bundle over B with fiber G,. Let n: N — B be the projection map.
The first step is to show that B is a symplectic manifold. The symplectic
form £ of M restricts to a (possibly degenerate) two-form Qy on N.
Since 2 is invariant under the action of G; and by the local product
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structure of IV, it is clear that there is a smooth two form w on B such
that dn*(w) = 2. It remains to show that w is symplectic.

Let V be a symplectic linear space with symplectic inner product
{, }, V* the dual of ¥, and W < V'* a linear subspace. Let

We={veV:f(v)=0 for all fe W} and Wt= {v¥:0e W}

Levma 2 For [x], [y] € WO/(W¥ n W°) the bilinear form given by

{=], [¥]1} = {x,y} is a well-defined symplectic inner product on
We|(W# n W°).

Proof If v e W# and u € W°, then {v,u} = 0 by definition. Thus if
x,y € W° and & n e W¥ N W° one has

{[x_i" 5]’ [y + 77]} = {x"l" &Y+ 77}: {x>y}: {['x]’ [y:]}>

so the form is well defined.

Now assume that {[«], [y]} = 0 for all [y] € W°/(W° N W#). Then
{#, y} =0, for all y e W°, or {x, -} € W. Thus x € W¥ or [x] = 0.
Thus {, } is nondegenerate on W°/(W° n W#).

REMARK Theorem 3 follows from this lemma. If b € B andn € N are
such that n(n) = b, let V = T,N and W = span{dF,(n), ..., dF,(n)}
c V* = T,*N. Clearly W°= T,N. dn: T,N — T,B, and the kernel
is the set of all v € T, N such that

V= —g? (e, n), where o« € A4,.

‘That is, the kernel is span{dF,(n)%, ..., dF,(n)%}, which is assumed to
be W° n W4,

Recall that the flow ¢ | NV is invariant under the action of G, and so
defines a flow { on B. Also H| N is invariant under the action of G,
and so defines a function K on B. By Theorem 3, we know that B has
a well-defined symplectic structure, so (dK)¥ is a vector field on B.
'To prove Theorem 4, we must show that (dK)# generates ¢ or

d ; i
= (0, b) = (@K@,

Let v = dH(my): V— R; then v | W° = ¢ = d(H|N)(m,): W° — R.

By construction '

u = dK(be): Wo[W° N W#— R: [x] — 3(x) = v(x).
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Let

d
w = vt = — (0, mo).

By construction, 2 = (d)dt)t (0, by) = [W]. Now
U([x]) = o(x) = {w, 0} = {{=], [x]} = 2*([x]),

so u = &Y or
b

K (by) = (%-f— (©, b0)>

Thus dK# does generate { and Theorem 4 is established.
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