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1. Introduction.

In the third of a series of papers where Poincaré [5] laid the foundations of the geometric
theory of differential equations, he studied the problem of centers by using a method which
is now called normalization. He considered a two dimensional, autonomous, analytic system
with a critical point at the origin which to the first approximation is a harmonic oscillator.
In order to study the stability of the critical point he produced a series of transformations
which brought the equations into a simple form to successively high order in the series
expansion (Theorem 1.1 below). At each stage in the process two new terms are added to
the equations in normal form, a frequency correction term and an amplitude correction term.
If a amplitude correction term actually appears with a nonzero coefficient at some order then
the amplitude either steadily decreases or steadily increases near the critical point so the
critical point is either asymptotically stable or asymptotically unstable. In this case after a
finite number of steps the stability or instability of the critical point is decided.

It remained the case where at every order the amplitude correction term was zero. Poincaré
showed that in this case the infinite series of trans- formations actually converged so in the
new limit coordinates the amplitude was constant and the origin was a center (Theorem 1.2
below). This result is usually referred to as the Poincaré center theorem. A careful proof
using the method of majorants can be found in Siegel [6] or Siegel and Moser [7]. This was
the first in a long series of works on the convergence of normal form transformations. The
definitive work on the convergence of normal form transformations is Brjuno [1, 2].

In Moser [4] all the necessary ingredients for a simple contracting mapping proof of the
original Poincaré center theorem are given. We observe in this note that Moser’s proof yields
Poincaré’s center theorem and a slight generalization to the Ck category. The same proof
gives a partial Ck version of the theorem. In the Ck case the equivalent of being formally a
center is meaningless but a symmetry or an integral will suffice.

To be specific let U be a neighborhood of the origin in R2, x ∈ U , f : U → R2 be Ck or
real analytic with f(0) = 0,

Df(0) = A =

(
0 1
−1 0

)
,

f(x) = f(x) −Ax, and ẋ = dx/dt. We consider the system of equations

(1) ẋ = f(x) = Ax + f(x).
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The linearized system obtained from (1) by setting f = 0 is the equation of a harmonic
oscillator written as a system. We seek a near-identity change of variables x = u(y), u(0) = 0,
Du(0) = I, which reduces (1) to

(2) ẏ = g(y) = Ay + g(y)

where g is in normal form, i.e.

(3) g(eAty) ≡ eAtg(y) or Dg(y)Ay ≡ Ag(y).

If equation (2) is in normal form then the equations written in standard polar coordinates
are independent of the polar angle and conversely. That is: if y1 = r cos θ, y2 = r sin θ then
(2) is in normal form if and only if the equation (2) in polar coordinates are of the form

(4) ṙ = α(r), θ̇ = −1 + β(r).

The linear system is obtained by setting α(r) ≡ β(r) ≡ 0 in which case all solutions are

periodic with constant amplitude since r is constant and constant frequency since θ̇ is con-
stant. The function α(r) can be considered as a correction to the amplitude equation and
the function β(r) can be considered as a correction to the frequency equation. In the case
when (4) is analytic

α(r) =
∞∑

k=1

akr
k.

If α(r) 6≡ 0 then for small r, α(r) is of one sign and a negative sign implies the solutions tend
to the origin as t increases so the origin is asymptotically stable and similarly a positive sign
implies the solutions tend away from the origin as t increases so the origin is unstable

Theorem 1.1. If the f in system (1) is a power series (formal or convergent) then there is
a formal power series u(y) = y + · · · such that the change of coordinates x = u(y) reduces
(1) to (2) where (2) is in normal form, i.e. g satisfies (3).

Theorem 1.2. If the f in system (1) is real analytic and the formal transformation give in
Theorem 1.1 is such that α(r) ≡ 0 in (4) then the formal transformation given in Theorem
1.1 is convergent.

An integral I(x) for (1) is nondegenerate if it is a perturbation of the energy integral for the
harmonic oscillator, i.e. if I(x) = xTx/2 + · · · . If (1) is Hamiltonian then the Hamiltonian
itself is a nondegenerate integral for (1). If (1) admits a nondegenerate integral then it is
easy to see that the normal form has α(y) ≡ 0 so the following follows easily from Theorem
1.2.

Corollary 1.1. If the f in system (1) is real analytic and the system admits a nondegenerate
integral then the formal transformation given in Theorem 1.1 is convergent.

Let R be the 2× 2 matrix R = diag (1,−1). The system (1) is called reversible if f(Rx) =
−Rf(x) or equivalently f(Ry) = −Rf(y). A transformation x = u(y) is called R-preserving
if u(Ry) = Ru(y). It is easy to check that an R-preserving transformation takes a reversible
system to a reversible system. It is easy to see that a reversible system in normal form has
α(y) ≡ 0.
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Corollary 1.2. If the f in system (1) is real analytic and reversible then the formal trans-
formation given in Theorem 1.1 is convergent. Moreover, the transformation x = u(y) is
R-preserving.

In Theorem 1.2 or Corollaries 1.1 and 1.2 the normal form is further restricted. In this
case the equations are of the form

(5) ẏ = Ay + a(|y|2)Ay

where a(ζ) is a scalar, real analytic function of a single variable. Note that the change of
the dependent variable give by dτ = (1 + a(|y|2))dt transforms (5) to the linear equation
dy/dτ = Ay.

The formal transformations which reduce the system (1) to (2) are not unique and one
cannot expect all such transformations to converge. The convergent series given in Theorem
1.2 will satisfy additional conditions of a technical nature given later. We will define reversible
and nondegenerate later; either of these conditions insure that α(r) ≡ 0 and so the corollaries
follows from Theorem 1.2. Theorem 1.2 is Poincaré’s center theorem. We shall give a
new proof of Theorem 1.2 based on the lemmas in Moser [4]. The concept of a formal
transformation does not make sense in the Ck case so we have no analog of Theorem 1.2 in
the Ck case, but we do prove a Ck version of Corollaries 1.1 and 1.2.

2. The Lemmas.

Here we shall outline the essential lemmas we shall need to prove the theorems and
corollaries discussed in the introduction. In some cases an outline of the proofs will be
given and the reader is referred to Moser [4] for a more complete proof and the moti-
vation. Let δ > 0 be given, Nδ = {y ∈ C2 :| y |< δ},and define the Banach space
Aδ = A = {u : u : Nδ → C2, u(0) = 0, u bounded and real analytic } with the supre-
mum norm. Let Mδ = {y ∈ R2 :| x |≤ δ} and Ck = C = {u : Mδ → R2, u(0) =
0, u has continuous derivatives to the kth order }, k ≥ 1, with the usual supremum norm
on the derivatives. Let Bδ = B be either of the Banach spaces A or C.

Lemma 2.1. For each g ∈ B there exists a unique pair u,v ∈ B such that

(6) Du(y)Ay − Au(y)− v(y) = g(y)

(7) Dv(y)Ay − Av(y) = 0

Moreover, ‖u‖ ≤ ‖g‖ and ‖v‖ ≤ ‖g‖.
Outline. Moser shows that the solutions are given by the formulas

u(y) =

∫ 1

0

se−Asg(eAsy)ds

and

v(y) = −
∫ 1

0

e−Asg(eAsy)ds

and he verifies the uniqueness of the solutions.
Remark 1. Since

d

dt

{
e−Atv(eAty)

}
= e−AtDv(eAty)AeAty − Ae−Atv(eAty)
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formula (6) implies

(8) v(eAty) = eAtv(y).

This implies v(y) = {a(y)I+b(y)A}y where a and b are scalar real analytic or Ck and satisfy
a(eAty) = a(y) and b(eAty) = b(y). To see this simply write down the equations for and b in
terms of the two components of v and solve.

Remark 2. It is easy to see that if g is reversible, i.e. g(Ry) = −Rg(y) then so is v. Also
u is R-preserving, i.e. u(Ry) = Ru(y).

Let N ′
δ = {(y, λ) ∈ C2×C1 : ‖y‖, |λ−1| < δ}, and define the Banach space A′

δ = A′ = {u :
N ′

δ → C2, u bounded and real analytic } with the supremum norm. Let M ′
δ = {(y, λ) ∈ R2 :

‖y‖, ‖λ−1‖ ≤ δ} and Ck = C = {u : M → R2, u has continuous derivatives to the kth order }
with the usual supremum norm on the derivatives. Let B′

δ = B′ be either of the Banach spaces
A′ or C′.

Lemma 2.2. Let f ∈ Bη, f(0) = 0, Df(0) = 0. There exists a δ < η, u ∈ B′
delta, and v ∈ B′

δ

such that

(9) D1u(y, λ)Ay = λ{Au(y, λ) + f(u(y, λ))} + v(y, λ)

(10) D1v(y, λ)Ay −Av(y, λ) = 0

Moreover, D1u(0, λ) = I, the 2 × 2 identity matrix, and D1v(0, λ) = (1 − λ)A.

Outline. Define F (u) by

F (u) = λ{Au(y, λ) + f(u(y, λ))} − Au(y, λ)
= (λ − 1)Au(y, λ) + f(u(y, λ))

and L(u, v) by

L(u, v)(y, λ) = Du(y, λ)Ay − Au(y, λ)− v(y, λ).

So we must solve L(u, v) = F (u). In the analytic case by Lemma 2.1 the operator L has a
bounded inverse and by taking δ sufficiently small F has a small Lipschitz constant so the
contracting mapping principle can be applied to show there is a fixed point and the fixed
point is analytic. In the Ck case first show the existence of a continuous solution of this
operator equation and the operator equation for the formal derivative of u and v by the
contracting mapping principle. Then use estimates to show that the formal derivative is the
actual derivative. The argument is standard but see Moser [4] for more details. An easier
proof can be based on the differentiability of the composition map as given in Franks [3].

Remark 1: If f is reversible and u is R-preserving then f ◦ u is reversible and also the
limit of reversible functions is reversible. Therefore since the solution of (4) and (5) are
obtained by limits of iterations if f is reversible then so is v and u is R-preserving.

Remark 2. Moser [5] claims that the estimates can be made uniform in k the order of
differentiability and so if f is C∞ then so are u and v.

Lemma 2.3. Continue the assumptions and conclusions of Lemma 2.2. There exist a real
analytic or Ck function λ(y) for ‖y‖ < α, α < δ, such that if we define u(y) = u(y, λ(y))
and v(y) = v(y, λ(y)) then

(11) Du(y)Ay = λ(y){Au(y) + f(u(y))}+ v(y)
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(12) Dv(y)Ay − Av(y) = 0

(13) Du(0) = I, Dv(0) = 0, λ(0) = 1

(14) Dλ(y)Ay = 0, λ(eAty) = λ(y), (v(u), Ay) = 0.

Proof. Let u(y, λ) and v(y, λ) be as given in Lemma 2.2. As in the above remark (10)
implies v(eAty, λ) = eAtv(y, λ) or v is of the form v(y) = {a(y, λ)I + b(y, λ)A}y where a and
b are scalar real analytic or Ck. By the moreover because of Lemma 2.2, a(0, λ) = 0 and
b(0, λ) = 1 − λ. Consider the function

h(y, λ) = (v(y, λ), Ay) = yT{a(y, λ)I + b(y, λ)AT}Ay = b(y, λ)yTATAy.

By the implicit function theorem we can solve h(y, λ) = 0 for λ as a function of y, let λ(y)
be that solution. Since

h(eAty, λ) = (v(eAty, λ), AeAty)
= (eAtv(y, λ), eAtAy)
= (v(y, λ), Ay) = h(y, λ)

both λ(y) and λ(eAty) are solutions of h(y, λ) = 0 so by the uniqueness of the solutions given

by the implicit function theorem λ(y) = λ(eAty). This gives all the formulas in (14). (9)
and (14) imply (11) and (10) and the first formula in (14) imply (12). �

Remark: The two remarks following Lemma 2.2 hold here also. In the reversible case
λ(Ry) = λ(y).

3. Proof of The Center Theorems.

Let f ∈ B be given and u, v, λ as given in Lemma 2.3. Then the change of coordinate
x = u(y) transforms

ẋ = λ(u−1(x)){Ax + F (x)}+ v(u−1(x))

to the linear equation

ẏ = Ay.

Use λ to change the time parameter by letting µ(x) = 1/λ(x), dτ = λ(x)dt, ′ = d/dτ so
x = u(y) transforms

x′ = Ax + F (x) + µ(u−1(x))v(u−1(x))

to

y′ = µ(y)Ay.

Thus x = u(y) transforms

(15) x′ = Ax + f(x)

to

(16) y′ = µ(y)Ay + Du−1(y)v(y).

If Du−1(y)v(y) ≡ 0 then equation (16) is in normal form by the remarks in the introduction
and (14). Thus we must show under the various assumptions on (15) that v(y) ≡ 0.
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Proof of The Classical Center Theorem, Theorem 1.2. Assume that f is real analytic and
hence u, v, λ are also. Assume v is not identically zero. Since v(eAty) = eAtv(y) and v(y) =
a(y)y the series expansion for v starts with a term v(y) = γ‖y‖2ny + · · · with γ 6= 0. Since
Du(0) = I equation (16) looks like y′ = µ(y)Ay + γ‖y‖2ny + · · · . But this extra term is a
term which establishes asymptotic stability or instability at a finite order since the derivative
of the Liapunov function V = yTy/2 is

V̇ = γ‖y‖2n+2 + · · ·

which is sign definite since γ 6= 0. Or if you like a different proof, change to polar coordinates
r, θ and find that the r equation would be

ṙ = γr2n+1 + · · · .

Since the equation is formally a center γ = 0. Thus if (15) is formally equivalent to a center
then v(y) ≡ 0 or (15) is transformed into normal form by x = u(y). �

Proof of Corollary 1.1. As stated before the concept of being formally a center is meaningless
in the Ck case but the Corollary 1.1 does make sense in the Ck case. Therefore we shall
give a proof of this corollary which does not depend on the formal argument so holds in
the Ck case also. Assume that (15) has an integral of the form I(x) = xTx/2 + · · · . Since
Du(0) = I, (16) has a integral of the form

J(y) = yTy/2 + · · ·

but

J ′(y) = 2yT{µAy + Du−1(y)v(y)} = 2a(y)yTy + · · · = 0

implies a(y) ≡ 0 for small y. �

Proof of Corollary 1.2. Let R be the 2 × 2 matrix, R = diag (1,−1). By the remarks in
the previous section the function v is reversible and u is R-preserving. The function λ and
hence µ satisfy λ(Ry) = λ(y) and µ(Ry) = µ(y). Since a R-preserving transformation takes
a reversible system to a reversible system equation (16) is reversible. v is reversible and
v(y) = a(y)y so v(Ry) = a(Ry)Ry = Ra(y)y = −Rv(y) = −Ra(y)y and a(y) = −a(y).
Thus v(y) ≡ 0. �

References

[1] Brjuno, A. D., Analytical forms of differential equations, Trans. Moscow Math. Soc., 1971, 131-288.
[2] Brjuno, A. D., Analytical forms of differential equations II, Trans. Moscow Math. Soc., 1972, 131-

288.
[3] Franks, J., Manifolds of Cr mappings and applications to differentiable dynamical systems, Advances

in Mathematics Supplementary Studies 4, Acad. Press, New York, 1979, 271-90.
[4] Moser, J., Periodic orbits near an equilibrium and a theorem of Alan Weinstein, Comm. Pure Appl.

Math. XXIX, 1976, 727-747.
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