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Abstract. This note shows that to an area preserving map with
a fixed point at the origin whose multipliers are n-th roots of unity
there is associated a generating function which has an n-fold sym-
metry. The critical points of the function other than the one at
the origin correspond to periodic points of the map of period n.
A maximum or minimum of the generating function corresponds
to an elliptic periodic point of the map and a saddle point of the
generating function corresponds to hyperbolic periodic point of the
map. Thus the study of periodic points is reduced to catastrophe
theory with an n-fold symmetry.

1. Introduction.

Poincaré [12] associated a generating function to an area preserving
map of a subset of the plane with the property that fixed points of the
map correspond to critical points of the generating function. In partic-
ular a maximum or minimum of the generating function corresponds
to an elliptic fixed point of the area preserving map and a saddle point
of the generating function corresponds to hyperbolic fixed point of the
map. Thus a rough idea of the dynamics of the area preserving map
can be obtained by plotting the level curves of the generating function.
Of course Poincaré’s construction of the generating function is local
and there are some mild eigenvalue conditions imposed. See Meyer [9]
for details.

In my 1970 study of the generic bifurcation of periodic points of area
preserving mappings I use Poincaré’s generating function to analyze
the bifurcations of fixed points of a map since the bifurcation of critical
points was well studied in catastrophe theory. Catastrophe theory gave
a nice clean solution to that part of the problem. For the bifurcation of
periodic points of higher period I used normal form methods to study
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the bifurcations. As is well known the normalizing transformation does
not converge in general, but it does provide enough information to eke
out the nature of the bifurcations – an adequate but not aesthetic
solution. In the intervening years normal form methods have been
used by many authors on a variety of problems. Also the methods of
catastrophe and singularity theory have been adapted to bifurcation
problems [4, 6, 7]. The methods are distinct, but yield the same results
in general. I discuss the interconnections between the methods below.

In this note I will show that to an area preserving map with a fixed
point at the origin whose multipliers are n-th roots of unity there is
associated a generating function which has an n-fold symmetry. The
critical points of the function other than the one at the origin corre-
spond to periodic points of the map of period n. As with Poincaré’s
generating function a maximum or minimum of the generating function
corresponds to an elliptic periodic point of the map and a saddle point
of the generating function corresponds to hyperbolic periodic point of
the map. Thus the study of periodic points is again reduced to catas-
trophe theory but now the functions must have an n-fold symmetry.

This result is carried out in detail in Bridges and Furter [4] using
a Lagrangian variational formulation pioneered by Aubry [3]. Those
schooled in singularity theory may find their presentation easier, but
I think a differential equationists will find the proof given here closer
to their heritage. The construction of the generating function uses the
classical technique called the Liapunov-Schmidt method or the alter-
native method by Hale – see Chapter IX of Hale [8] for details and
historical remarks. Here I will modify the presentation of this method
as given in Moser [11] to the present problem. Moser makes it very
clear that his proof carries over to the n-degrees of freedom problem
with the only addition expence being some more notation. Considering
the 2-dimensional problem simplifies the presentation without loss of
essential features.

In the next section, Section 2 , the relation between periodic systems
and Poincaré maps for Hamiltonian systems is summarized and some
standard results about normal forms for periodic Hamiltonian systems
are given. This gives some motivation for the results presented later.
Section 3 sets the notation and states the main result of the paper
about the existence of the generating function. In Section 4 only a
sketch is given of the proof because it is only a minor modification of
the proof given in Moser [11] and his proof is straight forward. Section 5
indicates some extensions and applications of the main result.
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2. Periodic Systems, Mappings, and Normal Forms.

Most of the results of this section are well known and can be found in
Meyer and Hall [10]. The page numbers refer to that book. Bifurcations
occur in systems which depend on various parameters, but for the time
being the dependence on parameters of the various maps and equations
will be suppressed.

Let O be an open neighborhood of the origin in R2 and P : O → R2

be a smooth area preserving mapping which has the origin as a fixed
point. Smooth will mean Ck, k ≥ 1, or real analytic and area preserving
means that the determinant of the Jacobian matrix of P is identically
equal to +1, i.e. detDP (ξ) ≡ +1 for ξ ∈ O . Let B = DP (0) so
P (ξ) = Bξ + · · · . Assume that the eigenvalues of B are n-th roots of
unity, n > 2, so Bn = I. (The case when n = 2 will be discussed in the
last section.) The symplectic matrix B has a Hamiltonian logarithm A,
i.e. eA = B and traceA = 0 – see (page 54). (Remark: The statement
of the lemma on page 67 is incorrect and should be replaced by the
statement of Theorem II.E.2.)

P is the period map of a 1-periodic Hamiltonian system of the form

(1) ẋ = F (x, t) = Ax + f(x, t) = J∇H(x, t) = JSx + J∇K(x, t)

where

(2) H(x, t) =
1

2
xTSx + K(x, t) and A = JS.

Here F, f,H and K are as smooth as P in x ∈ O ⊂ R2 and are 1-
periodic and C∞ in t ∈ R. Also f(0, t) ≡ 0,Df(0, t) ≡ 0,∇K(x, 0) ≡
0,D2K(x, 0) ≡ 0 where the derivatives are with respect to x only (page
116ff).(The neighborhood O may have to be shrunk a bit.)

For the rest of this section only assume that F, f,H and K are formal
power series in x with coefficients that are smooth, periodic functions
in t. Furthermore assume that they are in normal form, i.e. assume
that

(3) H(eAtx, t) ≡ H(x, 0)

and

(4) f(eAtx, t) ≡ eAtf(x, 0)
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(page 193). Make the time-periodic, symplectic change of variables
x = eAty so the equations of motion 1 become

(5) ẏ = V (y) = J∇L(y)

where

(6) L(y) = K(y, 0), V (y) = f(y, 0)

Equations (3) and (4) imply that

(7) L(By) = L(y), V (By) = BV (y).

Thus if the system (1) with Hamiltonian (2) is in normal form then a
linear, symplectic, periodic change of variable reduces the system to an
autonomous system (5) with the n-fold symmetry expressed by (7).

Let x(t, ξ) and y(t, ξ) be the solutions of (1) and (5) respectively
through ξ at t = 0. So P (ξ) = x(1, ξ) = eAy(1, ξ) = By(1, ξ). Thus
the normal form for P is By(1, ξ) where y is the time one map of an
autonomous system with the n-fold symmetry (7).

We can think of L as a formal analog of Poincaré’s generating func-
tion. If ξ0 is a critical point of L then by (7) so are Bξ0, B

2ξ0, . . . , B
nξ0 =

ξ0. Since ξ0 is a critical point of L it is a fixed point of y(1, ξ) and hence
a periodic point of period n of P . So the critical points of L give rise
to periodic points of P of period n.

Let the Hessian of L at the critical point ξ0 be R so the lineariza-
tion of (5) about the critical point is ẏ = JRy = Qy. Therefore the
linearization of P n at ξ0 is enQξ. If ξ0 is a nondegenerate maximum or
a minimum of L then the eigenvalues of Q are of the form ±ωi, ω > 0,
and the eigenvalues of enQ are e±nωi. Thus the periodic point ξ0 of P is
elliptic (provided nω is not a multiple of π). Similarly, a nondegenerate
saddle point of L corresponds to a hyperbolic periodic point of P.

Thus critical points of L other than the origin correspond to periodic
points of P of period n. Saddle points of L correspond to hyperbolic
points of P and most maxima and minima of L correspond to elliptic
periodic points of P .

To illustrate this result use complex coordinates in the plane, i.e.
change coordinates from real coordinates ξ = (ξ1, ξ2) to complex coor-
dinates (z, z̄) by z = ξ1 + iξ2, z̄ = ξ1− iξ2. If the matrix B is in normal
form then

B =

[
cos ω sinω
− sinω cos ω

]

where ω = 2π/n and the transformation ξ → Bξ is z → eωiz in complex
coordinates. The only monomials invariant under this transformation
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are of the form

(8) (zz̄)αznβ z̄nγ

where α, β, γ are non-negative integers. Thus the formal generating
function L is a formal series in these terms.

For example when n = 3 the first few terms are azz̄ + bz3 + b̄z̄3 +
· · · . The prototype bifurcation which occurs at a fixed point whose
multipliers are cube roots of unity with one parameter µ can be modeled
with a = µ and b 6= 0. In this case you can rotating coordinates so that
b is real and so the model generating function is

(9) L = µzz̄ + b(z3 + z̄3)

in complex coordinates or

(10) L = µr2 + 2br3 cos 3θ

The critical points other than the one at the origin occur in two sets
namely r = −µ/3b, θ = 0, 2π/3, 4π/3 and r = +µ/3b, θ = π/3, π, 5π/3.
Both sets are saddle points for L and correspond to a single periodic
orbit of period three. This is the standard bifurcation as given in
Meyer [9].

3. Main result.

It is well known that it is impossible in general to construct a change
of variables which will linearize equation (1) – even a formal change of
variables. It is also known that in general you cannot find a smooth
transformation which reduces a system of the form (1) to normal form.
The alternative method takes another tack. It asks what terms must
be subtracted from (1) in order that a linearizing transformation exist.

In particular, we shall show that (1) can be modified to the form

(11) ẋ = F (x, t) + w(x, t) = Ax + f(x, t) + w(x, t)

so that there is a change of variables

(12) x = u(y, t)

which reduces (1) to the linear equation

(13) ẏ = Ay.

Of course the u and w are not arbitrary. They are as smooth as f and
1-periodic in t. u is invertible with inverse y = u−1(x, t), and most
importantly

(14) w(x, t) = v(u−1(x, t), t)
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where v(y, t) satisfies

(15) v(eAty, t) = eAtv(y, 0)

for all t and s.
The importance of these properties comes from the following ob-

servation. For each y0 the function x(t) = u(eAty0, t) is an periodic
solution of (11) of period n, so if w(x(t), t) ≡ v(eAty0, t) ≡ 0 then
it is a n-periodic solution of the original equation (1). But by (15)
v(eAty0, t) ≡ 0 if and only if

(16) V (y0) = v(y0, 0) = 0.

Thus the search for n-periodic solutions of (1) is reduced to solving the
system of equations (16) which are called the determining equations.

It follows from (15) that

(17) V (By) = BV (y)

so V has an n-fold symmetry. Also, since the equation (1) is Hamil-
tonian V (y) is the gradient of a function L(y) and by (17) L satisfies

(18) L(By) = L(y).

This L serves as the analog of the Poincaré generating function for the
study of the bifurcation of periodic points of period n. In contrast to
the normal form approach outlined in the previous section this is not a
formal procedure since we will establish the existence of smooth u and
v satisfying the relations above. Let U(x) = u(x, 0) = u(x, 1); U has a
local inverse U−1.

In summary: Let P : O −→ R2 : x −→ Bx + · · · (O a neighborhood
of the origin in R2) be a smooth area preserving mapping which has the
origin as a fixed point. Assume that the eigenvalues of B are nth roots
of unity, n > 2, so Bn = I. Then there exist a local diffeomorphism
y = U(x) and a smooth L : O′ → R, (O′ a neighborhood of the origin
in R2) such that L(By) = L(y). If y0 is a critical point of L other
than at the origin then x0 = U−1(y0) is a periodic point of P of period
n and conversely. Nondegenerate maxima or minima of L correspond
to elliptic periodic points of P and nondegenerate saddle points of L
correspond to hyperbolic periodic points of P . If P depends smoothly
on parameters then so does U and L.

4. Proof Outline.

Moser [11] gives a variational derivation for the various formulas
given below. I shall simple verify the results. Since there are two
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variables y ∈ O ⊂ R2 and t ∈ R, let D denote the derivative with
respect to y (D = ∂/∂y) and an overdot the derivative with respect to
t (.= ∂/∂t). Let the matrices A and B be in normal form so ‖ eAt ‖=‖
B ‖= 1.

The first step is to solve the linearized functional equation for the
transformation sought. Here it is given by simple formulas (see (24 and
(17). Let D be the differential operator defined by

(19) Dv(y, t) = Dv(y, t)Ay − Av(y, t) + v̇(y, t).

Now Dv = 0 implies d
ds

e−Asv(eAsy, t + s) = 0 or v(eAsy, t + s) =
eAsv(y, t). Define a projection operator P by

(20) Ph(y, t) =

∫ 1

0

e−Ash(eAsy, t + s)ds.

Then

Pv(y, t) =

∫ 1

0

e−Asv(eAsy, t + s)ds =

∫ 1

0

v(y, t)ds = v(y, t),

so Pv = v.

Lemma 4.1. Let g(y, t) smooth for y ∈ O , t ∈ R and be 1-periodic
in t, then there exists functions u(y, t) and v(y, t), smooth for y ∈ O ,
t ∈ R and be 1-periodic in t such that

(21) Dv = 0

(22) Du − v = g

(23) Pu = 0

Proof. Let

(24) v(y, t) = −
∫ 1

0

e−Asg(eAsy, t + s)ds,

(25) u(y, t) =

∫ 1

0

(
1

2
+ s)e−Asg(eAsy, t + s)ds
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To prove (21):

Dv(y, t)Ay = −
∫ 1

0
e−AsDg(eAsy, t + s)eAsAyds

= −
∫ 1

0
e−As

(
dg
ds

(eAsy, t + s) − ġ(eAsy, t + s)
)
ds

= −
∫ 1

0
Ae−Asg(eAsy, t + s)ds − v̇(y, t)

= Av(y, t)− v̇(y, t).

The second to last step is an integration by parts – the nonintegral
terms drop out by the periodicity of eAs.

To prove (22):

Du(y, t)Ay =
∫ 1

0
(1

2
+ s)e−AsDg(eAsy, t + s)eAsAyds

=
∫ 1

0
(1

2
+ s)e−As

(
dg
ds

(eAsy, t + s) − ġ(eAsy, t + s)
)
ds

= (1
2

+ s)e−Asg(eAsy, t + s) |10

−
∫ 1

0

(
−A(1

2
+ s) + 1

)
e−Asg(eAsy, t + s)ds − u̇(y, t)

= g(y, t) + Au(y, t) + v(y, t)− u̇(y, t).

To prove (23):

Pu(y, t) =
∫ 1

0
e−Asu(eAsy, t + s)ds

=
∫ 1

0
e−As

∫ 1

0

(
1
2

+ τ
)
e−Aτ g(eAseAτy, t + s + τ )dτds

= −1
2
Pv(y, t) +

∫ 1

0
τe−Aτ

∫ 1

0
e−Asg(eAseAτy, t + s + τ )dsdt

= −1
2
v(y, t) +

∫ 1

0
τe−Aτv(eAτy, t + τ )dτ

= −1
2
v(y, t) +

∫ 1

0
τv(y, t)dτ = 0.�

Thus having solved the linearized functional equation the next step is
to solve the nonlinear equation by the contracting mapping principle.

Lemma 4.2. Let F (x, t) = Ax + f(x, t) be smooth for x ∈ O , t ∈ R,
be 1-periodic in t, and f(0, t) = 0,Df(0, t) ∈ 0. Then there is an open
neighborhood Q ⊂ O and there are functions u(y, t) and v(y, t), smooth
for y ∈ Q , t ∈ R and be 1-periodic in t such that

(26) Dv = 0
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(27) Du − v = f ◦ u

(28) (Pu)(y, t) = y

Du(y, t) = I. ( Equation (27) means (Du)(y, t)−v(y, t) = f(u(y, t), t).).

Proof Outline. To solve (27) let u(y, y) = y + u′(y, t) so equation
(27) becomes

(29) (Du′)(y, t)− v(y, t) = f(y + u′(y, t), t)

and equation (28) becomes Pu′ = 0. The linearization of these equa-
tions is precisely the equations given in Lemma 4.1. The proof from
here on is a standard contracting mapping principle argument similar
to the argument given in Moser [11]. Since the details are given in
detail there I will omit them. �

This lemma reduces the problem of finding n-periodic solutions to
solving a system of equations which with an n-fold symmetry. To see
this let x = u(y, t), and y = u−1(x, t) be the change of variables given
by this lemma. If y(t) satisfies

(30) ẏ = Ay

then x(t) = u(y(t), t) satisfies

(31) ẋ = Ax + f(x, t) + v(u−1(x, t), t).

So if

(32) V (y0) = v(y0, 0) = 0

then v(eAt, t) = 0 and x(t) = u(eAty0, t) satisfies

(33) ẋ = Ax + f(x, t).

Thus solving (32) gives rise to an n-periodic solution of (33). Since
Dv = 0 it follows as before that

BV (y) = V (By).

Up to this point I have not used the fact that the equations are Hamil-
tonian.

Lemma 4.3. Let the conditions of Lemma 4.2 hold. If the equations
(1) are Hamiltonian with Hamiltonian (2) then there is a smooth func-
tion L : Q → R such that V (y) = v(y, 0) = ∇L(y) and L(By) = L(y).

Proof. Here we assume that f(x, t) = J∇K(x, t). Let

S(y, t) =

∫ 1

0

(
1

2

du

ds
(eAsy, t + s)TJu(eAsy, s + t) − K(u(eAsy, t + s), t + s)

)
ds.
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Then

DS(y, t) =
∫ 1

0

(
du
ds

(esy, t + s) − J∇K(u(eAsy, t + s)
)T

Du(eAsy, s + t)eAsds

=
∫ 1

0

(
(Du)(eAsy, t + s) − f(u(eAsy, t + s)

)
TJDueAsy, s + t)eAsds

=
∫ 1

0

(
v(eAsy, t + s)

)T
JDu(eAsy, s + t)eAsds

= v(y, t)TJ
∫ 1

0
eAsDu(eAsy, s + t)eAsds

= v(y, t)TJ.

Therefore v(y, t) = J∇S(y, t) or V (y) = J∇L(y) where L(y) = S(y, 0).
In the sequence of expressions for DS given above the first inequal-
ity requires an integration by parts, the second uses some definitions,
the third uses (22), the forth uses (21) and the remark preceding
Lemma 4.1, and the last comes from differentiating (23).

5. Final Remarks.

It remains now to discuss the unfoldings of the critical points of
functions which have a n-fold symmetry. Fortunately, this has been
done in detail in Bridges and Furter [4]. For example, the codimension
3 functions with a 3-fold symmetry with there unfoldings are

1

3
zz̄ +

1

4
α(z3 + z̄3)

1

4
(zz̄)2 +

1

24
(z3 + z̄3)2 +

1

2
αzz̄ +

1

6
β(z3 + z̄3) +

i

4
γ(z̄3 − z3)

where α, β, γ are the unfolding parameters. These functions are easy
to analyse, but the analysis is tedious when there are many unfolding
parameters. [4] contains many tables which give the complete cata-
log of functions with a n-fold symmetry with their unfoldings up to
codimension 3.

This reduction to a problem in equivariant catastrophy theory is very
pleasing, but if you just want to know the bifurcations in a particular
situation it seems to me that a straight forward application of normal
form methods will yield the answer quicker. I say this for two reasons.
First of all, if you are interested in periodic solutions of a Hamiltonian
system, you do not need to know the canonical form of the generat-
ing function. You really don’t care about the function itself, only its
critical points – all its other properties have no meaning. Secondly,
normal form algorithms are fully developed and implimented a various
computer platforms.
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