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Abstract. We consider the stability and instability of an equilibrium point of a Hamiltonian
system of two degrees of freedom in certain resonance cases. We also consider the stability or
instability of a fixed point of an area-preserving mapping in certain resonance cases. The stability
criteria are established by Moser’s invariant curve theorem and the instability is established by
Chetaev’s theorem.
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1. Introduction

We present two general lemmas which can be used to establish a wide variety of stability
and instability results for Hamiltonian systems. These lemmas are established using the ideas
presented in the classic book by Markeev [9]. The stability criteria are established by Moser’s
invariant curve theorem [12] and the instability is established by Chetaev’s theorem [5]. In
particular, we consider Hamiltonians which are in resonance where angle terms appear in the
normalized Hamiltonian.

The main lemmas are presented in section 2. These lemmas are applied to the study of
the stability or instability of a fixed point of an area-preserving mapping in section 3 and to
the stability or instability of an equilibrium point of a Hamiltonian system of two degrees
of freedom in certain resonance cases in section 4. We give some examples to show that
symmetries can cause some difficulties in stability analysis.

2. Main stability lemma

In this section we will give two lemmas which are simple applications of Moser’s invariant
curve theorem and Chetaev’s theorem. These lemmas will be used in subsequent sections to
establish the stability or instability of systems in various resonance cases.

Lemma 2.1. LetK(r, φ, t) = 9(φ)rn + O(rn+ 1
2 ), wheren = m/2 with m > 3, an integer.

Suppose thatK is an analytic function of
√
r, φ, t , τ -periodic inφ andT -periodic in t . If

9(φ) 6= 0, for all φ, then the originr = 0 is a stable equilibrium for the Hamiltonian system

ṙ = ∂K

∂φ
, φ̇ = −∂K

∂r
,
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in the sense that givenε > 0, there existsδ > 0 such that ifr(0) < δ, then the solution is
defined for allt and r(t) < ε. If 9(φ) has a simple zero, i.e., if there existsφ∗ such that
9(φ∗) = 0 and9 ′(φ∗) 6= 0, then the equilibriumr = 0 is unstable.

Proof. Suppose that9(φ) 6= 0, for allφ, say,9(φ) > 0. Consider the truncated Hamiltonian

k = 9(φ)rn
and define, for eachk > 0, the variableI = I (k) by

I = 1

2π

∫ τ

0
r(k, φ)dφ,

where

r(k, φ) = k1/n

9(φ)1/n
.

Consider a generating functionS(I, φ) defined by

S(I, φ) =
∫ φ

0
r(k, θ)dθ.

By eliminating the factork1/n, we get

S(I, φ) = βIG(φ),
where

β = 2π

/∫ τ

0

dθ

9(θ)1/n
, G(φ) =

∫ φ

0

dθ

9(θ)1/n
.

Now, S defines a symplectic transformation(r, φ)→ (I,W) by the relations

W = ∂S

∂I
= βG(φ), r = ∂S

∂φ
= βIG′(φ),

and the original Hamiltonian

K(r, φ, t) = 9(φ)rn + O(rn+ 1
2 )

is transformed into the new Hamiltonian (analytic in
√
I ,W, t)

K(I,W, t) = βnIn + O(I n+ 1
2 ),

sinceG′(φ) = 9(φ)−1/n, hence,9(φ)G′(φ)n = 1.
Notice that, since9(φ) is τ -periodic,

W(r, φ + τ) = βG(φ + τ) = β
∫ φ+τ

0

dθ

9(θ)1/n

= β
∫ τ

0

dθ

9(θ)1/n
+ β

∫ φ+τ

τ

dθ

9(θ)1/n
= 2π +W(r, φ),

soW is a true angular variable, thereforeK(I,W, t) is 2π -periodic inW , and of course,
T -periodic int .

Consider the change of variables(I,W)→ (J, ψ) defined by

I = σγ J, W = ψ,
whereσ > 0 is a small parameter, 16 J 6 2 andγ is chosen so thatβnγ n−1 = 1/n. This is
a symplectic change of variables with multiplierσγ , so the new Hamiltonian is given by

K(J, ψ, t) = 1

n
σn−1J n + O(σ n−

1
2 ),
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and the corresponding Hamiltonian equations are

dJ

dt
= O(σ n−

1
2 ),

dψ

dt
= −σn−1J n−1 + O(σ n−

1
2 ),

with the right-hand side analytic inJ,ψ, t , 2π -periodic inψ and T -periodic in t , with
16 J 6 2.

Integrating betweent = 0 andt = T , and denoting byJ , ψ the initial values and byJ1,
ψ1 the final values, we obtain the map

J1 = J + σn−
1
2F1(J, ψ, σ )

ψ1 = ψ − σn−1T J n−1 + σn−
1
2F2(J, ψ, σ ),

defined and analytic in the region 16 J 6 2, ψ ∈ R, |σ | < σ0, with F1, F2 periodic inψ .
This map is area preserving by virtue of the Hamiltonian character of the differential equations.
Therefore, by Moser’s invariant curve theorem [7,12] there exist, for smallσ , invariant curves
J = J (ψ) = J (ψ + 2π), near to circles, that is, withJ ′(ψ) ∼ 0. SinceI = σγ J , the
corresponding curveI = I (ψ) can be taken inside small neighbourhoods of the origin (by
takingσ sufficiently small). In the three-dimensional space(I, ψ, t), identifying the sections
t = 0 andt = T we get a torus formed by solutions curves that begin on the closed curve
I = I (ψ). By uniqueness of solutions, any solution(I (t), ψ(t)) that starts at a point inside
the region bounded by the curveI = I (ψ) cannot cross the torus and therefore,I (t) remains
small. Therefore,I (t) remains small for allt . Since the solutions stay inside a compact set
it is defined for all time. This proves the stability, in the sense defined in the statement of the
theorem.

Now we will give the proof of the instability statement. Assume that9(ψ∗) = 0 and
9 ′(φ∗) > 0. Chooseδ > 0 so small that

9(φ) 6= 0, and 9 ′(φ) > 0 for 0< |φ − φ∗| 6 δ.
Consider the function

V = rn sin8,

where8 = (π/2δ)(φ − φ∗ + δ).
Define a region� as the set of points(r, φ, t) such that

φ∗ − δ < φ < φ∗ + δ.

Then,V > 0 in � andV = 0 on ∂�, the boundary of�. The derivative ofV along the
solutions of the system of equations

ṙ = ∂K

∂φ
= rn9 ′(φ) + O(rn+ 1

2 )

φ̇ = −∂K
∂r
= −nrn−19(φ) + O(rn−

1
2 )

is given by

dV

dt
= ∂V

∂r
ṙ +

∂V

∂φ
φ̇ +

∂V

∂t

= nr2n−1
[
9 ′(φ) sin8− π

2δ
9(φ) cos8

]
+ O(r2n− 1

2 ).

For 0< φ − φ∗ < δ, we haveπ/2 < (π/2δ)(φ − φ∗ + δ) < π so that cos8 < 0. Also for
−δ < φ − φ∗ < 0, we have cos8 > 0 and therefore,

9(φ) cos8 < 0 on 0< |φ − φ∗| < δ.
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Since9 ′(φ) > 0 and sin8 > 0 on |φ − φ∗| < δ, we have9 ′(φ) sin8 > 0 in this interval.
Since for the function inside the brackets the two summands do not vanish simultaneously on
the compact interval|φ − φ∗| 6 δ, it follows that it has a positive minimum, and therefore,
for smallr, we conclude that dV/dt > 0 on�, if r is sufficiently small. It then follows from
Chetaev’s theorem [5] that the equilibrium is unstable. �

Lemma 2.2. LetK(r, φ, t, ε) = εm9(φ)rn + O(εm+1), wherem and2n are positive integers.
Suppose thatK is an analytic function ofr, φ, t , τ -periodic in φ, T -periodic in t for all
1
2 6 r 6 3 and all 0 6 ε 6 ε0. If 9(φ) 6= 0, for all φ, then ifε0 is sufficiently small any
solution of

ṙ = ∂K

∂φ
, φ̇ = −∂K

∂r
,

which starts with|r(0)| 6 1 for 06 ε 6 ε0 satisfies|r(t)| 6 2 for all t .

Proof. As in the proof of the previous lemma we show that there are invariant curves for the
section map which separater = 1 from r = 2. �

3. Hamiltonian periodic systems and area-preserving maps

As the first application we consider stability and instability of an equilibrium point of a periodic
analytic Hamiltonian system of one degree of freedomH = H(q, p, t). We also discuss the
equivalent problem of the stability and instability of a fixed point of an analytic area-preserving
mapping. The stability of a periodic solution of an autonomous Hamiltonian system of two
degrees of freedom can be reduced to either of these cases.

First consider the periodic case. The classical Liapunov theory shows that the origin is
unstable unless the multipliers have unit modulus [7], and so we consider a system whose
multipliers areλ, λ−1 with |λ| = 1. We consider the case where the monodromy matrix is
diagonalizable.

We are interested in the resonance case so we will assume the system is 2π -periodic and
the multiplier is a root of unity, i.e.,λ±1 = e±a2π i/b wherea, b are relatively prime positive
integers. By the discussion in [7], chapter VII we can assume the equilibrium is at the origin,
and that a series of periodic symplectic changes of variables have been made so that the
Hamiltonian is of the form

H(I, θ, t) = a

b
I + β2I

2 + · · · + βlI l +9(at + bθ)Im +H †(I, θ, t) (1)

where

• m = l + 1
2 orm = l + 1 with l > 1,

• β2, . . . , βl are constants,
• 9(·) is 2π -periodic and has a finite Fourier series in a single angle,
• H †(I, θ, t) is analytic in

√
I , θ , andt and 2π -periodic inθ andt ,

• H †(I, θ, t) is at least of orderIm+1/2.

Here we have used action-angle variablesI, θ whereq = √2I cosθ andp = √2I sinθ .
Usually one assumes that the Hamiltonian is analytic in the original variablesq, p and hence
the Poisson series must have the d’Alembert character [7].

If one of theβi is nonzero then Moser’s invariant curve theorem [7, 12] implies that the
equilibrium point is stable. So we will consider the degenerate case when

β2 = · · · = βl = 0.

In this case we have the following.
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Theorem 3.1. If 9(ψ) is never zero then the equilibrium is stable. If9 has a simple zero,
that is, if there existsψ∗ such that9(ψ∗) = 0 and9 ′(ψ∗) 6= 0, then the equilibrium solution
is unstable.

Proof. Make the time-dependent symplectic change of variables

r = I, φ = a

b
t + θ,

which is generated by the functionS(r, θ) = r(θ + at/b). The Hamiltonian becomes

H = 9(bφ)rm + · · · ,
and so the theorem follows from lemma 2.1. �

The discussion in chapter VII of [7] shows the study of the fixed point of an area-preserving
map can be reduced to the study of an equilibrium point of a periodic Hamiltonian system as
given above. Consider an analytic area-preserving mapping of a neighbourhood of the origin in
R2 with fixed point at the origin. Again assume that the multipliers of this fixed point are roots
of unity, specificallyλ±1 = e±a2π i/b wherea, b are relatively prime positive integers. By a
series of symplectic changes of coordinates we may assume that the mapping,(I, θ)→ (I ′, θ ′),
is of the form

I ′ = I + b9 ′(bθ)Im + · · · ,
θ ′ = θ +

2πa

b
+ β1I + · · · + βlI l −m9(bθ)Im−1 + · · · , (2)

where

• m = l + 1
2 orm = l + 1 with l > 1,

• β2, . . . , βl are constants,

• 9(·) is 2π -periodic and has a finite Fourier series in a single angle,

• the ellipses are terms of higher order inI and periodic inθ .

Again we have used action-angle variablesI, θ whereq = √2I cosθ andp = √2I sinθ .
If one of theβi is nonzero then Moser’s invariant curve theorem [7, 12] implies that the

fixed point is stable. So we will consider the case when

β2 = · · · = βl = 0.

In this case we have the following.

Corollary 3.1. If 9(ψ) is never zero then the fixed point is stable. If9 has a simple zero, that
is, if there existsψ∗ such that9(ψ∗) = 0 and9 ′(ψ∗) 6= 0, then the fixed point is unstable.

Proof. By the discussion in chapter VII of [7] the period map of a system of the form (1) is of
the form (2) and conversely a mapping of the form (2) can be suspended in a periodic system
of the form (1). Thus the two results are the same. �
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3.0.1. Example: cube root of unity.In the case of an analytic mapping when the multipliers
of the fixed point are cube roots of unity then the mapping can be put into the form

I ′ = I − 2γ1I
3/2 sin 3θ + · · · ,

θ ′ = θ +
2πa

3
+ γ1I

1/2 cos 3θ + · · · ,
wherea = 1 or 2 andγ1 is a constant. Genericallyγ1 is nonzero and so the fixed point is
unstable. However, if the mapping has a special symmetry or depends on parameters it may
happen thatγ1 = 0. In that case the system can be normalized further to get

I ′ = I + 39 ′(3θ)I 3 + · · · ,
θ ′ = θ +

2πa

3
+ β1I + 39(3θ)I 2 + · · · ,

where

9(3θ) = β2 + γ2 sin 6θ + γ3 cos 6θ + γ4 sin 3θ + γ5 cos 3θ.

Now if β1 is nonzero the fixed point is stable otherwise the stability depends on whether9

is nonzero or has a simple zero etc. Of course there is the ever elusive case when9 has a
degenerate zero.

Example: fourth root of unity. In the case of an analytic mapping when the multipliers of the
fixed point are fourth roots of unity then the mapping can be put into the form

I ′ = I − 2γ1I
2 sin(4θ) + · · · ,

θ ′ = θ + aπ + 4{β1 + γ1 cos 4θ}I + · · · ,
wherea = 1 or 3 andβ1 andγ1 are constants. When|β1| < |γ1| the fixed point is unstable
whereas if|β1| > |γ1| the fixed point is stable. This example and others were considered
in [10].

Example: odd forces, odd-harmonic forcing.Much of the classical literature on bifurcation
of periodic solutions deals with the forced nonlinear oscillator of the form

ü + f (u) = g(t)
where the forcef is assumed to be odd,f (−u) = −f (u), and the external forcingg is assumed
to be 2π periodic and odd-harmonic,g(t +π) = −g(t). Duffing’s equation̈u+u+u3 = cost
and the forced pendulum equationü + sinu = sint are prime examples. Written as a periodic
Hamiltonian system with HamiltonianH(u, v, t) these systems admit the symmetry

H(−u, v, t + π) ≡ H(u, v, t),
or if written in action-angle coordinatesI, φ the Hamiltonian admits the symmetry

H(I, φ, t) ≡ H(I, φ + π, t + π).

This symmetry condition places restrictions on the angle dependent terms which occur in the
Hamiltonian. Consider for example the case when the multipliers are cube roots of unity. The
normalized Hamiltonian is of the form

H = a

3
I + γ1I

3/2 cos(3θ + at) + β2I
2 + · · · ,

wherea = 1, 2. Generically without symmetryγ1 6= 0 and so the periodic solution is unstable.
However, the above symmetry implies that the cosine term must be zero whena = 2 and so
the first term in the normalized Hamiltonian isβ2I

2 with β2 6= 0 in general. So generically in
the presence of symmetry the periodic solution is unstable ifa = 1 but stable ifa = 2. Not
all cube roots of unity are the same!
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4. Hamiltonian systems with two degrees of freedom

As the second application we consider stability and instability of an equilibrium point of an
analytic autonomous Hamiltonian system with two degrees of freedomH = H(q1, q2, p1, p2).
The classical Liapunov theory shows that the origin is unstable unless the eigenvalues of the
linearized system are pure imaginary, and so we consider a system whose linear part has
eigenvalues±ω1i, ±ω2i. In this case if the frequencies are of the same sign, the Hamiltonian
is sign definite, Dirichlet’s theorem [6] asserts that the equilibrium is stable. Therefore, we
shall consider the case when the frequenciesω1,ω2 have opposite sign, i.e. the Hamiltonian has
an indefinite quadratic part. Furthermore, we assume that the frequencies satisfy the resonance
relation

aω1− bω2 = 0 (3)

wherea andb are relatively prime positive integers ora = b = 1. If a = b = 1, we assume
also that the matrix of the linearized system is diagonalizable.

We write the Hamiltonian in action-angle variables(I, φ) = (I1, I2, φ1, φ2) defined by

qj =
√

2Ij cosφj , pj =
√

2Ij sinφj , (j = 1, 2)

and assume that the HamiltonianH is the normal form through terms of orderm where
m = 2l − 1 orm = 2l, i.e.,

H(I, φ1, φ2) = H2(I ) + · · · +H2l−2(I ) +Hm(I, aφ1 + bφ2) + · · · (4)

where:

• H2 = ω1I1− ω2I2,
• H2j is a homogeneous polynomial of degreej in I1, I2,
• Hm(I, aφ1+bφ2) is a homogeneous polynomial of degreem in

√
I1,
√
I2 with coefficients

which are finite Fourier series in the single angleaθ1 + bθ2,
• the ellipses denote terms of order greater thanm in the variables

√
I1,
√
I2, and

• H is an analytic function of the variables
√
I1,
√
I2, φ1, φ2 and 2π periodic inφ1 andφ2.

ThatHm is a function of the single angleaφ1 + bφ2 is equivalent to the fact thatHm
is constant along the solutions of the linear equations whose Hamiltonian isH2, i.e.,Hm is
constant along the solutions of

φ̇1 = −ω1, φ̇2 = ω2, İ1 = 0, İ2 = 0.

Let

9(φ) = Hm(ω2, ω1, aφ),

where

φ = φ1 +
b

a
φ2.

LetD2j = H2j (ω2, ω1). If, for somej = 2, . . . , l − 1, we haveD2j 6= 0, then Arnold’s
stability theorem [1, 11] guarantees the stability of the equilibrium solutionqi = pi = 0.
Therefore, we assume in addition that

D2j = 0, for j = 2, . . . , l − 1,

and soHm is the term that will decide the stability or instability of the equilibrium.

Theorem 4.1. If 9(φ) 6= 0, for all φ, then the equilibrium solutionqi = pi = 0 is stable. If
9 has a simple zero, that is, if there existsφ∗ such that9(φ∗) = 0 and9 ′(φ∗) 6= 0, then the
equilibrium solution is unstable.
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Remark. For the stability statement we do not need the resonance condition and soHm could
be independent of an angle. Thus, this theorem includes Arnold’s theorem.

Proof. We follow the ideas in the proof of Arnold’s stability theorem as given in [7,11]. Since
D2j = 0, the homogeneous polynomialH2j hasH2 as a factor, that is,H2j = H2F2j−2, where
the second factor is a homogeneous polynomial of degreej − 1 in I1, I2. We have

H = H2F +Hm(I, φ) + · · · ,
with F = 1 +F2 + · · · +F2l−4. Near the origin the values ofF2j are small and we can take the
reciprocal of the functionF ,

F−1 = 1 + · · · ,
where the ellipses represent terms of degree at least 1 inI1, I2. Therefore,H̃ = F−1H can be
written as

H̃ = H2 +Hm(I1, I2, aφ1 + bφ2) + · · · ,
where the ellipsis represents terms of degree at leastm + 1 in

√
I1,
√
I2.

SinceH = FH̃ the equations of motion are of the forṁz = J∇H = FJ∇H̃ + H̃∇F
wherez = (I1, I2, φ1, φ2) andJ is the usual 4× 4 skew-symmetric matrix of mechanics. If
we change time by dτ = F dt and let′ = /dτ the equations of motion on the setH = 0 (or
H̃ = 0) are

z′ = J∇H̃ .
Thus, near the equilibrium the flow defined byH̃ on H̃ = 0 is a reparametrization of the flow
defined byH onH = 0.

It suffices to prove instability on the surfaceH = 0 or, equivalently, onH̃ = 0. Solving
the equation

0= H̃ = ω1I1− ω2I2 +Hm(I1, I2, aφ1 + bφ2) + · · · , (5)

for I2, we get

I2 = ω1

ω2
I1 +

1

ω2
Hm

(
I1,

ω1

ω2
I1, aφ1 + bφ2

)
+ O(I

m+1
2

1 )

or,

I2 = b

a
I1 +

1

ω
m+2

2
2

Hm(ω2, ω1, aφ1 + bφ2)I
m
2

1 + O(I
m+1

2
1 ).

The right-hand sides of these equations are analytic functions of
√
I1, φ1, φ2.

LetH †(I1, φ1, φ2) be the negative of the right-hand side of this expression forI2. From
the equations of motion we see thatφ2 is an increasing function ofτ and so we can take it as the
new independent variable (time). The functionH † then defines a time-dependent Hamiltonian
with one degree of freedom, 2π -periodic inφ1 andφ2.

We now make the symplectic change of variables

φ = φ1 +
b

a
φ2, r = I1

which is generated by the function

S(r, φ1, φ2) = r
(
φ1 +

b

a
φ2

)
.
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Since the derivative ofS with respect to the timeφ2 is

∂S

∂φ2
= r b

a
= b

a
I1,

the new Hamiltonian function is given by

K(r, φ, φ2) = 9(φ)rn + O(rn+ 1
2 ),

wheren = m/2 and

9(φ) = − 1

ωn+1
2

Hm(ω2, ω1, aφ).

We notice thatK is 2π -periodic inφ and 2aπ -periodic inφ2. By hypothesis,9(φ) has a simple
zero. Therefore, lemma 2.1 implies thatr = 0 is an unstable equilibrium for the Hamiltonian
system defined byK. Consequently, the equilibriumqi = pi = 0 is unstable.

If we just want to prove the stability of the equilibrium point on the level setH = 0
we could simply apply lemma 2.1, but with a little extra effort we can get the full stability
statement. First we scale the action variablesIi = ε2Ji , whereε is a small scale variable. This
is a symplectic change of coordinates with multiplierε−2; so, the Hamiltonian (4) becomes
(in the variablesJ1, J2, φ)

H = H2F + εm−2Hm + O(εm−1),

where, now,

F = 1 + ε2F2 + · · · + ε2l−4F2l−4.

We fix a bounded neighbourhood of the origin, say,|Ji | 6 4 so that the remainder term is
uniformly O(εm−1) in it and henceforth restrict our attention to this neighbourhood. Leth be
a new parameter in the interval [−1, 1]. SinceF = 1 + · · ·, we have

H − εm−1h = KF,
where

K = H2 + εmHm−2 + O(εm−1). (6)

For sufficiently smallε, the functionF is positive in the neighbourhood under consideration
and so the level setH = εm−1h is the same as the level setK = 0. Let z = (J1, J2, φ1, φ2)

and let∇ be the gradient operator with respect to these variables. The equations of motion are

ż = J∇H = F(J∇K) +K(J∇F).
On the level setK = 0, the equations become

ż = F(J∇K).
For smallε, as we noticed,F is positive. So the reparametrization dτ = F dt transforms this
equation to

z′ = J∇K(z), (7)

where the prime denotes a derivative with respect toτ .
We have thus shown that in the considered neighbourhood, and for smallε, the flow

defined byH on each level setH = εm−1h is a reparametrization of the flow defined byK
on the level setK = 0. Now, the stability of the equilibrium on each level setH = εm−1h

guarantees, by varying the parameterh, the stability of the equilibrium. Thus, it suffices to
prove stability of the origin for the system (7), on the level setK = 0.
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Now, from (6), we have

K = ω1J1− ω2J2 + εm−2Hm(J1, J2, aφ) + O(εm−1).

From this point on we proceed to compute the Hamiltonian in theK = 0 set just as in the
instability case to get (withn = m/2)

K(r, φ, φ2) = εm−29(φ)rn + O(εm−1).

The difference is thatK is analytic for1
2 6 r 6 3 for all smallε, and so by lemma 2.2 there

exist invariant tori which separate ther = 1 torus from ther = 2 torus for all smallε, say
0 6 ε 6 ε0. For all 06 ε 6 ε0 all solutions which start withr 6 1 must haver 6 2 for
all τ . Since onK = 0 we haveJ2 = (ω1/ω2)J1 + · · · and a bound onr = J1 implies a
bound onJ2. Thus there are constants,c andk, such that ifJ1(τ ), J2(τ ) satisfy the system for
06 ε 6 ε0, start onK = 0 and satisfy|J1(0)|, |J2(0)| 6 c then|J1(τ )|, |J2(τ )| 6 k for all τ
and 06 ε 6 ε0.

Returning to the original unscaled variables with the original HamiltonianH this means
that for 06 ε 6 ε0 all solutions which start onH = εmh and satisfy|I1(0)|, |I2(0)| 6 ε2c

must satisfy|I1(τ )|, |I2(τ )| 6 ε2k for all t and all−16 h 6 1, ε 6 ε0. Thus the equilibrium
is stable. �

As applications consider the classical counter example of Cherry and theorems of Markeev
[8,9] and Alfriend [2,3] and their applications to the Lagrange equilateral triangular libration
points in the restricted three-body problem.

Cherry’s counterexample. In the second edition (1917) of Whittaker’s book on dynamics,
the equations of motion about the Lagrange triangular libration pointL4 of the circular three-
body problem are linearized, and the assertion is made that the libration point is stable for
0 < µ < µ1 on the basis of this linear analysis whereµ is the mass ratio parameter and
µ1 = 1

2(1 −
√

69/9) is the critical mass ratio parameter of Routh. In the third edition of
Whittaker [13] this assertion was dropped, and an example due to Cherry [4] was included.
Cherry’s example is a polynomial Hamiltonian system of two degrees of freedom, the linearized
equations are two harmonic oscillators with frequencies in a ratio of 2:1. He explicitly gives
the solution and thus shows that the higher-order terms can destablize the system. However, a
closer look reveals that the Hamiltonian is in Birkhoff’s normal form thus indicating the origin
of the example.

Cherry’s counterexample in action-angle coordinates is

H = 2I1− I2 + I 1/2
1 I2 cos(φ1 + 2φ2), (8)

and by the above theorem the equilibrium is unstable.

Resonance. Consider the case where the linear system is in 1:2 resonance, i.e. when the
linearized system has exponents±iω1 and±iω2 with ω1 = 2ω2. Let ω = ω2. The normal
form for the Hamiltonian is a function ofI1, I2 and the single angleθ1 + 2θ2. Assume the
system has been normalized through terms of degree three, i.e. assume the Hamiltonian is of
the form

H = 2ωI1− ωI2 + δI 1/2
1 I2 cosψ +H †, (9)

whereψ = θ1 + 2θ2,H †(I1, I2, θ1, θ2) = O((I1 + I2)2).

Corollary 4.1 (Alfriend–Markeev theorem). If in the presence of 1:2 resonance, the
Hamiltonian system is in the normal form (9) withδ 6= 0 then the equilibrium is unstable.
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Consider the circular restricted three-body problem with mass ratio parameterµ [7].

Whenµ = µ2 = 1
2 − 1

30

√
611
3 ≈ 0.024 2939 the exponents of the Lagrange equilateral

triangle libration pointL4 are±2
√

5i/5,±√5i/5 and so the ratio of the frequenciesω1/ω2 is
2. Expanding the Hamiltonian aboutL4 whenµ = µ2 in a Taylor series through cubic terms
gives

H = 1
14

{
5x2

1 − 2
√

611x1x2 − 25x2
2 − 40x1y2 + 40x2y1 + 20y2

1 + 20y2
2

}
× 1

240
√

3

{
−7
√

611x3
1 + 135x2

1x2 + 33
√

611x1x
2
2 + 135x3

2

}
+ · · · .

Using Mathematica we can put this Hamiltonian into the normal form (9) with

ω =
√

5

5
≈ 0.447 213, δ = 11

√
11

18 4
√

5
≈ 1.355 42,

and so we have:the libration pointL4 of the restricted three-body problem is unstable when
µ = µ2.

4.0.2. 1:3 Resonance.Now consider the system in the case when the linear system is in 1:3
resonance, i.e.ω1 = 3ω2. Letω = ω2. The normal form for the Hamiltonian is a function of
I1, I2 and the single angleθ1 + 3θ2. Assume the system has been normalized through terms of
degree four, i.e. assume the Hamiltonian is of the form

H = 3ωI1− ωI2 + δI 1/2
1 I

3/2
2 cosψ + 1

2{AI 2
1 + 2BI1I2 +CI 2

2 } +H †, (10)

whereψ = θ1 + 3θ2,H † = O((I1 + I2)5/2). Let

D = A + 6B + 9C, (11)

and recall from Arnold’s theorem the important quantityD4 = 1
2Dω

2.

Corollary 4.2 (Alfriend–Markeev theorem). If in the presence of 1:3 resonance, the
Hamiltonian system is in the normal form (10) and if6

√
3|δ| > |D| then the equilibrium

is unstable, whereas, if6
√

3|δ| < |D| then the equilibrium is stable.

Whenµ = µ3 = 1
2 −

√
213
30 ≈ 0.013 5160 the exponents of the Lagrange equilateral

triangle libration pointL4 of the restricted three-body problem are±3
√

10i/10,±√10i/10
and so the ratio of the frequenciesω1/ω2 is 3.

Using Mathematica we can put this Hamiltonian into the normal form (10) with

ω =
√

10

10
≈ 0.316 228, δ = 3

√
14 277

80
≈ 4.480 74

A = 309

1120
, B = −1219

560
, C = 79

560
.

From this we compute

6
√

3|δ| ≈ 46.5652> |D| ≈ 8.341 07,

and so we have:the libration pointL4 of the restricted three-body problem is unstable when
µ = µ3.
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