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An example is given to show that stability without delayed neutrons does not
imply stability with delayed neutrons. A new criterion for stability in the large is
derived. An example is given that shows that the new criterion predicts stability
in some cases when the older criterion fails.

INTRODUCTION

This paper is concerned with the effect of de-
layed neutrons on the stability of a nuclear power
reactor. This problem has been considered by
several authors™®, but there seems to be some
confusion in the literature.

In the important 1958 paper® of Popov, it was
shown that, if stability can be proved by a particu-
lar type of Liapunov function without considering
the effect of delayed neutrons, then the system is
asymptotically stable when the effect of the delayed
neutrons is taken into account.

It is important to note that the type of Liapunov
function considered by Popov was avery particular
type, and therefore, one cannot assume in general

*This paper was written while the first author held
an International Atomic Energy Agency Fellowship.
**The second author’s research was supported by
United States Army Research Office (Durham) under
contract number DA-36-AMC-0221-X,
Present Address: Brown University, Providence,
Rhode Island.

V. M. POPOV, “Notes on the Inherent Stability of
Nuclear Reactors,’’ Intern. Conf. Peaceful Uses Atomic
Energy, Geneva, 2nd Conf., p. 2458 (1958).

?E. P. GYFTOPOULOS and DEVOOGHT, ‘‘Effects of
Delayed Neutrons on Nonlinear Reactor Stability,’” Nucl.
Sci. Eng., 8, (1960).

that delayed neutrons have a stabilizing effect. We
give an example (in ‘““‘Counter Example’’) of a
system that is asymptotically stable without de-
layed neutrons and unstable when the effect of the
delayed neutrons is considered.

We also prove (in a later section) a new crite-
rion for stability in the large that takes into
account the effect of delayed neutrons.

NOTATION AND STATEMENT OF THE PROBLEM
The two systems considered here are

dx

= = -b

a1 Ax n

dan _
a
K =Ko+C'x - pn (1)
and
dx _
af Ax - bn
dy _ _
a By -dn

d_T,'= - fd_y= r, - ar
ar - Kn-e'or=(k+efdn - e'By

K =Ko+t e'x-pmn, (2)

356



STABILITY OF A REACTOR

where

X is a real n-vector, whose components
represent different temperatures in a
reactor

N is a real positive scalar, representing
neutron density

¥y 1is a real m-vector, whose components
are positive and represent delayed-
neutron emitter densities

A isan nXn matrix,

A= dlag ('91, -fay, ..., -6, ).

where 6; (> 0) is the temperature time
delay constant

B isan wm X m matrix,
B =d1€lg (*‘lls ) _‘\m ) 7

where A; (> 0) is the decay constant of
the delayed neutron emitter of group j

b is a real n-vector, whose components
are negative and inversely proportional
to the heat capacity

k is the real scalar, representing reactiv-
ity divided by the neutron generation
lifetime ¢

¢ is a real n-vector, whose components
are temperature coefficients of reactiv-
ity divided by ¢

Ko 1is the power reactivity divided by £
e is a real ni-vector,

e'=(1,1,...,1)

d 1is a real m-vector, whose components
are -3;/f, where B; is the effective
yield of delayed neutrons of group j

%,¥.M, kK are functions of the real variable t,
time.

The two systems, Egs. (1) and (2), describe the
kinetics of an n-temperature nuclear reactor with-
out, and with, m-groups of delayed neutrons,
respectively. An external control system is char-
acterized by the scalar p.

If ko#0, systems (1) and (2) have two critical
points. For Egs. (1), the critical points are at

x =0,
m=0
and at
%2 = A7'(p - ¢’A™'B) Xk,
M2 = (p - €"A7'0) %, ;

TR for to x,,
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and for Egs. (2), the critical points are at

xlzoﬂ
y-'l:O)
7=0

and at
% = A7(p - ¢'A7'B) ky
¥2=B7'd(p-c'A"'b) k, ,
N2=(p-c’Ap) k.

We shall assume throughout that kKo > 0 and
p-¢'A7'6 >0, and so n, > 0. This does not
limit the generality of our discussion, since
asymptotic stability in the small of the critical
point x>, y,, m, implies p - ¢’4"'H > 0 and
physically 1, > 0,

The critical point with subscript 1 is the shut-
down equilibrium state, and the critical point with
subscript 2 in the operating equilibrium state.

In general, stability and asymptotic stability
shall be in the sense of Liapunov.

We shall say that system (1) (or (2)) is abso-
lutely stable, provided all solutions of Egs. (1) (or
Egs. (2)), which start at ¢ = 0 in the domain where
n>0(r n>0 vy >0, where Vi is the i'th
component of y), remain in this domain and tend
Y2, ) @ [ —= Torall
values of ko Thus, absolute stability is ‘‘asymp-
totic stability in the large for all power levels.’’

We use the term absolute stability, since by the
change of coordinates o = In(n/7,) and u=x - x,,
the system (1) becomes

du

ai A - bglo)

plo) =7, (€7 - 1)
Z—? =c'u - polo) , (3)

which is a system of the Lurie type, and the con-
cept of absolute stability of Egs. (1), as defined
above, is the same as that found in control theory
for Eqgs. (3). _

Let A, = 2I- A and A;" = (2I- A)™*, where
I is the identity matrix. The following is the best
result known to date on the stability of Egs. (3)
or (1):

The system (3) or (1) is absolutely stable pro-
vided there exist two constants z and B such that

3=> 0, E:>0 and @+ 3> 0, (4a)

~ o~ (PterAllD
Re (@ +iwp) R TR =>0 for all real w, (4b)

p-c'Ap> 0, (4c)
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For a proof of this theorem, see papers by
Kalman® or Meyer*. For those referring to these
papers, it should be noted that the extra condition,
when o =0, is not needed here due to the special
nature of ¢(o). N

When @ =0 and 8 =1, Eqgs. (4) reduce to
Welton’s criterion®, and so the above theorem
contains Welton’s criterion as a special case.

A theorem of Popov' can be applied when & = 0
and 3 = 1, to show that the system (2) is abso-
lutely stable for any number of delayed neutrons.

The system (2) is absolutely stable provided

Re(p +¢'A;, 5> 0, forall real w (5)

and - eratp w0,

The questions to be considered here are: 1) Is
it true in general that the stability of Egs. (1) im-
plies the stability of Eqgs. (2)? 2) Can the criterion
for stability, given above for Eqs. (1), be extended
to Egs. (2) in the cases where & = 0?

The answer to question 1 is, in general, no; but
it is yes in some interesting special cases. It has
not been possible to completely answer question 2,
but a new criterion is given which is analogous to
the case when G #0 and 3 =0.

COUNTER EXAMPLE

We shall give in this section an exafn_p_l'e_of a
reactor system that is asymptotically stable in the
small without delayed neutrons and unstable when
the effect of the delayed neutrons is taken into
account. This example contradicts the general
theorem that the delayed neutrons always have a
stabilizing effect. Let us consider the reactor
kinetics Egs. (2) and introduce the new coordinates
U=X-X%, v=Y-9%2, and £ =7 -1,. The sys-
tem (2) then takes the form

du _

H—Au-bf

dv _

E—Bﬂ-d&-

g—f=!€(§ +12) +e'dt - e'By

K=¢c'u- pt. (6)

The Linearized Sysiem

By a general theorem of Lyapunov, the system
(6) is asymptotically stable in the small, provided
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U. 8., (1963).

‘K. R. MEYER, “Lyapunov Functions for the Problem
of Lur’e,”” Proc. Nat. Acad. Sci., U. §., (1965).

*H. B. SMETS, Problems in Nuclear Power Reactor
Stability, Presses Universitaires de Bruxelles, (1962).

the matrix of the linear part has only character-
istic roots with negative real parts. By the well-
known criterion of Nyquist, the matrix of the linear
part of Egs. (6) will have negative real parts for
all power levels,i.e., for all 7, > 0, provided

p-c'A™p >0 (7a)

p+ctAl b
Fliw) = # a negative real
number for all

real w. (7b)

Thus, the conditions of Eqs. (7a) and (7b) are
suificient for the asymptotic stability in the small
of the operating point (x,,y..,7,) for all power
levels.

From continuity considerations, the matrix of
the linear part of Egs. (6) has a characteristic root
with positive real part for some 1, > 0, if the
curve F(iw) intersects the negative real axis for
some nonzero i{wo, and moreover, if in some
neighborhood of the intersection the curve is not
on one side of the negative axis, i.e., if F(iw)
definitely crosses the negative axis at some point.
If the matrix of the linear part of Eqgs. (6) has a
positive characteristic root for some power level,
then the system (6) will be unstable for that power
level.

iw(l-e'B;}d)

___The above considerations remain valid if e = 0,

d=0, B=0; that is, if we are considering Egs. (1)

If we denote by F,(z) and F,(z) the functions
in Eq. (7Tb) without delayed neutrons and with de-
layed neutrons, respectively, then

_ 4 n é—i )
Filz) =z 1%p+[_2=1——z+9i}

thz)=z-1{p+Zn) i }{n%f} ? } (8)

i
i=1 2+ 6; i=1 2 + A;

i=

[

where ¢; =¢;b,.

In the following example, every attempt has
been made to make the constants of the correct
magnitude. To construct the example, it is neces-
sary to take a model with four different and large
temperature-time constants:

Special Case p=0, n=4, m=1.
In this case we have

az® +bz® +cz+ f

Filz) = 2(z + 6.)(z + 0,)(2 + 05)(z + a,)
Falz) =F1(2)5—2'H"—3{ ,
ez + A +“1; )

where

A is the average decay constant of delayed
neutrons
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3 = Ij; is the effective yield of delayed neutrons

aQ=Fy+Eat+ig +1a

100z + 03+ 04) + Eo(03 + 04 +8,)

+Ea(fa + 01+ ) + 140y + 8, + 83)

£1(0203 + 0205 + 0384) + 7 2(8,835 + 0104 + H384)
+ 23010 + 0184 + 0204) + £4(0160 + 0205 + 0,83)
f = E102030a + £ 203046, + #3040, 02 + 40,0203,

We choose 6, =100, 6, = 200, 5 = 300, 4, =
400, and the roots of the polynomial az® + bz’

cz+fas zoq =~ 0.1, 250 = -(0.1 +40.1), and zgs=
-(0.1-40.1). Let a=1, and so az® + bz + cz +
JF=2%+0.32" +0.042 + 0.002 = 0. Thus. we have

linear algebraic equations for ¢;,
solution is

whose exact

:-_1._'__1 -3 _%_ -G_._l -5
(1= =g X107 - SX 107+ 2 x 10
t2=4+6x107%+4x107°-1x107°
- 1 1 -3 -8 -9
E.‘s—-13§+13§x10 -6Xx107° +1x 10
— E_ -3 E -6 l -9
§4g1o3 8% 10 +23x10 3xlO
p-cTAT b =Lt L, fs, Q:-l—xw‘“ ~ 0

6. 8, 65 8, 12

Now we shall consider the argument of F,(z) for
z =iw. The function F,(z) has 3 zeroes and 5
poles; the zeroes are zo = - 0.1, zg = - (0.1 +
i0.1), 203 =- (0.1 -0.1), and the poles are Zp =
-1[]0 Zpp = =200, z,5 = -300, z,, = -400, and
= 0. The pole-zero diagram is shown in Fig. 1.
The argument of Fi(iw) iS a1 + a2 + a3 - (1 +
Y2 73+ 7ve £90° and, therefore, is never +180°
or -180°, Thus, this special system without de-
layed neutrons is asymptotically stable in the
small for all power levels. For example, when
w =10

G, Q2,03 > 89°
Y1 < 6% ya< 3, ya < 29 yya< 20y

5 = 90°.

Fig. 1. A pole-zero diagram,
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Thus,
arg F;(i10) > 164°.

Now let us consider the effect of one average
group of delayed neutrons, which is characterized
by constants A = 0.1sec™ and B =0.0075. Let
us also suppose that (= 107", Thus, F.(z) has
one pole and one zero more than Fy(z). The pole
isat z¢ = -75, and the zero is at zZ = - 0.1. The
argument of Fa(iw) is greater than the argument
of Fi(iw) by an amount, arg (iw + 0.1) - arg (fw+
75). Thus, w equals 10, the argument of F, >
164° + 82° = 246°. For small w, the argument of
F. is approximately -90°, and as w increases,
the argument increases (not necessarily monotoni-
cally) and passes through 180°. Thus, Egq. (6) is
unstable for some power levels. Hence, this ex-
ample shows that, even if the linearized system
without delayed neutrons is asymptotically stable
for all power levels, the system is unstable for
some power levels--an intermediate range—if the
effect of the delayed neutrons is taken into account.

A NEW CRITERION FOR STABILITY

Let I' denote the open set in the (x, y,7) space
such that x is arbitrary, n > 0, and yi >0 for
ji= nt, where y; is the j'th component of

y. The following lemma is self evident from the _

form of Egs. (2):

Lemma 1. Let x({, xo), ¥(f,¥0), and 7(#, no) be
the solution of Eqs. (2) that satisfies x(0, x,) = x,,
(0, ¥o) =90, and 7(0, 7o) =7ne. If (xo, yo, Mo) € T,
then x(#,%x0), ¥(¢,9u), n(t, n0)) ¢ T, forall t2> 0.
Moreover, if xo> 0, then 7({, no) does not tend
to Zero as

The new criterion for stability is then:

The system (2) is absolutely stable provided the
following conditions hold:

p-¢'AT'D > 0. ko> 0
\ P~ C'An) b '
'Lw (1 - e'B; d)\

t— + =,

(9a)

20, forallreal w. (9b)

Proof: As stated in the section, ‘‘Counter Ex-
ample’’, we can change the origin of our coordinate
system to the operating point. Thus, Egs. (2) can
be transferred to the form

dw, =Rw, -fix & =g'w,, (10)
dt
where
A 0 -b
R = 0 B -d
0 -e'B eld
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&)
£'=(c’, 0, -p)
wh = (u v )= (x"-xL, ¥t -yl n-m).

Clearly, the matrix R has characteristic roots
01, vy =On, =XAy, and one char-
acteristic root zero. By a linear nonsingular
change of coordinates, the system (10) becomes

dw

S iohe

E S 0 w r

= - ‘nx
dy
7 0 0 v [i]

kK =k'w+ ¢ev

where w, k, r are (n+m)-vectors and v, €, B,
and k are scalars. Since €6 = (1 +e'B 'd)™?*
(o - ¢c’A™*b), it follows that ¢ > 0. (See the
appendix.) By Eq. (9b), there exists a positive
definite (n+wm) X (n+m)-matrix @, a positive
semi-definite (n+m) X (z+m)-matrix D, and a
real (n+m)-vector ¢, such that

§$'"Q@+@S5=-D-qq'" and Qr-%k=0.
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and remains in the set where dV/dt = 0 for all
t = 0. It must be shown that wo=0, vo=0. If
dV/dt = 0 and n # 0, then k = 0, and thus, w(¢), v(¢),
is a solution of dw/dt = Sw, dV/dt = 0. Thus, w(t)
equals (exp Sthwo, and v equals v, for £ = 0.

But, since dV/dt = 0 along this solution, it
follows that gf(exp Sf)wo =0 and wWiDw,=0. But
this implies that wo, = 0. (See the appendix.) Since
k equals 0, the scalar vy equals 0, also. Thus
w=0, v=0 is the only solution in I" that remains
in the set where dV/dt = 0, and so the critical
point w =0, » =0 or x2, ¥=,m: is absolutely
stable.

DISCUSSION OF THE NEW CRITERION

One can give a simple interpretation of the new
criterion as well as the criterion given by Eq. (5).
This simple interpretation will indicate the condi-
tions under which the two criteria prediet stability.
Let us assume throughout that p -¢’A™'86 > 0, a
necessary requirement in both cases. QObserve
that we need only check Eq. (5) or (9) for positive
w. Thus Eq. (5) is equivalent to

-90°< arg F(iw)< 90°

for all positive w, where F(z) =p +¢’4."'h, and
Eq. (9) is equivalent to

(See the appendix for details:) Consider the fol-—————argFf{fw) < arg Fliw) < 180° +arg fliw)

lowing Liapunov function:

— ap! £ 2
V=w@w + 58 V- (11)
It is clear that V is positive definite in the whole
(w0, v) space and that V — < as |lw|| + |v| — =,
The derivative of Eq. (11) along the trajectories is

fi—f=w'(s’Q + QS)w - 2(Qr - ék)’ﬂmn - NK*

= - (q'w)® - w'Dw - nk®.

By lemma 1, any solution that starts in T' for #=0
remains in T for all ¢2> 0. Thus, dV/dt is neg-
ative if (w,v) ¢ T, since n > 0. Thus, the critical
point w =0, v=0, or x=%2, ¥y =%:, N =17, is
stable, and all solutions that start in I are
bounded.

Since ko >0, a solution that starts in T’ cannot
tend to the critical point x =x,, y =y,, n=mn, by
lemma 1. Thus, by a theorem of LaSalle®, the
origin w =0, v =0 is asymptotically stable pro-
vided the only solution in I' that remains in the
set, where dV/dt = 0 is the trivial solution w =0,
v =0.

Let (wo, ¥o) be a point in T" so that the solution
w(t), v(¢) of Eq. (10) satisfies w(0) = w,, v(0) = vo

°J. P. LaSALLE, ““The Extent of Asymptotic Stability,’”
Proc. Nat. Acad. Sci., U. S., (1954).

for all positive w, where F is as before and
flz) =1-¢'B:"'d.

Thus, if arg F(iw) is greater than 90° for some
positive w, then the criterion of Eq. (5) fails.
Indeed, this was the case in the example given in
the section, ‘‘Counter Example.’’ However, some-
times the new criterion will predict stability.

Let us consider a simple example that will
illustrate the point without any complicated alge-
bra. Consider the case when F(z) has two poles
-6, -8z and two zeroes -z, -zz. That is, con-
sider the two-temperature model with p # 0. Let
us also assume that 6, > 82 >> 2z, > z,. In this
case, 0 < argF(iw) =a; +az - ¥1 - 72 < 180° for
positive w, and for some positive w, arg F(iw) >
90°. (See Fig. 2.) Thus, the criterion of Eq. (5)
fails.

Let f(z) have one zero - A and one pole - p;
that is, consider one average group of delayed
neutrons. Assume that 8, > p>6, and z; > A
> 23. Then, clearly, argf(iw) < arg F(iw) < 180°
+ arg f(iw) for all positive w, and so the new
criterion predicts stability.

CONCLUDING REMAREKS

In the counter example, the system without de-
layed neutrons, Egs. (1), was only asymptotically
stable in the small. If the system (1) satisfies the
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-8, -p -6, -z, =X

Fig. 2. The pole-zero diagram for the example.

conditions of Egs. (4)--the best-known criterion for
absolute stability—then the system with delayed
neutrons, Egs. (2), is asymptotically stable in the
small for all power levels. This can be seen from
the following: The conditions, Egs. (4), imply that
the argument of F,(iw) for positive w is less

than 90°. The increase in the argument of Fs(iw)
over F;(iw) for positive w is positive and less
than 90°. Thus, if the conditions of Eqgs. (4) are
satisfied, the argument of F;(iw) is less than

180° for all positive w and, similarly, for nega-
tive w.

It would be interesting to know if absolute
stability of Egs. (1) implies the absolute stability
of Egs. (2), or even if the conditions of Egs. (4)
imply the absolute stability of Egs. (2). We have
not been able to establish these results, nor have
we been able to construct a counter example.

APPENDIX

Recently the second author has extended some
work of Kalman and Yacubovich and established
the following lemma?*.

Lemma 2: Assume that the characteristic roots o
the p X p real matrix S have negative real parts.
Let r and &k be any real p-vectors. Then there
exists a real positive definite symmetric p X p-
matrix @, a real positive semi-definite symmet-
ric p X p-matrix D, and a real p-vector g, suct
that

S'@Q + @5 =-D - gqg' and

Qr = k = Os
if
Re &'S;; r >0, for all real w.
Furthermore, if g'(exp St)wo = 0 and woDw,= 0
w, equals 0.

In the section, ‘A New Criterion for Stability,”
it was assumed that

raTe
ReLA“"b— > 0, for all real w.
iw(l - ¢’'Bi;d) =

It is easy to see that
- p+c'A'b
£'R7'f= -',—fl .

z(1 - e’B; d)
Since the function g’R;'d (the transfer function
is invariant under a linear nonsingular change o
coordinates,

(B e)/Sz* O r s
g'R;lf= = k"S;l r + ?
0 z=Y\s

Thus,

€6=(1+e’B 'd)"'(p - c’A™'D),
and

Re B'S;lr > 0, forall real w.

The condition (9b) of the new criterion thus implies
that Re B'Sj 7 = 0, for all real w, and so, with
lemma 2, it implies the existence of @, D, and ¢
that satisfy the above identities.



