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1. INTRODUCTION. A standard topic in a first course in the geometric theory of
differential equations is the classification of phase portraits of linear systems. One
considers equations of the form

ẋ = Ax (1)

where x ∈ R
2, A is a 2 × 2 real constant matrix, and the dot denotes the derivative

with respect to t ∈ R, ˙ = d/dt . The solution of (1) such that x = x0 when t = 0 is
x(t, x0) = eAt x0. A trajectory of a system ẋ = Ax is a solution of the system, i.e., a
map R → R

2 : t �→ eAt x0, whereas an orbit is the oriented geometric curve {eAt x0 ∈
R

2 : t ∈ R}, where the orientation is given by increasing t . The phase portrait of a
system (1) is the totality of all its orbits in R

2, and is illustrated graphically by drawing
a few judicially chosen orbits. For example we draw the picture

to illustrate the phase portrait of the system

ẋ1 = −2x1

ẋ2 = −3x2.

The solution through (ξ1, ξ2) at t = 0 is x1(t) = e−2tξ1, x2(t) = e−3tξ2, so all solutions
are decreasing as t → ∞, the coordinate axes are orbits, and the other orbits are in
the family of cusps x3

1 = γ x2
2 , γ = ξ 3

1 /ξ 2
2 . The orientation or sense of the trajectory is

shown by an arrow and indicates increasing t in phase portraits.
Phase portraits are discussed in elementary texts like Blanchard, Devaney, and Hall

[1] and Boyce and DiPrima [2] and in advanced texts like Hubbard and West [4] and
Robinson [6]. In these texts, it is emphasized that the geometry of these portraits de-
pends heavily on the eigenvalues and eigenvectors of the coefficient matrix. The por-
traits depend on the signs and the magnitudes of the real parts of the eigenvalues, the
existence or nonexistence of imaginary parts of the eigenvalues, and the dimensions of
the eigenspaces.

Klein’s Erlangen project defines a geometry by a group of transformations. For us
the geometry of the phase portraits is defined by conjugacies. A conjugacy of two sys-
tems of the form (1) is a homeomorphism of R

2 which takes the trajectories of one
system onto the trajectories of the other while preserving the time parameter, t . If such
a conjugacy exists, then we say the two systems are conjugate. Here we restrict the
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group of conjugacies to different smoothness classes (topological, Hölder, Lipschitz,
linear) and investigate what these classes tell us about the geometry of the phase por-
traits and about the coefficient matrices. This hierarchy of smoothness reveals subtle
differences in the properties of linear systems as a whole.

Looked at from the opposite point of view, this treatise is a case study on the invari-
ants of homeomorphisms of different levels of smoothness. In general topology one
studies the invariants of continuous homeomorphisms and in differential topology one
studies the invariants of smooth diffeomorphism. But, what about Hölder or Lipschitz
homeomorphisms? As one goes up the hierarchy of smoothness one discerns finer and
finer geometric structure.

We completely characterize the conjugacy of n-dimensional hyperbolic systems,
i.e., systems for which all the eigenvalues of the coefficient matrix have nonzero real
part. But first, in the next section six representative two-dimensional examples are
given to illustrate the various possible planar phase portraits, and the question of the
level of smoothness of the conjugacies between them is completely answered. It is left
to the final section to completely resolve the general n-dimensional hyperbolic case. It
turns out that with one exception the general case is the same as the planar examples.
The exceptional case contains a 2k-dimensional Jordan block (see Theorem 3.1) with
complex eigenvalues, where k ≥ 2.

2. PLANAR EXAMPLES. Figure 1 contains six examples of the phase portraits of
linear differential equations in the plane, i.e., equations of the form (1) where x ∈ R

2

and A is a 2 × 2 real constant matrix. Since the systems are two-dimensional, the phase
portraits are planar. The n-dimensional case will be discussed in the following section.

(a) node (b) node (c) ray

(d) focus (e) one-tangent node (f) ray

Figure 1. Phase portraits of selected linear systems.

The solutions of equations (1), and hence the phase portraits in Figure 1, depend on
the eigenstructure (i.e., eigenvalues and eigenvectors) of the matrix A. The six systems
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of equations which give rise to the phase portraits in Figure 1 are

(a)
u̇1 = v1

v̇1 = −6u1 − 5v1
(b)

u̇2 = −2u2

v̇2 = −3v2
(c)

u̇3 = −2u3

v̇3 = −2v3

(d)
u̇4 = −2u4 + v4

v̇4 = −u4 − 2v4
(e)

u̇5 = −2u5

v̇5 = u5 − 2v5
(f)

u̇6 = −u6

v̇6 = −v6

(2)

For each example the unknown is xk = (uk, vk)
T , the corresponding coefficient matri-

ces are

(a) A1 =
[

0 1
−6 −5

]
(b) A2 =

[−2 0
0 −3

]
(c) A3 =

[ −2 0
0 −2

]
(d) A4 =

[−2 1
−1 −2

]
(e) A5 =

[−2 0
1 −2

]
(f) A6 =

[−1 0
0 −1

] (3)

and their eigenvalues are

(a) −2, −3 (b) −2, −3 (c) −2, −2

(d) −2 ± i (e) −2, −2 (f) −1, −1
(4)

The matrices in (3a) and (3b) have the same distinct eigenvalues and so are sim-
ilar. The matrix in (3c) is diagonal, so the eigenspace associated to −2 is all of R

2,
whereas the matrix in (3e) has an off-diagonal term, so its eigenspace is one dimen-
sional, specifically span{(0, 1)T }. The matrices in (3c) and (3f) are both diagonal with
repeated eigenvalues −2 and −1, respectively. The matrix in (3d) has a single conju-
gate pair of complex eigenvalues.

In all of these examples the real parts of the eigenvalues are negative, so the solu-
tions are exponentially decreasing, as indicated by the arrows in the figures. One says
that they are all sinks. One obtains a source, where all the real parts of the eigenval-
ues are positive, by the time reversal t → −t and reversing the arrows in the phase
portraits. The real part of the eigenvalue determines the rate at which solutions ap-
proach the origin—the exponential rate of decay. All solutions of (2c) approach the
origin at the same rate and faster than the solutions of (2f), as the placement of arrows
in Figures 1c and 1f is meant to imply, whereas the solutions of (2b) approach the
origin more rapidly along the vertical axis than along the horizontal axis. The rate at
which solutions rotate around the origin is determined by the imaginary parts of the
eigenvalues.

To the eye these figures have both qualitative differences and similarities, and it is
these features we wish to discuss. We will present several different definitions of con-
jugate phase portraits for n-dimensional systems. The different definitions distinguish
different geometric features of the portraits and the properties of the eigenvalues and
eigenvectors of the matrix A.

Consider two 2-dimensional systems ẋ = Ax and ẏ = By with their corresponding
phase portraits.

• The two systems are topologically conjugate if there is a homeomorphism φ : R
2 →

R
2 that carries the trajectories of the first system onto the trajectories of the second

and preserves the time parameter, t . That is, φ(eAt x0) = eBtφ(x0), for all x0 ∈ R
2,

t ∈ R.
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• If φ and φ−1 are Hölder continuous with Hölder exponent α (0 < α < 1), then the
two systems are α-Hölder conjugate. Here we say that φ is Hölder continuous with
exponent α if for every compact set C ⊂ R

2 there is a constant K such that ‖φ(u) −
φ(v)‖ ≤ K‖u − v‖α for all u, v ∈ C .

• If φ and φ−1 are Hölder continuous for all exponents α satisfying 0 < α < 1 then
we will refer to the two systems as simply Hölder conjugate.

• If φ and φ−1 are Lipschitz continuous then the two systems are Lipschitz conjugate.
Here we say that φ is Lipschitz continuous if for every compact set C ⊂ R

2 there is
a constant K such that ‖φ(u) − φ(v)‖ ≤ K‖u − v‖ for all u, v ∈ C .

• If φ and φ−1 are C1 then the two systems are C1 conjugate.
• If φ and φ−1 are linear then the two systems are linearly conjugate.
• In all these cases we say φ is a conjugacy.

Lemma 2.1. The two systems are linearly conjugate if and only if A and B are similar,
i.e., there exists a nonsingular matrix P such that B = P AP−1. If the two systems are
C1 conjugate then they are linearly conjugate.

Proof. Let the two systems be linearly conjugate, and let φ(x) = Px be the conjugacy.
Differentiate φ(eAt x0) = PeAt x0 = eBtφ(x0) = eBt Px0 with respect to t and then set
t = 0 to get P Ax0 = B Px0 for all x0. Hence P A = B P and A and B are similar.
Conversely, if P A = B P then PeAt = eBt P , so φ(x) = Px is a conjugacy.

Let the two systems be C1 conjugate. Differentiating φ(eAt x0) = eBtφ(x0) with
respect to x0 and setting x0 = 0 produces PeAt = eBt P , where P is the Jacobian of φ

at the origin. Thus, A and B are similar.

The order of the definitions above is from the weaker to the stronger, i.e., C1 ⇐⇒
linear ⇒ Lipschitz ⇒ Hölder ⇒ topological conjugacy. These differences in smooth-
ness detect the differences in the eigenstructure as illustrated by Proposition 2.1 below.

There is also a weaker notion of equivalence between two systems. The two systems
are topologically equivalent if there is a homeomorphism φ : R

2 → R
2 which carries

the orbits of the first system onto the orbits of the second and preserves the sense of
the orbits, and in this case φ is called an equivalence. The equivalence is Hölder, Lips-
chitz, or linear as φ and φ−1 are Hölder, Lipschitz, or linear, respectively. A conjugacy
preserves trajectories, whereas an equivalence preserves orbits.

If φ is a conjugacy then it is automatically an equivalence, but the converse is not
necessarily true. The identity map takes the orbits of system (2c) to the orbits of (2f)
and so these systems are linearly equivalent, but as we shall see they are not even
Hölder conjugate. We will primarily restrict our attention here to conjugacies. How-
ever, since equivalences are more general, when we wish to prove the nonexistence of
a certain conjugacy, it will suffice to prove the absence of a corresponding equivalence.

Proposition 2.1. All systems in (2) with phase portraits in Figure 1 are topologically
conjugate. More specifically,

• systems (2a) and (2b), with phase portraits in Figures 1a and 1b, are linearly
conjugate, i.e., the matrices A1 and A2 are similar,

• systems (2c) and (2d), with phase portraits in Figures 1c and 1d, where the
systems differ only in their rate of rotation, are Lipschitz conjugate,

• systems (2c) and (2e), with phase portraits in Figures 1c and 1e, where the
systems have the same eigenvalues, but eigenspaces of different dimension, are
Hölder conjugate,
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• systems (2c) and (2f), with phase portraits in Figures 1c and 1f, where the ex-
ponential rates of decay differ, are 1

2 -Hölder conjugate. (Likewise, systems (2c)
and (2b), with phase portraits in Figures 1c and 1b, are 2

3 -Hölder conjugate.)

Moreover, in each case these are the best possible for the conjugacies under consider-
ation.

One of the key features of the above proposition, and the point of the chosen ex-
amples, is the presence of a hierarchy within the building blocks of the coefficient ma-
trix. We think of a matrix as being constructed from its eigenvalues (real and imaginary
parts treated separately), the Jordan block structure for each eigenvalue (see Theorem
3.1), and the physical orientations of the eigenvectors and generalized eigenspaces in
space. Clearly, the specific eigenvectors and placement of generalized eigenspaces can
be modified using a linear change of variable—the strongest conjugacy. This sort of
change of variables is so automatic that the actual eigenvectors seem more an artifact
of how we chose our axes than an intrinsic part of the system. A linear change of
variables does not affect the other properties of the system, making them seem per-
haps more inherent or at least more tightly bound to what is the essence of the system.
However, the above examples suggest that there is a further gradation within these
other properties—some properties more tenuous and easily disrupted than others.

The next weakest conjugacy is Lipschitz conjugacy which ignores the rotational
term and transforms a focus to a ray as long as they have the same exponential rate
of decay. Thus a Lipschitz conjugacy does not see the rotation. However, a Lipschitz
conjugacy cannot modify the off-diagonal terms in a Jordan block, whereas a Hölder
conjugacy can. A Hölder conjugacy ignores the off-diagonal terms in the matrix, which
are what give rise to the tangencies in Figure 1e as compared to 1c. The most tenacious
of the properties is the exponential rate of decay. Two rays with different exponential
rates of decay are ν-Hölder conjugate, but only for some fixed ν < 1. Applying the
widest lens of all, topological conjugacy sees all sinks as the same. In higher dimen-
sions these patterns persist, although the issue of removing rotation becomes more
complicated.

To prove the above proposition we begin with an elementary result on Hölder con-
tinuous functions.

Lemma 2.2. The function |x |ν , 0 < ν < 1, is Hölder continuous with exponent ν; in
particular ||y|ν − |x |ν | ≤ |y − x |ν for all x, y ∈ R.

For each n ≥ 1 the function

f (x) =
{

x(ln |x |)n, x 
= 0
0, x = 0

is Hölder continuous in the sense that for each ν, 0 < ν < 1, and each compact set
C ⊂ R there is a constant K such that | f (y) − f (x)| ≤ K |y − x |ν for all x, y ∈ C.

Proof. Let 0 < |x | < |y| and define t = |y/x |, so 1 < t < ∞. Now

||y|ν − |x |ν |
|y − x |ν ≤ ||y|ν − |x |ν |

||y| − |x ||ν = tν − 1

(t − 1)ν
≤ 1.

The last inequality follows from the fact that the rightmost function of t has a limit of
zero as t → 1 and a limit of 1 as t → ∞ and has a positive derivative on (1, ∞).
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To show the second claim, consider first the function

g(u) =
{

uμ(ln u)n, u > 0
0, u = 0,

where μ > 1. g(u) has a continuous derivative on u ≥ 0, since

g′(0) = lim
h→0+

hμ(ln h)n

h
= lim

h→0+(h(μ−1)/n ln h)n = 0

and g′(u) = μuμ−1(ln u)n + nuμ−1(ln u)n−1 → 0 as u → 0+. Thus, on any finite in-
terval I ⊂ [0, ∞), |g′(u)| ≤ K for some constant K and so |g(v) − g(u)| ≤ K |v − u|
for u, v ∈ I .

Now we want to show f is ν-Hölder for all 0 < ν < 1. First let x, y ≥ 0. Given
any such ν, define g as above with μ = 1/ν > 1. By the properties of ln, we see that
f (x) = 1

νn g(xν). Therefore, for x, y bounded and nonnegative, 0 ≤ x, y ≤ M , there
is a constant K such that

| f (y) − f (x)| = 1

νn
|g(yν) − g(xν)| ≤ K

νn
|yν − xν | ≤ K

νn
|y − x |ν.

Since f is an odd function, the same holds for x, y ≤ 0. If x < 0 < y, then

| f (y) − f (x)| ≤ | f (y) − f (0)| + | f (|x |) − f (0)|
≤ K

νn
|y|ν + K

νn
|x |ν

≤ 2
K

νn
|y + |x ||ν = 2

K

νn
|y − x |ν

Consequently, f (x) is Hölder continuous.

We can now prove Proposition 2.1.

Proof. The matrices A1 and A2 are similar, i.e., P−1 A1 P = A2 where

P =
[

3 −2
−6 6

]
,

so the linear change of variables x1 = Px2 takes the systems ẋ1 = A1x1 to the system
ẋ2 = A2x2. The columns of P are eigenvectors of A1. The systems (2a) and (2b) are
linearly conjugate.

The change of variables

u3 = u4 cos
(

1
4 ln(u2

4 + v2
4)

) + v4 sin
(

1
4 ln(u2

4 + v2
4)

)
,

v3 = v4 cos
(

1
4 ln(u2

4 + v2
4)

) − u4 sin
(

1
4 ln(u2

4 + v2
4)

) (5)

takes the system of equations (2c) to (2d) and thus defines a conjugacy φ between the
two systems. The inverse is the same except for some changes in sign. It is easier to
understand this change of variables in polar coordinates rk, θk . The equations in polar
coordinates are

ṙ3 = −2r3 ṙ4 = −2r4

θ̇3 = 0 θ̇4 = −1
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and the change of variables is r3 = r4, θ3 = θ4 − 1
2 ln r4.

To see that the change of variables in (5) is Lipschitz, first compute the partials
away from the origin and note that they are bounded on compact sets. Then from the
form of (5) it follows that

‖x3 − 0‖ ≤ |u3| + |v3| ≤ 2|u4| + 2|v4| ≤ 4‖x4 − 0‖.
Thus, systems (2c) and (2d) with phase portraits in Figure 1c and 1d are Lipschitz
conjugate.

Now look at systems (2c) and (2e). Consider the change of variables

u5 = u3, v5 = v3 − 1

2
u3 ln |u3|, (6)

where it is understood that the origin is taken to the origin. The inverse is

u3 = u5, v3 = v5 + 1

2
u5 ln |u5|.

By Lemma 2.2 these are Hölder continuous and away from the origin they are smooth.
If u3, v3 satisfies the systems (2c) then

u̇5 = u̇3 = −2u3 = −2u5

and

v̇5 = v̇3 − 1

2
u̇3 ln |u3| − 1

2
u̇3 = −2v3 + u3 ln |u3| + u3 = −2v5 + u5

which shows that (6) takes the system of equations (2c) to (2e). Thus, systems (2c) and
(2e), with phase portraits in Figure 1c and 1e, are Hölder conjugate.

Geometrically, (6) takes the straight line trajectory u3 = e−2t , v3 = 0 (the u3-axis)
to the trajectory u5 = e−2t , v5 = te−2t (the curve v5 = − 1

2 u3 ln u3), thus breaking the
tangencies in Figure 1e.

Again by direct differentiation we see that

u6 = sgn(u3) |u3|1/2, v6 = sgn(v3) |v3|1/2 (7)

takes the system of equations (2c) to (2f). By Lemma 2.2 it is Hölder continuous of
order 1

2 . The inverse transformation is even smoother. Thus, systems (2c) and (2f), with
phase portraits in Figure 1c and 1f, are 1

2 -Hölder conjugate. Similarly,

u3 = u2, v3 = sgn(v2) |v2|2/3

shows that (2c) and (2b) are 2
3 -Hölder conjugate.

All the above transformations are at least homeomorphisms, and so all systems in
(2) are topologically conjugate. In fact, they are all ν-Hölder conjugate with exponent
ν = 1

2 . We are left with showing that the conjugacies we have given are the best pos-
sible. This will be taken care of by the following proposition, where we restate this
half more explicitly and also slightly more generally.

Proposition 2.2. The statements in Proposition 2.1 are the best possible for the
smoothness classes we are considering. Specifically,
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• systems (2c) and (2d), with phase portraits in Figures 1c and 1d, are not lin-
early equivalent,

• systems (2c) and (2e), with phase portraits in Figures 1c and 1e, are not Lips-
chitz equivalent,

• systems (2c) and (2f), with phase portraits in Figures 1c and 1f, are not ν-
Hölder conjugate for any ν > 1

2 . (Likewise, systems (2c) and (2b), with phase
portraits in Figures 1c and 1b, are not ν-Hölder conjugate for any ν > 2

3 .)

Proof. To show these are the smoothest possible, we rely on the geometry apparent in
the phase portraits. For the first claim, observe that any equivalence between systems
(2c) and (2d) must take the straight line orbits of the ray (1c) onto the curved orbits of
the focus (1d). Since a linear transformation takes lines to lines, systems (2c) and (2d)
cannot be linearly equivalent.

A critical geometric feature of Lipschitz transformations (i.e., where both φ and φ−1

are Lipschitz) is that they preserves tangencies—see Proposition A.2 in the Appendix.
All of the nonzero orbits of (1e) are tangent to the vertical axis, but no two orbits of
the ray (1c) are tangent. Thus, systems (2c) and (2e) are not Lipschitz equivalent.

Let x6 = f (x3) be a ν-Hölder conjugacy between systems (2c) and (2f) and sup-
pose ν > 1

2 . Since 0 is the only constant solution under both systems, we must have
f (0) = 0. Choose any x̄3 
= 0 and set x̄6 = f (x̄3). Let C be a compact set which con-
tains {e−2t x̄3 : t ≥ 0} and K the corresponding constant in the definition of Hölder
conjugacy. Since f is a homeomorphism, x̄6 
= 0. f takes the trajectory through x̄3

onto the trajectory through x̄6. Therefore for t ≥ 0,

e−t x̄6 = f (e−2t x̄3), (8)

e−t‖x̄6‖ = ‖ f (e−2t x̄3)‖ ≤ K‖e−2t x̄3‖ν, (9)

‖x̄6‖ ≤ e(1−2ν)t K‖x̄3‖ν. (10)

However, if ν > 1
2 , then (1 − 2ν) < 0 and this implies x̄6 = 0, which is a contradiction.

Thus, systems (2c) and (2f) cannot be ν-Hölder conjugate for ν > 1
2 .

A similar argument shows there can be no ν-Hölder conjugacy between systems
(2c) and (2b) for ν > 2

3 . Any conjugacy between these two systems would take the
positive u2-axis onto one of the rays in Figure 1c, which by composition with a rotation
in the x3 plane can be taken to be the positive u3-axis. Now the same argument as above
restricted to the positive u2 and u3 axes shows the Hölder exponent cannot be greater
than 2

3 .

3. THE GENERAL CASE In much of the previous discussion we can simply re-
place R

2 with R
n . In particular, consider the vector x as an n-vector and A as an n × n

matrix in equation (1). The definitions of trajectory, orbit, conjugate, equivalent, etc.
are exactly the same. Of course, the question is what is the generalization of Proposi-
tion 2.1. The following theorem reduces the discussion to a few cases.

Theorem 3.1 (The Jordan Canonical Form Theorem). There exists a real, nonsin-
gular matrix P such that

P AP−1 = diag[J (λ1), J (λ2), . . . , J (λk)] (11)

where λ j , j = 1, . . . , k, are eigenvalues of A (possibly repeated) and the J (λ j) are
submatrices defined as follows. For a real eigenvalue λ, the submatrix J (λ) has the

August–September 2008] CONJUGATE PHASE PORTRAITS 603



form ⎡⎢⎢⎢⎢⎢⎢⎣

λ 0 0 · · · 0 0
1 λ 0 · · · 0 0
0 1 λ · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · λ 0
0 0 0 · · · 1 λ

⎤⎥⎥⎥⎥⎥⎥⎦ , (12)

and for a complex eigenvalue λ = α + βi , J (λ) = J (α + βi) has the form⎡⎢⎢⎢⎢⎢⎢⎣

R 0 0 · · · 0 0
I R 0 · · · 0 0
0 I R · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · R 0
0 0 0 · · · I R

⎤⎥⎥⎥⎥⎥⎥⎦ , (13)

where

R =
[

α β

−β α

]
, I =

[
1 0
0 1

]
. (14)

See Hirsch and Smale [3] for a discussion of this theorem.
The submatrices J (λ j) are called Jordan blocks and P AP−1 in (11) is called the

(real) Jordan form of A. Let J (λ j ) be n j × n j ; then n j is even if λ j is complex and
n1 + n2 + · · · + nk = n. The n j can be 1, in which case J (λ j ) contributes a single
entry on the diagonal. The Jordan form is unique up to the order in which the Jordan
blocks appear on the diagonal.

Since A and its real Jordan form are similar, ẋ = Ax and ẏ = P AP−1 y are linearly
conjugate. Therefore, we can assume A is already in its real Jordan form. Except for
the first, all of the matrices in (3) are in real Jordan form. The matrices (3b), (3c), and
(3f) all have two 1 × 1 real Jordan blocks; (3e) has one 2 × 2 real Jordan block; and
(3d) has one 2 × 2 complex Jordan block.

Each Jordan block contributes a 1-dimensional eigenspace to the matrix in the case
of a real eigenvalue, or a 2-dimensional generalized eigenspace in the case of a com-
plex eigenvalue. The off-diagonal terms of the Jordan block link the variables asso-
ciated with the block into a cohesive unit. Breaking this structure—removing the off-
diagonal blocks—means unlinking these variables.

Since variables associated to one Jordan block are independent of the other vari-
ables, we state the theorem for a single Jordan block and we only consider the case
where the eigenvalue has nonzero real part. See [5] for an indication of what is involved
for topological conjugacy in the case when the eigenvalues have zero real part.

Theorem 3.2. Let A = J (λ), where λ is either real or complex and J (λ) is as in (12)

or (13), respectively.

I. If A has a rotational component, i.e., Im(λ) 
= 0, and
(a) if A is a trivial (2 × 2) Jordan block, then the rotation can be eliminated

by a Lipschitz conjugacy, but not by a linear equivalence.
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(b) if A is a nontrivial Jordan block, then the rotation can be eliminated by a
Hölder conjugacy, but not by a Lipschitz equivalence.

II. Breaking the Jordan block structure of A, i.e., removing the off-diagonal blocks
in (12) or (13), can be achieved with a Hölder conjugacy, but not by a Lipschitz
equivalence.

III. The rate at which solutions approach the origin can be changed by a ν-Hölder
conjugacy only if ν is sufficiently less than 1. More explicitly, if B = J (μ) is
a second Jordan block of the same size as A, α := Re(λ), β := Re(μ), and
0 < α/β < 1, then ẋ = Ax and ẏ = By are α

β
-Hölder conjugate, but not ν-

Hölder conjugate for any ν > α/β.

The properties above are arranged in order of increasing rigidity. Intrinsically the
rate of rotation is the least robust property of the system. On its own it can be removed
the most easily. However, we will see below that if A has a nontrivial Jordan block
structure then this structure becomes entangled with the rotation, and removing the
rotation is tantamount to breaking the blocks. Hence, in this case, rotation becomes as
rigid as the block structure itself. The most rigid of the three properties is the expo-
nential rate of decay.

Only I(b) and II for complex λ are fundamentally different from what was presented
in the previous examples—simply because a nontrivial Jordan block with complex
eigenvalue cannot occur in examples smaller than 4 × 4. This is the most complicated
of the arguments and will be presented last. However, it will also provide an interesting
illustration of a geometric property preserved by Lipschitz transformations.

The proof of this theorem requires another elementary lemma.

Lemma 3.1. The composition of two Hölder continuous functions is Hölder continu-
ous. The composition of two Hölder conjugacies is a Hölder conjugacy.

Proof. If φ is a α-Hölder function and ψ is a β-Hölder function, then

‖(φ ◦ ψ)(x) − (φ ◦ ψ)(y)‖ ≤ Kφ‖ψ(x) − ψ(y)‖α ≤ Kφ(Kψ)α‖x − y‖αβ

Therefore, the composition is only αβ-Hölder. However, if φ is α-Hölder for all α < 1
and ψ is β-Hölder for all β < 1, then αβ can be taken arbitrarily close to 1. Con-
sequently, the composition of two Hölder continuous functions is Hölder continuous
(i.e., ν-Hölder for all ν < 1). By extension, the composition of two Hölder conjugacies
is a Hölder conjugacy.

Since a Lipschitz conjugacy is also a Hölder conjugacy, it follows that the compo-
sition of a Hölder conjugacy and a Lipschitz conjugacy, in either order, is a Hölder
conjugacy.

For ease of exposition, when convenient we assume the real part of our eigenvalue
is negative. As indicated earlier, a positive real part can be dealt with by reversing time.
We will work through the theorem first showing the existence of the conjugacies and
then that these are optimal. Part I(a) is essentially unchanged from Proposition 2.1. Let
λ = α + βi . We want a conjugacy between ẋ = Ax and ẏ = By, where

A =
[

α β

−β α

]
and B =

[
α 0
0 α

]
.

August–September 2008] CONJUGATE PHASE PORTRAITS 605



The generalization of the conjugacy (5) is

y1 = x1 cos

(
β

2α
ln(x2

1 + x2
2)

)
− x2 sin

(
β

2α
ln(x2

1 + x2
2)

)
,

y2 = x2 cos

(
β

2α
ln(x2

1 + x2
2)

)
+ x1 sin

(
β

2α
ln(x2

1 + x2
2)

)
.

(15)

Compare (5) to (15) with α = −2 and β = 1. Transformation (15) can be seen to be
Lipschitz by the same argument as found in the proof of Proposition 2.1. The inverse
transformation has the same form as (15) and so is also Lipschitz.

Part I(b) uses part II, so we take it first. Part II breaks into two cases depending on
whether λ is real or complex. Assume first that λ is real. Consider the two systems

ẋ = Ax, A = J (λ); ẏ = By, B = λI (16)

where λ 
= 0. A is the full real Jordan block (12) and B is the block with the off
diagonal terms removed. The direct generalization of the transformation in (6) is

x j =
j∑

k=1

1

( j − k)! λ j−k
yk(ln |yk|) j−k. (17)

This is a conjugacy between the two systems and by Lemma 2.2 is Hölder continuous.
The inverse transformation can be written recursively as

y1 = x1; y j = x j −
j−1∑
k=1

1

( j − k)! λ j−k
yk(ln |yk |) j−k, j = 2, . . . , n

The right side is Hölder continuous in the yk (k < j). Inductively assume each yk to
be Hölder continuous in the xi for 1 ≤ i ≤ k. This certainly holds for y1. y j is then the
composition of Hölder continuous functions and by Lemma 3.1 is Hölder continuous
in x1, . . . , x j . Therefore, (17) is a Hölder conjugacy.

Now suppose λ = α + βi , where α and β are nonzero reals. Consider the two sys-
tems

ẋ = Ax, A = J (α + βi); ẏ = By (18)

where A is the full complex Jordan block in (13) and B is the block-diagonal matrix
obtained from A by removing the off-diagonal blocks,

B =

⎡⎢⎢⎣
R 0 · · · 0
0 R · · · 0
...

...
. . .

...

0 0 · · · R

⎤⎥⎥⎦ . (19)

Both A and B are in block form with 2 × 2 blocks, so let x = (x1, . . . , xn) and y =
(y1, . . . , yn), where x j and y j are 2-vectors. The equations to be considered are

ẋ1 = Rx1; ẋ j = x j−1 + Rx j , j = 2, . . . , n,

ẏ j = Ryj , j = 1, . . . , n.
(20)
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The analog of the transformation (17) is

x j =
j∑

k=1

1

( j − k)! α j−k
yk(ln ‖yk‖) j−k (21)

with recursively defined inverse

y1 = x1; y j = x j −
j−1∑
k=1

1

( j − k)! λ j−k
yk(ln ‖yk‖) j−k, j = 2, . . . , n.

This is a Hölder conjugacy between the two systems in (20).
To show part I(b), start by applying part II to obtain a Hölder conjugacy between the

systems in (18), then apply part I(a) to remove the rotation from each R by a Lipschitz
conjugacy, and finally use part II again to replace the off-diagonal blocks via a Hölder
conjugacy. By Lemma 3.1, the composition of these three will be a Hölder conjugacy
removing the rotation from the nontrivial Jordan block.

The composition of the first two conjugacies in the preceding paragraph shows that
for any Jordan block A = J (λ) the system ẋ = Ax can be reduced to the diagonal
system ẋ = αx , α = Re(λ), by a Hölder conjugacy. To construct a conjugacy between
two systems as in part III, first reduce both to their corresponding diagonal systems,
and then this becomes a 1-dimensional problem. For two real variables, the systems
ẋ = αx and ẏ = βy, where 0 < α/β < 1, are conjugated by x = sgn(y)|y|α/β , which
is α

β
-Hölder. Observe that if there were a conjugacy between the original two systems

that was ν-Hölder for ν > α/β, the same would be true for the diagonal systems. An
argument following along the lines of equations (8–10) would then produce a contra-
diction, so part III is optimal.

We are left with showing that parts I and II are optimal. As in Proposition 2.2,
this will rely on the geometry inherent in the phase portraits. Part I(a) concerns the
same two phase portraits, Figures 1c and 1d, as in this earlier proposition—a ray and
a focus. As before, there can be no linear equivalence since it would not be possible
to take the straight line orbits of the former onto the spirals of the latter. The phase
portrait for a one-tangent node, Figure 1e—the phase portrait for a nontrivial Jordan
block with real eigenvalue—is also effectively unchanged in higher dimensions. It has
a unique one-dimensional eigenspace and all nonzero trajectories are tangent to this
eigenspace. When λ is real, part II is concerned with mapping the phase portrait for
a one-tangent node onto that of a diagonal system—a higher dimensional ray. Again,
a Lipschitz transformation cannot take the tangent trajectories of the first onto the
nontangent trajectories of the second, so there is no Lipschitz equivalence.

The remaining two cases, part I(b) and part II for complex λ, are the most interesting
because they involve the interaction between the rotation and the off-diagonal blocks in
(13). The argument that neither of these can be achieved with a Lipschitz equivalence
will again rely on the geometry inherent in the phase portrait—in this case the phase
portrait for a nontrivial Jordan block with complex eigenvalue, (13). Therefore, our
primary objective will be to understand this phase portrait. The picture is similar for
any size Jordan block and we will describe the 4 × 4 case. Let λ = α + βi , with β 
= 0,
and

A =
⎡⎢⎣ α β 0 0

−β α 0 0
1 0 α β

0 1 −β α

⎤⎥⎦ . (22)
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In order to describe the phase portrait for ẋ = Ax , we begin with the following 3 × 3
system ⎡⎣ u̇

v̇

ẇ

⎤⎦ =
⎡⎣α 0 0

1 α 0
0 0 α

⎤⎦⎡⎣u
v

w

⎤⎦ . (23)

This has solutions u(t) = u0eαt , v(t) = v0eαt + u0teαt , and w(t) = w0eαt . Since
w/u ≡ w0/u0, any trajectory starting in a plane w = ku stays in this plane. w = ku
describes any plane through the v-axis with the exception of the vw-plane itself, which
is a special case. Moreover, since u(t) and v(t) do not depend on w0, any two trajecto-
ries starting on the same vertical line (i.e., differing only in w0) will be on a common
vertical line for every t . That is, the family of vertical lines is invariant—vertical lines
flow to vertical lines. Combining these, we can describe the phase portrait for this
3 × 3 system. In the uv-plane we have the planar system shown in Figure 1e with all
trajectories tangent to the v-axis. The vw-plane is a 2-dimensional eigenspace for the
matrix and the solutions, (u, w) = (u0, w0)eαt , are rays as in Figure 1c. See Figure 2a.
Any other trajectory sits on a unique plane determined by its initial point and the
v-axis. The trajectory will be the curve in this plane that sits over the planar trajectory
with the same u0 and v0. This is illustrated in Figure 2b. We can see that all trajectories
are tangent to the v-axis with the exception of those in the vw-plane (other than the
v-axis itself).

Figure 2. The phase portrait of a 3 × 3 system.

Now let B be the same as the matrix A except with β = 0. Let V denote the sub-
space x2 = 0. V is invariant under ẋ = Bx and on V the system reduces (delete the
second row and column of B) to the one in (23). Therefore, Figure 2 describes those
trajectories of ẋ = Bx contained in V . Let Uθ = [

cos θ − sin θ
sin θ cos θ

]
and let Rθ be the block-

diagonal rotation matrix diag[Uθ , Uθ ]. Rθ and B commute, so ẋ = Bx is invariant
under rotation by Rθ : if y = Rθ x , then ẏ = Rθ ẋ = Rθ BR−1

θ y = By. The two sat-
isfy the same differential equation, so they have the same trajectories. This implies that
for any θ , Rθ takes the trajectories of ẋ = Bx (as a group) onto themselves. Rθ acts
by separately rotating the x1x2- and x3x4-planes by angle θ . Consequently, given any
initial condition x(0), there will be some θ for which Rθ x(0) ∈ V (i.e., x2 = 0). This
says that for every θ ∈ S1, Rθ V is another invariant subspace in which the orbits look
like Figure 2 and R

4 = ∪θ∈S1Rθ V . The two-dimensional eigenspace (x1, x2) = (0, 0)

608 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 115



is taken to itself under these rotations, so it is common to all of the Rθ V and corre-
sponds in each to the vw-plane. From this we can conclude that every nonzero orbit is
tangent to (or is) a ray in the eigenspace. Moreover, as θ varies from 0 to 2π , the vector
that corresponds to the positive v-axis (Rθ ê3, for standard basis vectors {ê1, ê2, ê3, ê4})
makes one complete revolution in the eigenspace. Therefore, if we let S be the set of
nonzero orbits tangent to the positive x3-axis (the positive v-axis for θ = 0), including
the positive x3-axis itself, then on the one hand, ∪θ∈S1Rθ S must include all nonzero or-
bits because it includes all orbits tangent to any eigendirection, and on the other hand,
the Rθ S must be disjoint since θ defines the direction along which the orbits in Rθ S
approach the origin. Consequently, the set of all nonzero orbits of ẋ = Bx decomposes
as the disjoint union of a 1-parameter family of rigid rotations of S, {Rθ S : θ ∈ S1}.
Each Rθ S looks like roughly half of the orbits in Figure 2 (the rest being the trajec-
tories tangent to the negative v-axis plus the remaining rays in the vw-plane). If we
define an equivalence relation on the set of nonzero orbits by defining two orbits to
be equivalent when they are tangent to each other at the origin, then the sets Rθ S are
the equivalence classes. These are the maximal sets of mutually tangent orbits. The
equivalence classes are “identical” in the sense that one can be obtained from another
by a rigid rotation preserving the full orbit structure. Each equivalence class contains
infinitely many orbits, including exactly one which is a ray in the eigenspace, setting
up a one-to-one correspondence between the equivalence classes and the rays to which
they are tangent, or equivalence classes and angles in S1.

We now arrive at the system ẋ = Ax . Let C := A − B; C is the matrix consisting of
only the β terms. B and C commute, so the solutions of ẋ = Ax are x(t) = eAt x(0) =
eCt eBt x(0). Since eCt = Rβt , we have x(t) = Rβt eBt x(0). eBt x(0) is the correspond-
ing solution to ẋ = Bx . Therefore, if we strip off the rotational component by looking
at the system in the rotating coordinate system, x �→ Rβt x , the solutions to ẋ = Ax
look like those of ẋ = Bx . Specifically, if x(0) ∈ Rθ S, so R−1

θ x(0) = (u0, 0, v0, w0),
and we define the (partial) rotating frame {û, v̂, ŵ} := Rβt+θ {ê1, ê3, ê4}, then

x(t) = u0eαt û + (v0 + u0t)eαt v̂ + w0eαt ŵ. (24)

As time evolves the sets {Rθ S} flow one into another cyclically, and within a moving
representative the flow looks like that in Figure 2.

Because of the rotation, orbits are no longer tangent to a ray, but are still tangent to
the eigenspace. If we look at the projection of orbits into the eigenspace, the uniform
rotation means that all orbits will wrap around the origin. However, we claim that
orbits do not all wrap with equal density and this will be the obstruction to finding the
Lipschitz equivalences. Since the rate of rotation is the same for all orbits, how tightly
wrapped an orbit is depends upon the rate at which it approaches the origin. Therefore,
we want to show that different trajectories can approach the origin at dramatically
different rates.

The rate at which a trajectory approaches the origin is not affected by the rotation,
Rβt . Therefore, it will suffice to look at the solutions of ẋ = Bx . The behavior of
ẋ = Bx is identical on each of the sets Rθ S and on each is described by (23), as illus-
trated in Figure 2. This reduces the problem to looking at the rates at which trajectories
tangent to the positive v-axis approach the origin. Since the trajectories are tangent to
the v-axis, asymptotically the distance from the origin is given by the v-coordinate.
However, for our purposes what will be important is the distance as measured in the
eigenspace. That is, if π(u, v, w) = (v, w) is the usual projection and x(t) is any tra-
jectory, then we want to monitor the distance ‖π ◦ x(t)‖. Alternatively, if C(r) denotes
the cylinder of radius r parallel to the u-axis, v2 + w2 = r 2, then we are interested in
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the rate at which x(t) crosses these cylinders. In spite of the fact that all of these tra-
jectories are tangent, we claim that the trajectory on the v-axis approaches the origin
faster in this sense than any other. In fact, any other trajectory can be started as close
to the origin as we wish, and the trajectory on the v-axis will catch up to it and pass it
in a finite amount of time. More important for our purposes, if these two trajectories
are both started on the same cylinder C(r0) and we look at the difference in the time
it takes the two trajectories to reach a smaller cylinder, C(r), then this difference can
be made as large as we wish by taking r sufficiently small. We state this as a lemma.
(Here stated assuming α < 0.)

Lemma 3.2. Let O be any orbit of (23) tangent to the positive v-axis that is not the
axis itself. Suppose r0 > 0 is sufficiently small that O crosses each cylinder C(r),
r ≤ r0, only once (i.e., close enough that O is already nearly parallel to the v-axis).
Let x̄(t) be the trajectory on the positive v-axis with x̄(0) ∈ C(r0) (x̄(0) = (0, r0, 0)).
Given any r1 with 0 < r1 < r0, let x(t) be the trajectory on O with x(0) ∈ C(r1)

(‖π ◦ x(t)‖ = r1). There exists a T > 0 such that for all t > T , ‖x̄(t)‖ < ‖π ◦ x(t)‖.
Alternatively, suppose x̄(t) is as before and x(t) is the trajectory on O with x(0) ∈

C(r0) (‖π ◦ x(t)‖ = r0). For any r with 0 < r ≤ r0, let τ(r) and τ̄ (r) be the times
at which x(t) and x̄(t), respectively, reach the cylinder C(r). Then τ − τ̄ → +∞ as
r → 0+.

Proof. If x(0) =: (u0, v0, w0), then our two trajectories are

x(t) = (u0eαt , (u0t + v0)e
αt , w0eαt) and x̄(t) = (0, r0eαt , 0).

To prove the first claim, observe that

(‖π ◦ x(t)‖/‖x̄(t)‖)2 = ((u0t + v0)
2 + w2

0)/r 2
0 → +∞

for any x(0) provided u0 
= 0, which is true for any orbit tangent to the v-axis that is
not the v-axis itself.

To prove the second part, for brevity let τ := τ(r), τ̄ := τ̄ (r) and x := x(τ ), x̄ :=
x̄(τ̄ ). See Figure 3. Let x̂ := (u0τ + v0, w0), so that π(x) = x̂eατ . Since x(t) cannot
reach the origin in finite time, τ → +∞ as r → 0+, which implies ‖x̂‖ → +∞. Now
r = ‖π(x)‖ = ‖x̂‖eα(τ−τ̄ )eατ̄ and also r = ‖x̄‖ = r0eατ̄ . Therefore, ‖x̂‖eα(τ−τ̄ ) = r0.
Since ‖x̂‖ → +∞ and r0 is constant, we must have τ − τ̄ → +∞ (since we are
assuming α < 0).

Figure 3. Time difference between trajectories.
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Observe that since all trajectories in the eigenspace (vw-plane) approach the origin
at the same rate, we would have had the same conclusions if x̄(t) had been a trajectory
on any of the rays in the eigenspace, not just the ray to which O was tangent. Now
let x(t) be any trajectory of ẋ = Ax not in the eigenspace and let x̄(t) be any nonzero
trajectory of ẋ = Ax that is in the eigenspace such that x(0), x̄(0) ∈ C(r0), where
C(r) ⊂ R

4 is the cylinder x2
3 + x2

4 = r 2 and r0 is as in the preceding lemma. Since
the rotation does not affect the rate at which trajectories approach the origin, we have
from the above lemma and observation that if τ and τ̄ are defined as before, then
τ − τ̄ → +∞ as r → 0+. Let θ(t) be the angle in polar coordinates for the projection
of x(t) into the eigenspace and θ̄ (t) the angle for x̄(t). In time t , these angles change
by βt . Therefore, when traversing the region from C(r0) to C(r), the difference in
these two angles changes by β(τ − τ̄ ) → +∞ as r → 0+. Consequently, there exists
a sequence rn → 0+ such that θ(τ (rn)) − θ̄ (τ̄ (rn)) = nπ . That is, the two trajectories
are alternately at the same point and at antipodal points on the circles of radius rn on
projecting x(t) into the eigenspace. In particular, x(t) repeatedly “laps” x̄(t).

In the eigenspace, ẋ = Ax reduces to the two-dimensional focus illustrated in Fig-
ure 1d, so apply the Lipschitz transformation from (15) to the x3, x4-coordinates to
eliminate the rotation in the eigenspace. Let y(t) and ȳ(t) denote the images of x(t)
and x̄(t), respectively, in the transformed system. ȳ(t) is now on a ray, but the transfor-
mation acts by rigidly rotating a circle of radius r by an angle depending on r , so the
angular separation between the two trajectories where they cross the circle of radius
r , θ(τ (r)) − θ̄ (τ̄ (r)), is unchanged under the transformation and y(t) continues to lap
ȳ(t). Consequently, the underlying orbit for y(t) cannot be tangent to the ray on which
ȳ(t) resides. Since y(t) represented any trajectory not in the eigenspace and x̄(t) any
trajectory in it, we can conclude that after the Lipschitz transformation the rays in the
eigenspace are orbits (with well-defined tangent direction at the origin), but they have
no other orbits tangent to them.

We can now make our final two arguments for the optimality of part I(b) and part II
for complex λ of Theorem 3.2. As in the two-dimensional case, these will rely on the
presence or absence of tangencies among orbits. Note that anything Lipschitz equiv-
alent to ẋ = Ax must also be Lipschitz equivalent to the above transformed system
and vice versa. Therefore, it will suffice to look at what is Lipschitz equivalent to the
transformed system.

First, the transformed system cannot be Lipschitz equivalent to ẋ = Bx (part I(b)—
removing the rotation from ẋ = Ax). If there were a Lipschitz equivalence, any ray in
the transformed system would need to be the image of some orbit of ẋ = Bx . Every
orbit of ẋ = Bx has infinitely many other orbits tangent to it and, by Proposition A.2,
these orbits would need to be mapped to orbits of the transformed system tangent to
the ray. However, we just observed that there are no orbits tangent to the rays, so this
is not possible.

To show part II, let un := y(τ (r2n)) and vn := ȳ(τ̄ (r2n)). Since θ(τ (r2n)) −
θ̄ (τ̄ (r2n)) is an even multiple of π , vn is the projection of un into the eigenspace. x(t),
and so y(t), comes in tangent to the eigenspace, so limn→∞ ‖un − vn‖/‖vn − 0‖ = 0.
By Lemma A.1 this property must be preserved under any Lipschitz equivalence. Sup-
pose part II were not optimal and there were a Lipschitz equivalence that could remove
the off-diagonal blocks from A. Once the off-diagonal blocks are removed the system
reduces to a collection of independent 2 × 2 foci, which by part I(a) can be diagonal-
ized by a Lipschitz equivalence. Stringing these together we end up with a Lipschitz
equivalence between the transformed system above and the system ẋ = α I x , where all
the orbits are rays. Under this equivalence {un} and {vn} would be taken to sequences
{u′

n} and {v′
n} on distinct rays (orbits) separated by some angle φ > 0. By the law
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of sines, ‖u′
n − v′

n‖/‖v′
n − 0‖ ≥ sin φ > 0 and so limn→∞ ‖u′

n − v′
n‖/‖v′

n − 0‖ 
= 0,
which is a contradiction.

APPENDIX A. TANGENCIES. In this section we show that a Lipschitz map with
Lipschitz inverse preserves tangencies provided the image of at least one of the curves
has a tangent direction at the point of interest. Let f : U → R

n be a homeomorphism
of an open subset of R

n onto its image where both f and f −1 are Lipschitz. This means
there exists a K > 0 such that for all x, y ∈ U

1

K
‖x − y‖ ≤ ‖ f (x) − f (y)‖ ≤ K‖x − y‖.

The behavior of a Lipschitz transformation is explained by the following lemma.

Lemma A.1. If (xn)n≥1, (yn)n≥1 ⊂ U are sequences converging to a point p ∈ U such
that

lim
n→∞

‖xn − yn‖
‖xn − p‖ = 0,

then the sequences ( f (xn))n≥1, ( f (yn))n≥1 converge to q := f (p) in the same manner.

Proof.

‖ f (xn) − f (yn)‖
‖ f (xn) − f (p)‖ ≤ K‖xn − yn‖

1
K ‖xn − p‖ = K 2 ‖xn − yn‖

‖xn − p‖ .

Appearances to the contrary, there is no special role played here by (xn)n≥1. Since

‖xn − p‖ − ‖xn − yn‖ ≤ ‖yn − p‖ ≤ ‖xn − p‖ + ‖xn − yn‖,
if ‖xn − yn‖/‖xn − p‖ → 0, then ‖yn − p‖/‖xn − p‖ → 1, so ‖xn − yn‖/‖yn − p‖
→ 0, and the sequences are interchangeable. Consider the triangle formed by the
three points xn , yn , and p. Let θn be the angle at vertex p; θn = ∠yn pxn . Since
‖yn − p‖/‖xn − p‖ → 1, these approach isosceles triangles. ‖xn − yn‖/‖xn − p‖ →
0 implies θn → 0, so the triangles are collapsing. The lemma says this relationship
among the points is preserved under a Lipschitz transformation. Whether or not two
curves are tangent at a common endpoint, p, can be characterized by sequences of
this type. Here we need a definition of “tangent” that does not depend upon a smooth
parametrization, since our map is only Lipschitz.

Definition A.1. Let p be an endpoint of a curve C ⊂ R
n and let û ∈ R

n be a unit
vector. We say that C is tangent to the direction û at p if for every ε > 0 there exists
δ > 0 such that for all x ∈ C with 0 < ‖x − p‖ < δ, we have ‖v̂ − û‖ < ε, where
v̂ := (x − p)/‖x − p‖ is the unit vector in the direction x − p. Two simple curves
C1, C2 ⊂ R

n are tangent to each other at a common endpoint p if both are tangent to
the same direction at p.

This definition says that the portion of the curve in a sufficiently small neighborhood
of p can be contained in a cone about û of arbitrarily small angle. Given a curve with
a smooth parameterization, one can see from the definition of the derivative and the
continuity of ‖ · ‖ that the curve is indeed tangent (according to the above definition)
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to its unit tangent vector (defined via the derivative). Consequently, two curves that are
tangent at a common endpoint under the usual definition are also tangent by the above
definition.

Proposition A.1. Let C1, C2 ⊂ R
n be continuous curves intersecting at a common

endpoint, p. If C1 and C2 are tangent at p, then given any sequence (yn)n≥1 ⊂ C2 \ {p}
with yn → p, there exists a sequence (xn)n≥1 ⊂ C1, xn → p, with the property that
limn→∞ ‖xn−yn‖

‖xn−p‖ = 0.
Conversely, if C1 is tangent to the direction û and C2 is not, either because it is

tangent to some other direction or is not tangent to any direction at all, then there
exists a sequence (yn)n≥1 ⊂ C2 with yn → p and ε0 > 0 such that for any sequence
(xn)n≥1 ⊂ C1 with xn → p we have lim infn→∞ ‖xn−yn‖

‖xn−p‖ ≥ ε0.

Proof. First suppose C1 and C2 are both tangent to û at p and (yn)n≥1 ⊂ C2 \ {p}
is any sequence converging to p. For each n, choose xn ∈ C1 so that ‖xn − p‖ =
‖yn − p‖ =: d, which we can do because C1 is connected. Clearly xn → p. We then
have

‖xn − yn‖
‖xn − p‖ =

∥∥∥∥ xn − p

d
− yn − p

d

∥∥∥∥ ≤
∥∥∥∥ xn − p

‖xn − p‖ − û

∥∥∥∥ +
∥∥∥∥ yn − p

‖yn − p‖ − û

∥∥∥∥
and by assumption both terms on the right have limit 0 as n → ∞.

Now suppose only C1 is tangent to û at p. If C2 is not tangent to û, then there
must exist an ε > 0 such that for any δn := 1/n, there exist points yn ∈ C2 with 0 <

‖yn − p‖ < δn and for which
∥∥∥ yn−p

‖yn−p‖ − û
∥∥∥ ≥ ε. Since these are both unit vectors, the

minimum separation corresponds to a minimum angle, θ0, given by ε2 = 2(1 − cos θ0)

from the law of cosines. Bounding ‖xn − yn‖/‖xn − p‖ from below we have

‖xn − yn‖
‖xn − p‖ =

∥∥∥∥ xn − p

‖xn − p‖ − yn − p

‖xn − p‖
∥∥∥∥ ≥

∥∥∥∥ yn − p

‖xn − p‖ − û

∥∥∥∥ −
∥∥∥∥ xn − p

‖xn − p‖ − û

∥∥∥∥ .

Since C1 is tangent to û, the last term has limit 0. The preceding term is the distance
from the point û to some point on the line through yn − p. The minimum distance to
any point on this line is sin θ ≥ sin θ0, where θ is the angle between û and yn − p.
Consequently, lim infn→∞(‖xn − yn‖/‖xn − p‖) ≥ sin θ0 =: ε0.

Combining the preceding results we get our objective:

Proposition A.2. Let C1, C2 ⊂ R
n be continuous curves intersecting at a common

endpoint, p. Suppose these are mapped under a homeomorphism f to curves Ĉ1, Ĉ2 ⊂
R

n, where both f and f −1 are Lipschitz. If C1 and C2 are tangent at p, and Ĉ1 is
tangent to some direction at f (p), then Ĉ1 and Ĉ2 are tangent at f (p).

Proof. If Ĉ1 and Ĉ2 are not tangent at f (p), then we can pick (ŷn)n≥1 ⊂ Ĉ2 \ { f (p)},
as in Proposition A.1, such that for any (x̂n)n≥1 ⊂ Ĉ1, we have ‖x̂n − ŷn‖/‖x̂n − f (p)‖
� 0. Let yn := f −1(ŷn). Then (yn)n≥1 ⊂ C2 \ {p} and yn → p. Since C1 and C2 are
tangent at p, there exists a sequence (xn)n≥1 ⊂ C1 such that ‖xn − yn‖/‖xn − p‖ → 0.
By the preceding lemma, if x̂n := f (xn), then ‖x̂n − ŷn‖/‖x̂n − f (p)‖ → 0, which
contradicts the choice of the sequence ŷn . Consequently, Ĉ1 and Ĉ2 must be tangent at
f (p).
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Mathematics Is . . .

“Mathematics is the loom upon which God weaves the fabric of the universe.”
Clifford A. Pickover, The Loom of God: Mathematical Tapestries

at the Edge of Time, Plenum Press, New York, 1997, p. 16.

—Submitted by Carl C. Gaither, Killeen, TX
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