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Abstract. We consider the stability and instability of an equilibrium point of a Hamiltonian
system of two degrees of freedom in certain resonance cases. We also consider the stability or
instability of a fixed point of an area-preserving mapping in certain resonance cases. The stability
criteria are established by Moser’s invariant curve theorem and the instability is established by
Chetaev’s theorem.
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1. Introduction

We present two general lemmas which can be used to establish a wide variety of stability
and instability results for Hamiltonian systems. These lemmas are established using the ideas
presented in the classic book by Markeev [9]. The stability criteria are established by Moser’s
invariant curve theorem [12] and the instability is established by Chetaev’s theorem [5]. In
particular, we consider Hamiltonians which are in resonance where angle terms appear in the
normalized Hamiltonian.

The main lemmas are presented in section 2. These lemmas are applied to the study of
the stability or instability of a fixed point of an area-preserving mapping in section 3 and to
the stability or instability of an equilibrium point of a Hamiltonian system of two degrees
of freedom in certain resonance cases in section 4. We give some examples to show that
symmetries can cause some difficulties in stability analysis.

2. Main stability lemma

In this section we will give two lemmas which are simple applications of Moser’s invariant
curve theorem and Chetaev’s theorem. These lemmas will be used in subsequent sections to
establish the stability or instability of systems in various resonance cases.

Lemmaz2.l.LetK(r,¢,t) = V(p)r" + O(r”"%), wheren = m/2 withm > 3, an integer.

Suppose thak is an analytic function of/r, ¢, ¢, T-periodic in¢ and T-periodic int. If

W (¢p) # 0, for all ¢, then the origin- = 0 is a stable equilibrium for the Hamiltonian system
B K . oK
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in the sense that given > 0, there exist$ > 0 such that ifr(0) < §, then the solution is
defined for all andr(r) < €. If ¥(¢) has a simple zero, i.e., if there exigts such that
W (p*) = 0and¥'(¢*) # 0, then the equilibriumr = O is unstable.

Proof. Suppose tha¥ (¢) # 0, for all¢, say,¥ (¢) > 0. Consider the truncated Hamiltonian
k=W(p)r"
and define, for each > 0, the variabld = 1 (k) by

1 T
= —/ r(k. $) do,
27'[ 0

where
kl/n
r(k, ¢) = W

Consider a generating functidi{/, ¢) defined by

¢
S(I, $) =f0 r(k, 0)do.

By eliminating the factok”, we get
S, ¢) =pIG(9),

—271// do G()_/¢ do
p= 0o YOV’ )= o (@)Y

Now, S defines a symplectic transformation ¢) — (I, W) by the relations
N as
W= Yo BG(9), r= 9% = BIG'(9),
and the original Hamiltonian
K(r,¢,1) = W(g)r" +O("*2)
is transformed into the new Hamiltonian (analyticyfi, W, r)
K(I, W, 1) = B"I" + O(I"*?),

sinceG'(¢) = W(¢)~V", hence¥ ()G’ (¢)" = 1.
Notice that, sincal (¢) is t-periodic,

where

N L.
(r,g+1)=BG(¢ T)—,Bfo Vo)

_ /f do /‘1’” @ W
_/3 0 \I-[(Q)l/n ﬂ . \11(9)1/” =7 (r’¢)v

so W is a true angular variable, therefoke(Z, W, t) is 2z-periodic in W, and of course,
T-periodic int.
Consider the change of variables W) — (J, ¥) defined by
I=oylJ, W =1,
wheres > 0 is a small parameter,4 J < 2 andy is chosen so that"y"~! = 1/n. This is
a symplectic change of variables with multipliey, so the new Hamiltonian is given by

1
KUy = Z0" "+ 0" %),
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and the corresponding Hamiltonian equations are

d/ -} dy _
dr O6™™2), dr
with the right-hand side analytic id, v, ¢, 2r-periodic iny and T-periodic in ¢, with
1<J <2

Integrating between= 0 andr = T, and denoting by, ¥ the initial values and by,
Yr, the final values, we obtain the map

_O_n—lJn—l + O(O_n—%)’

Jo=J+6""2F(J, ¥, 0)
Y=V — " T I 4 "I Ry (T, Y, o),

defined and analytic in the regiond J < 2, ¢ € R, |o| < ag, With Fy, F, periodic inyr.
This map is area preserving by virtue of the Hamiltonian character of the differential equations.
Therefore, by Moser’s invariant curve theorem [7, 12] there exist, for smalvariant curves
J = JW) = J(y + 21), near to circles, that is, witll’(yy) ~ 0. Sincel = oy J, the
corresponding curvé = I(y) can be taken inside small neighbourhoods of the origin (by
takingo sufficiently small). In the three-dimensional spdéey, 1), identifying the sections
t = 0 andr = T we get a torus formed by solutions curves that begin on the closed curve
I = I(¥). By uniqueness of solutions, any solutiah(¢), ¥ (z)) that starts at a point inside
the region bounded by the curye= I (yr) cannot cross the torus and therefarg, remains
small. Therefore/ (r) remains small for alt. Since the solutions stay inside a compact set
it is defined for all time. This proves the stability, in the sense defined in the statement of the
theorem.

Now we will give the proof of the instability statement. Assume ti¥di/*) = 0 and
' (¢*) > 0. Choose& > 0 so small that

W (¢) #0, and V'(p) >0 for 0<|p—o*| <86.
Consider the function
V =r"sin®d,

where® = (/28)(¢p — ¢* + ).
Define a regio2 as the set of pointg-, ¢, t) such that

P —8 < < ¢ +5.

Then,V > 0inQ andV = 0 ona<, the boundary of2. The derivative ofv along the
solutions of the system of equations

F= 2—{; = "W/ (¢) + O("*2)
b=—"5 — w0
or

is given by
dv av.. av . 9V
—:—r+—¢+—
dr or ¢ ot

_ 2n—-1 / ; _l 2,1_%
= nr [\1: (#) sind 28\1/(¢)cos<b]+0(r ).

For0< ¢ — ¢* < §, we haver/2 < (r/28)(¢p — ¢* +8) < 7 so that cosd < 0. Also for
-8 < ¢ — ¢* < 0, we have co® > 0 and therefore,

W(p)cosd® < 0 on O< |¢p—¢*| <.
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SinceV¥'(¢) > 0 and sind > 0 on|¢ — ¢*| < §, we havel’(¢) sin® > 0 in this interval.

Since for the function inside the brackets the two summands do not vanish simultaneously on
the compact intervalp — ¢*| < 4, it follows that it has a positive minimum, and therefore,

for smallr, we conclude that®d/dr > 0 on<, if r is sufficiently small. It then follows from
Chetaev’s theorem [5] that the equilibrium is unstable. |

Lemma2.2.LetK (r, ¢, t, €) = €"W(p)r" + O(e"*1), wherem and2n are positive integers.
Suppose thak is an analytic function of, ¢, ¢, T-periodic in ¢, T-periodic in¢ for all
% <r<3andallo < e < e If W () # O, for all ¢, then ifeq is sufficiently small any
solution of
. K . oK

"=ae 0T
which starts withr(0)| < 1for 0 < € < ¢ satisfiedr(r)| < 2forall 7.

Proof. As in the proof of the previous lemma we show that there are invariant curves for the
section map which separate= 1 fromr = 2. O

3. Hamiltonian periodic systems and area-preserving maps

As the first application we consider stability and instability of an equilibrium point of a periodic
analytic Hamiltonian system of one degree of freeddm= H(q, p,t). We also discuss the
equivalent problem of the stability and instability of a fixed point of an analytic area-preserving
mapping. The stability of a periodic solution of an autonomous Hamiltonian system of two
degrees of freedom can be reduced to either of these cases.

First consider the periodic case. The classical Liapunov theory shows that the origin is
unstable unless the multipliers have unit modulus [7], and so we consider a system whose
multipliers arex, A~% with |A| = 1. We consider the case where the monodromy matrix is
diagonalizable.

We are interested in the resonance case so we will assume the systerpasi@dic and
the multiplier is a root of unity, i.eA* = 27/’ whereq, b are relatively prime positive
integers. By the discussion in [7], chapter VII we can assume the equilibrium is at the origin,
and that a series of periodic symplectic changes of variables have been made so that the
Hamiltonian is of the form

H(.6.1) = %1 + Bl + -+ B+ W(ar +bO)I" + H (1,0, 1) 1)

where
m=I1+1orm=1+1withl > 1,
Bo, ..., B; are constants,
W(.) is 2r-periodic and has a finite Fourier series in a single angle,
HY(1,0,1) is analytic iny/I, 6, and: and 2r-periodic in6 and,

e HY(1,0,1)is at least of ordef”*/2,
Here we have used action-angle variable§ whereq = /21 cosg andp = /21 siné.
Usually one assumes that the Hamiltonian is analytic in the original varigbjesnd hence
the Poisson series must have the d’Alembert character [7].

If one of theg; is nonzero then Moser’s invariant curve theorem [7, 12] implies that the

equilibrium point is stable. So we will consider the degenerate case when

Pr=-=f =0

In this case we have the following.
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Theorem 3.1.1f W(y) is never zero then the equilibrium is stable.Wfhas a simple zero,
that is, if there existg/* such that¥ (y*) = 0O and W’ (¥ *) # 0, then the equilibrium solution
is unstable.

Proof. Make the time-dependent symplectic change of variables

r=1, ¢=%t+9,

which is generated by the functidi(r, 6) = r(6 + at/b). The Hamiltonian becomes
H=Ybp)r"+.--,

and so the theorem follows from lemma 2.1. O

The discussion in chapter VII of [7] shows the study of the fixed point of an area-preserving
map can be reduced to the study of an equilibrium point of a periodic Hamiltonian system as
given above. Consider an analytic area-preserving mapping of a neighbourhood of the origin in
R2 with fixed point at the origin. Again assume that the multipliers of this fixed point are roots
of unity, specificallyA** = e**27/b wherea, b are relatively prime positive integers. By a
series of symplectic changes of coordinates we may assume that the mapging> (I’, 6"),
is of the form

I'=1+pV'GBOHIM+.--,

2 2
a=9+%?+ﬂﬂ+-~+mﬂ—mwwmﬂhh~~, @

where

em=I1+3orm=1+1withl >1,

e B2,..., B are constants,

e W (.) is 2r-periodic and has a finite Fourier series in a single angle,
o the ellipses are terms of higher orderZimand periodic irg.

Again we have used action-angle variable8 whereq = +/21 cosf andp = +/21 siné.
If one of theg; is nonzero then Moser’s invariant curve theorem [7,12] implies that the
fixed point is stable. So we will consider the case when

pr=--=p=0.

In this case we have the following.

Corollary 3.1. If ¥(y) is never zero then the fixed point is stableVIhas a simple zero, that
is, if there existg/* such that¥ (v*) = 0and W' (¥ *) #£ 0, then the fixed point is unstable.

Proof. By the discussion in chapter VII of [7] the period map of a system of the form (1) is of
the form (2) and conversely a mapping of the form (2) can be suspended in a periodic system
of the form (1). Thus the two results are the same. O
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3.0.1. Example: cube root of unityIn the case of an analytic mapping when the multipliers
of the fixed point are cube roots of unity then the mapping can be put into the form

I'=1-21?sin®+...,
2mwa
9/=9+T+y111/200539+---,

wherea = 1 or 2 andy; is a constant. Generically; is nonzero and so the fixed point is
unstable. However, if the mapping has a special symmetry or depends on parameters it may
happen thay; = 0. In that case the system can be normalized further to get
I'=1+303NHIE+-.-,
2
o' =9+_’;a + Byl +3W(3O) 2+,

where
Y (30) = Ba+y,SiNE) +y3C0S@ +y,SINP +y5c08 P.
Now if 81 is nonzero the fixed point is stable otherwise the stability depends on whgther

is nonzero or has a simple zero etc. Of course there is the ever elusive cas& asna
degenerate zero.

Example: fourth root of unity. In the case of an analytic mapping when the multipliers of the
fixed point are fourth roots of unity then the mapping can be put into the form
I'=1—2p11%sin(40) +- - -,
0 =0 +am +4{B1+y1coSB} +---,
wherea = 1 or 3 andB; andy; are constants. Whel;| < |y4| the fixed point is unstable

whereas if|1| > |y1] the fixed point is stable. This example and others were considered
in [10].

Example: odd forces, odd-harmonic forcingMuch of the classical literature on bifurcation
of periodic solutions deals with the forced nonlinear oscillator of the form

u+t fu) =g
where the forcg is assumedto be odd(—u) = — f (1), and the external forcingis assumed
to be 2r periodic and odd-harmonig(r + ) = —g(¢). Duffing’s equationi + u +u® = cost
and the forced pendulum equatidr sinu = sint are prime examples. Written as a periodic
Hamiltonian system with HamiltoniaH (u, v, ¢) these systems admit the symmetry
H(—u,v,t+m7)=H(u,v,t),
or if written in action-angle coordinatds ¢ the Hamiltonian admits the symmetry
Hl,¢,t)=H{U,¢p+m,t+m).
This symmetry condition places restrictions on the angle dependent terms which occur in the
Hamiltonian. Consider for example the case when the multipliers are cube roots of unity. The
normalized Hamiltonian is of the form

a
H =3I + 1132 co930 +at) + fol?+- - -,

wherea = 1, 2. Generically without symmetny, = 0 and so the periodic solution is unstable.
However, the above symmetry implies that the cosine term must be zeroankehand so
the first term in the normalized HamiltoniandsI? with 8, # 0 in general. So generically in
the presence of symmetry the periodic solution is unstahlesf 1 but stable if= = 2. Not

all cube roots of unity are the same!
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4. Hamiltonian systems with two degrees of freedom

As the second application we consider stability and instability of an equilibrium point of an
analytic autonomous Hamiltonian system with two degrees of freddlomH (q1, g2, p1, p2)-

The classical Liapunov theory shows that the origin is unstable unless the eigenvalues of the
linearized system are pure imaginary, and so we consider a system whose linear part has
eigenvaluestwii, +wyi. In this case if the frequencies are of the same sign, the Hamiltonian

is sign definite, Dirichlet’'s theorem [6] asserts that the equilibrium is stable. Therefore, we
shall consider the case when the frequeneig&, have opposite sign, i.e. the Hamiltonian has

an indefinite quadratic part. Furthermore, we assume that the frequencies satisfy the resonance
relation

aw; — bwy =0 3
wherea andb are relatively prime positive integerser= b = 1. If a = b = 1, we assume

also that the matrix of the linearized system is diagonalizable.
We write the Hamiltonian in action-angle variablds ¢) = (11, I, ¢1, ¢2) defined by

qu,/ZIjCO&j)j, pJ-:,/ZIjSinqu, (]21,2)
and assume that the Hamiltoniah is the normal form through terms of order where
m=2—1lorm=2,ie.,

H(I, ¢1,¢2) = Ho(I) +---+ Hy (1) + H, (I, apy + bpo) + - - - (4)
where:

o Hy = w1l — wzly,

H,; is a homogeneous polynomial of degrem I, I,

H,, (I, ap+be») is a homogeneous polynomial of degre@ /11, /I> with coefficients
which are finite Fourier series in the single angfe + b0,

the ellipses denote terms of order greater than the variables/I1, +/I2, and

e H is an analytic function of the variablegl1, +/I>, $1, ¢» and 2v periodic ing; andgs.

That H,, is a function of the single angleg, + b¢, is equivalent to the fact thatf,,
is constant along the solutions of the linear equations whose Hamiltonidy ise., H,, is
constant along the solutions of

1 = —w1, b2 = w2, I =0, I, =0.

Let
\Ij(¢) = Hm (a)27 wl’ ad))a
where
b
¢ =¢1+—¢2.
a
Let Dy; = Hoj(wo, wy1). If, forsomej = 2,...,1 — 1, we haveD;; # 0, then Arnold’s
stability theorem [1, 11] guarantees the stability of the equilibrium solujos= p; = 0.
Therefore, we assume in addition that
D,; =0, for j=2,...,1-1,
and soH,, is the term that will decide the stability or instability of the equilibrium.

Theorem 4.1.1f W(¢) # 0, for all ¢, then the equilibrium solutiop; = p; = 0is stable. If
W has a simple zero, that is, if there exigtssuch that¥ (¢*) = 0 and ¥'(¢*) # O, then the
equilibrium solution is unstable.
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Remark. For the stability statement we do not need the resonance condition akigl sould
be independent of an angle. Thus, this theorem includes Arnold’s theorem.

Proof. We follow the ideas in the proof of Arnold’s stability theorem as given in [7,11]. Since
D,; = 0, the homogeneous polynomidp; hasH- as a factor, that ist,; = H>F»;_», where
the second factor is a homogeneous polynomial of defjred. in 15, I,. We have

H=HF+H,I,¢)+--,

with F =1+ F>+-- -+ F_4. Near the origin the values @b, are small and we can take the
reciprocal of the functiorF,

F*1:1+...7

where the ellipses represent terms of degree at leash1 i Therefore H = F~'H can be
written as

H = Hy+ H,(I1, I, ags + b)) + - - -,

where the ellipsis represents terms of degree at ieasl in /Tr, /.

SinceH = F H the equations of motion are of the fotrm= JVH = FJVH + HVF
wherez = (11, I, ¢1, ¢2) andJ is the usual 4x 4 skew-symmetric matrix of mechanics. If
we change time byd = F dr and let' = /dt the equations of motion on the s&t= 0 (or
H =0) are

7 =JVH.

Thus, near the equilibrium the flow defined Byon H = 0 is a reparametrization of the flow
defined byH on H = 0.

It suffices to prove instability on the surfaée = 0 or, equivalently, orf = 0. Solving
the equation

O0=H =wil1 — w2l + H,(I1, Iz, apr + b)) + - - -, %)
for I, we get
1 ml
L=21L+—H, (11, 2, ag +b¢2> +O(L?)
w? w2 w?

or,
b+t %, o
L=-L+ —z Hu (w2, 1, a1 + bdp) 17 +O(I* ).
%

The right-hand sides of these equations are analytic functiogdofps, ¢,.

Let H'(11, ¢1, ¢2) be the negative of the right-hand side of this expressiorfoFrom
the equations of motion we see tigatis an increasing function afand so we can take it as the
new independent variable (time). The functigifi then defines a time-dependent Hamiltonian
with one degree of freedomg2periodic ing; andg,.

We now make the symplectic change of variables

b
¢=¢1+;¢2, r=1

which is generated by the function

b
S, 1, ¢2) =7 (¢1 + 5052) .
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Since the derivative of with respect to the time, is
as b b

—— =r-=-1,
0¢2 a a

the new Hamiltonian function is given by

K(r, ¢, $2) = W(p)r" + O("*2),
wheren = m/2 and

V(p) = _%Hm (w2, w1, ag).
w3
We notice thaK is 2 -periodic ing and Zisr-periodic ing,. By hypothesisW (¢) has a simple
zero. Therefore, lemma 2.1 implies that 0 is an unstable equilibrium for the Hamiltonian
system defined b . Consequently, the equilibriugy = p; = 0 is unstable.
If we just want to prove the stability of the equilibrium point on the level Bet= 0
we could simply apply lemma 2.1, but with a little extra effort we can get the full stability
statement. First we scale the action varialijes ¢2J;, wheree is a small scale variable. This
is a symplectic change of coordinates with multipke?; so, the Hamiltonian (4) becomes
(in the variables/y, J3, ¢)

H = HZF + 6m_zl_lm + O(em_l)v
where, now,
F=1 +62F2 +...+ 621_4F21,4.

We fix a bounded neighbourhood of the origin, sak| < 4 so that the remainder term is
uniformly O(e”~1) in it and henceforth restrict our attention to this neighbourhood /:Ltes
a new parameter in the intervat, 1]. SinceF =1 +- .-, we have

H— " 1h =KF,
where
K =Hy+€"Hy2+ 0" ). (6)

For sufficiently smalk, the functionF is positive in the neighbourhood under consideration
and so the level sef = ¢ 11 is the same as the level skt= 0. Letz = (J1, Jo, ¢1, ¢2)
and letV be the gradient operator with respect to these variables. The equations of motion are

z=JVH =F(VK)+K(JVF).
On the level seK = 0, the equations become
z=F(JVK).

For smalle, as we noticedF is positive. So the reparametrization e F dr transforms this
equation to

7 = JVK(2), (7)

where the prime denotes a derivative with respeet to

We have thus shown that in the considered neighbourhood, and for spthé flow
defined byH on each level sell = "'/ is a reparametrization of the flow defined Ky
on the level seK = 0. Now, the stability of the equilibrium on each level $&t= ¢"~1h
guarantees, by varying the paramdiethe stability of the equilibrium. Thus, it suffices to
prove stability of the origin for the system (7), on the level Ket 0.
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Now, from (6), we have
K=w1J1—waJo+ Emisz(Jl, o, a¢) + O(Emfl).

From this point on we proceed to compute the Hamiltonian inKhe- O set just as in the
instability case to get (with = m/2)

K(r, ¢, ) = €"2W(gp)r" + O™ ).

The difference is thak is analytic for% < r < 3for all smalle, and so by lemma 2.2 there
exist invariant tori which separate the= 1 torus from the- = 2 torus for all smalk, say
0 < € < €. Forall 0< € < ¢ all solutions which start witlr < 1 must haver < 2 for
all z. Since onK = 0 we haveJ; = (w1/wy)J1 +--- and a bound om = J; implies a
bound onJ,. Thus there are constantsandk, such that if/y(t), Jo(t) satisfy the system for
0 < € < €, start onK = 0 and satisfyJ1(0)], | J2(0)| < ¢ then|Ji(7)], |J2(7)| < kforall T
and 0< € < «.

Returning to the original unscaled variables with the original Hamiltofiahis means
that for 0 < € < ¢ all solutions which start ol = ¢”h and satisfy| I1(0)|, | [2(0)| < €°c
must satisfy| I1(7)|, |I(t)| < €2k forall r and all-1 < 7 < 1, € < €o. Thus the equilibrium
is stable. a

As applications consider the classical counter example of Cherry and theorems of Markeev
[8,9] and Alfriend [2, 3] and their applications to the Lagrange equilateral triangular libration
points in the restricted three-body problem.

Cherry’s counterexample. In the second edition (1917) of Whittaker's book on dynamics,
the equations of motion about the Lagrange triangular libration phjwatf the circular three-
body problem are linearized, and the assertion is made that the libration point is stable for
0 < u < puq1 on the basis of this linear analysis whetes the mass ratio parameter and
p1 = 3(1— +/69/9) is the critical mass ratio parameter of Routh. In the third edition of
Whittaker [13] this assertion was dropped, and an example due to Cherry [4] was included.
Cherry’'s example is a polynomial Hamiltonian system of two degrees of freedom, the linearized
equations are two harmonic oscillators with frequencies in a ratio of 2:1. He explicitly gives
the solution and thus shows that the higher-order terms can destablize the system. However, a
closer look reveals that the Hamiltonian is in Birkhoff's normal form thus indicating the origin
of the example.

Cherry’s counterexample in action-angle coordinates is

H =2l — I+ I,/* I, cos(¢1 + 2¢2), (8)

and by the above theorem the equilibrium is unstable.

Resonance. Consider the case where the linear system is in 1:2 resonance, i.e. when the
linearized system has exponentso; and+iw, with w3 = 2w,. Letw = w,. The normal

form for the Hamiltonian is a function afy, I, and the single anglé;, + 26,. Assume the
system has been normalized through terms of degree three, i.e. assume the Hamiltonian is of
the form

H =20l — ol + 81 I,cosy + H, Q)
wherey = 01 + 205, H'(I1, I, 61, 62) = O((I1 + I2)?).

Corollary 4.1 (Alfriend—Markeev theorem). If in the presence of 1:2 resonance, the
Hamiltonian system is in the normal form (9) with 0 then the equilibrium is unstable.
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Consider the circular restricted three-body problem with mass ratio paramd@r

Whenu = u, = % — 3io %11 ~ 0.024 2939 the exponents of the Lagrange equilateral

triangle libration pointZ, are42+/5i/5, ++/5i/5 and so the ratio of the frequencies/w; is
2. Expanding the Hamiltonian abodf whenu = u; in a Taylor series through cubic terms
gives

H=% {sxf — 24/610x1x; — 252 — 40x1y; + 4Qxsy; + 20y2 + zoyg}

1 3 2 2 3
X 52073 {—7\/611x1 +135¢2x, + 33V/611x1x2 + 135v2} T
Using Mathematica we can put this Hamiltonian into the normal form (9) with
5 11/11
w= £ ~ 0.447 213 8§ =—= ~ 135542
5 1875

and so we havethe libration point£, of the restricted three-body problem is unstable when
n = u2.

4.0.2. 1:3 Resonance.Now consider the system in the case when the linear system is in 1:3
resonance, i.e»; = 3w;. Letw = w,. The normal form for the Hamiltonian is a function of

I, I, and the single anglg, + 36,. Assume the system has been normalized through terms of
degree four, i.e. assume the Hamiltonian is of the form

H =30l — ol +81°1;* cosy + {AI? + 2B I, + CIZ} + HT,  (10)

wherey = 01+ 30,, HY = O((I1 + 1)%/?). Let

D= A+6B+9C, (11)
and recall from Arnold’s theorem the important quantity = %Dwz.
Corollary 4.2 (Alfriend—Markeev theorem). If in the presence of 1:3 resonance, the

Hamiltonian system is in the normal form (10) andsif’3|5| > |D| then the equilibrium
is unstable, whereas, &/3|8| < |D| then the equilibrium is stable.

Whenpu = uz = % — %13 ~ 0.0135160 the exponents of the Lagrange equilateral

triangle libration pointZ, of the restricted three-body problem at8+/10i/10, ++/10i/10
and so the ratio of the frequencies/w, is 3.
Using Mathematica we can put this Hamiltonian into the normal form (10) with

V1 V14277
0= 0316208 5= 21T 448074
10 80
309 1219 79
=—  B=-7—, C=—
1120 560 560

From this we compute
6+/3|5| ~ 46.5652> |D| ~ 8.34107

and so we havethe libration point£,4 of the restricted three-body problem is unstable when
W= U3
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