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1. Intrdduction: The nature of the local local structure of a differential equa-
tion near & critical éoint is a time honored problem in‘tbe theory of ordinary
differeﬁtial eqﬁaﬁion{ Thg present paper is hoped to be the first in a series
which extends many- of the known linearization and canonical form theorems to cer-
tain-critical cases which.naturally occur when the system admits an integral.

A standard problem concerns itself with the question of when can an equation of

the form
(1) g=1ag+F(g) - -
be reduced by a change of variables

(2) g=1+can

to an equation'of the form
(3) 1= 41+ H(T)

where H 1is in some simple canonical form. _In the ebove € and T are m-vectors,

4 is an m xm constant matrix end: -F,G,H -are smooth and second order in some

2

sense. The simplest canonical form would be H =0 but this is not always possible

even under strong smoothness requirements on F. Thus in general one must seek
simpié cenonical forms for H so that the local geometry of 3) is easy to analyse.

-I;lu-mokst—;of— the known results concerning this question it is assumed, alﬁong
other things, that the eigen-values of A have nonzero real parts. We shall call’

this the noncritical case: and refer the: reader to the historical remarks following

chapter 9 of Ordinary Differential Equations by P. Hartman [1] for a complete sur-
vey of the rich literature of the noncritical case. Moser [2] considered a critical

casé when 1) is an analytic Hamiltonian system. He showed that a convergent
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~ for all non-negative integers ?l’ eees Yp» Gy B such that a +p + Y ety
>2 and a #b when y, =0 for L#jandyj=1. ‘
Under these assumptions we shall prove that there exists an analytic change of

variables of the form

1}

u+ a(u,v,w)

©  x

vy =v + blu,v,w)

z = w + c(u,v,w)

which reduces 4) to the form

(7) u = igu(l + k(uw))
v = igw(l 4+ k(UV)Z
ﬁ.: (B + M(uv))w

wvhere M(y) = diag{(m(y), ..., mn(p)); u,v,a,b,k,mj aré scalars; w and c¢ are inf
vectors; a;b,c are asnalytic near Uu=v =w=0 and have power series expansions
which begin with terms at least twog k,ml, cees M are analy£ic fuﬁctions of the
single variable y = uv for p small and are zero for p = 0.

In 7) note that u and v are conjugate variables and that wuv is an inte-
gral. The w =0 plane is invariant and filled with periodic solution of périod

e

2u{w( + k(uv))}.l. The charecteristic exponents of these periodic solutions are
0,0 2n{kj + mj(uv)} {w(l + k(uv))}’l.
I would like to thank Professor Y. Sibuya for several valuable suggestions con-

cerning this paper.

2. Preliminary Reductions: Since we have assumed that 4) admits an inveriant

analytic surface, z = s{x,y), we can make a change of variables ¢x' = x, y! = Vs

z' = z-s(x,y) so that 4) is reduced to the equation

xt = igx! + £ (Xl,ylizt)

lag' +g' (x',y',2")

e
n

z' = Bz + h' (x',y',z')

Since 2z' = 0 defines an invariant plane, h'(x', y', 0) = O. By assumption the
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symplectic transformation exists which reduces 1) to 3) where 3) is in Birkhoff's
normal form e&en in some cases when A has a single pair of pure imaginary eigen-
values. We shall not give a precise statement of Moser's theorem_here;

We shall follow this lead and consider the case Qhén A hes onlylone pair of
pure iméginery eigen-values and all the;other eigen-values have nonzero real parts.
We shall replace the Hamiltonian assumption with the assumption that 1) has a local
invariant surface filled by periodic solutions. Such an invariant surface might be
given by the Liapunov center theorem [3,4] if 1) admits a first intégral. Past
these assumbtions there are various combinations of smoothness conditions and fur-
ther eigen-value assumptions which one might try'in order to parallel the known
theorems in the noncritical case. The present paper deals with a critical case
vhich parallels the Poincaré linearization theorem which stafes that if F is
analytic and second order ana the eigen-values Xi of> A sétisfy xjfvzkixi
- for all non-negative integers ki’ Z.ki > 2 and Re Ay < O then there exists aﬁ
analytic transformation 2) which feauces 1) tb 3) with H=0. [5].

Specifically we shall prove the following. Let A = diag(iw,-iw,xl, i o xn)
vhere % 0O, Re li <0 end n=m2. If €= (x,y,2) where x and y are

scalars and 2z is an n-vector then equation 1) can be written in the form

J .
L) % = iex + £(x,y,32)
§ = igy + é(xﬁ"Z)
z = Bz + h{x,y,z)

wvhere B = diag(kl,lz,‘.cg, kn); f and g are scalars and h is an n-vector.
let f, g, and h be analytic in x,y,z which have power series expansions at
X =y = z =0 which begin with terms of degree at least 2. We shall‘assume that
there exists an analytic invariant surface given by gz = s(x,y) for 4) where s
has a convergent series expansion about x =y = O which begins with terms at
least of degree 2 such that all solutions of 4) on this invariant surface are per-

iodic. Furthermore we shall assume that

5) Aj#Zy A+ (@ - Blui v 0
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flow on z' =0 is locally a center and so by Poincare's center theorem [4,6]
there is an analytic change of variables of the form x" = x' + e(x',y'),
' =y + n(x',y'), 2" =2' where € and T axe scalar analytic.functions of

second order so that the above equation is of the form

';’430,.
|

= .ipx“ + fu(xu’yu,zu)

= iuy" + g“(x",y",é“)

o
=
I

.= Bg" + h"(x“,y",z“)

In the above £!(x",y",0) = iuk(x"y")x' and g"(x",y",0) = iuk (x"y")y" where k
is gn analytic function of the single variable y = x"y" which is zero when

p = x"y" = 0. Thus the equations in the 2" = 0 plane are

xn iL—J(l + k(x“y“))x“

" o= iw(l + L")y .

Now we can change parameters from t to ¢ by

% = o(1 + k(x"y"))
and s0 the'equations in the 2% =0 plane are linear. For the full equations we
heve
g i?ﬁ =iux" + £M (", y",2")
‘é{,‘i'—'iw)’" + g™ (x",y",2")
- %58‘2 + h‘-" (x"',y“,z“)
" where 'now Bt = ‘u"lB and £"%, g"'and h" are. all zero when 2" = O.

These equations gre of the same form as 4) except we have w =1 and the
nonlinear functions are all zero when z" = 0. Henceforth ve shall drop the

primes end return to the parameter t but essume that in 4) we have

(8) £(x,y,0) = 0.
g(x,y,0) = 0
h(x,v,0) = 0

w=1.
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As we haveAjust seen we -can assume 8)‘§ithout any loss in generality. We note
that the changé of barameters is not a change of coordinates in the usual sense.
Thus after we have performed the change of variables descriﬁedlin the remainder of
this paper it would be necessary to return to the original parameter to obtain
the change of coordinates asserted in the first section. We note that this

change of parameters will not alter the form of the final equations.

3. The Functional Fguations: Since by the previous section we may assume that,
f, g, and h = O when z =0 we shall transform 4) to 7) with 'k =0 and

w=1 then a,b,c satisfy the equations
(9) {iuau - iva - da+ awa} =
f(uta, vi+b, wic) - awa
(10) fiub_ - ivb_ + ib + b Bw} =
. v v W

~ gluta, v+b, wtc) - bew
(11) {iuC_ - ivC_+ C Bw - B+ Mu} =

u v W c

h(uta, v+b, wtc) - c M

Conversely it is enough to find solutions a, b, and ¢ of equations 9), 10), and
11). In order to solve the above equations we shall require that a,b,c satisfy

* the further requirements that

(12) a(u,v,0) = b(u,v,0)

0, c(u,v,0) =0,

and that the jth component of ¢ does not contain any terms of the form (uv)Lwj
where- f 1s a-positive integer.
Condition 12) states that the transformation 6) carries the z =0 plane onto

the w = 0 plane and acts as the identity on fhis plene., = ¢

4. The Function Spaces: It will be necessary to introduce some function spaces so

that equations 9), 10), and 11) can be solved by the contracting principle.
. Let 8> 0 be a constant to be chosen later. Let G  and G; ‘be the space of

all power series of the form
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eeo uuvﬁw'v-l cee W Yn
apy;  ym 1 n

g(u,v;w) = Za
such that a(u,v,0) =0 and a € i° provided
a+5+-\,1+ oo F Y5 =
laflg == 8 <=
or a € G,’l provided

a+ﬁ+yl+ weo Y

lafl, = = | | 2v,) 8 <e .

aaﬁyl wew Yo
In the above summations o + B + yl'+ eoe + ¥ > 2. Note that G° and Gl are
Banach spaces, al c @ and : ”a”o < ”u”l.

let € and Cl be the space of all series of the form

B Y Yn

clu,v,uw) = 2 caﬁYl“' Y, v v 1 o

are n vectors, c(u,v,0) =0 end c € Co provided

aHpiy ety

h c "
BaRTE as‘yl e Yn

=2 8 @
”CHO ‘ caBYl eco Yn ' <
end c € cl provided ’
. n+ﬁ+‘yl+ e o Yp
[Mh:2|%wl“_nﬁ(2ﬁ)§ Cw.

Here again o,+§+‘yl+.... + ¥ > 2, the above spaces are Banach spaces, Cl o c® and
fell, < ltell-
. ~0 ~1 : o 1 .
= Let € and € be the linear subspaces of C eand C° respectively such
that if ¢ €C or c € 'El then the jth component of ¢ does not contain a term
of the form (uv) f‘wj‘=
let 7 be the space of all M = diag(Ml, ceey M) where

M.(uv) = 2 (uv)q
J o1 I

gnd ‘ . €

imja-] 8 <o,

I, == 2
s J a2l

o .
% is a Benach space also.

5. The Linearizéd Functional Equations: The following lemma follows at once from

IN

our assumptions on the eigen-values, + 1, )\l, cees Ao
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Lemma 1. There exists a constant s > d such that

(13) Jio -igti+ = Yixil > S(Z_Yi)
and
(14) , lia - ip + 2 Vit A M2 sEy)

where in the first inequality a,ﬁ,yl, cees Y, &re non-negative integers such that

q+ﬁ+yl+ sea T Y > 2 and in the second inequality a,ﬁ,yl, «++5 Y, are non-

negative intepgers such that a+3+yl+ - st +Yn 2 2 and are never such that

a:ﬂ:o’yjzlégd_:yi:()fori#j-

In order to solve the functional equations 9), 10), and 11) we shéll first

solve the linearized equations. Namely.

Lemma 2. Given a, b, € G° and ¢ € C° there exists unique a,b € Gl,

c € C1 and’ M 677(0 such that

(15) {iuau - ivaV - ia + awAw} =3
(16) {iubu - ivb +ib + bwAw} =5b
(17) {iuCu . iva +tcAv - A + Me} = ¢
Moreovér
(18) sllell, < Il
° (19) sliblly < Ivl
(20) sllell; < Il
(21) 1, < s 1],
: Y B /
Proof: Iet a = 3a P T L. W B and
apyq eeo Yo 1 n .
_ a_B Y1 Yn .
8 = 2a uvhw coe W . Then if a solves 15) we must have
aﬁyl P Yn 1 n : =2/

{ia - ip =& +.2 Yixi} aaﬁyl e Np - aaByl cee ¥y

°

In view of our assumptions on the eigen-values and lemma 1 we have that

exists and s(= yi) | a

.aQBYl coe ‘Yn aﬁ"{l % @ \{n ! < l aqﬁYl ve "Yn ‘ ° ThuS a

z 1
exists and a € G . Moreover the above inequality implies 18). Equation 16) and
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estimate 19) are treated in the same way. .
Consider 17) now. Let the jth component of c  be denoted by Ej ete.,
and assume -
i o8 ' Y
=3¢ uava 1 cee W
aPyq eee . o n

: Yy v
J uavﬁw 1 n

J=3 .
¢ ¢ aBYl cee Yp d Vn

1

b mi (uv)k
Then to sclve 17) we must Have

. . J i - =
-ip+ Z vy - A.f + =
{a B Yl)‘l 3 } A aﬁyl e Yy L My ¢ O'E'Yl cee Yy

where T =0 unless a = By, Yy = 0 for i % j and Yj =1 and 7 =1

otherwise. If a =P, vy, =0, 1 # j and vy, =1 then take c _ . =0
L P ’ ) J aByy eee y, .
and mi . CGBYl - ¢ Thus HMHO & 6”c”o.. Otherwise take mi =0 and let
i rs . 4=l =]
c = {ia - iB + 2 v, A, - A, .
aByYy «-- ¥, o =28+ Zyphy - 176 Yy -er ¥,

In view of lemma 1 we have

(= v,)s | o < |

aByy S.a% Yoy afyq ce. ¥y,

cand so 17) is solvable and 20) and 21) follow.

6. The Solution of the Functional Equations: We shall now indicate how to solve -

equations 9), 10), and 11) by the contracting mapping principle. Let

8=¢6 xc x ¢ where

ess)ll, = flellg + el + llell, and 2et 6=c* x at x ' x7°

where H(a,b,c,M)Hl = |lafl, + Hb”1 + Hclll + ”MHOc We note that equations 15), 16),
end 17) define a linear operafor L:é - 8: (a,b,c,M) - (&,b,c) and that lemma 2)
asserts that L has a bounded inverse L = : 8~ 4.

Let F denote the nonlinear map F:é — #:(a,b,c,M) - (2,5,8) where

a(u,v,w) = f{uta, v+b, wic) - a My -
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b(u,v,w) = gluta, v+b, wic) - b Mw '

¢(u,v,w) = h(ute, v+b, wtc) ="c Ma

(see the right hand sides of 9), 10), and 11): We note that equations 9), 10),

and 11) are equivalent to
L(a,b,c,M) = F(a,b,c,M)
: or
(a,b,c,M) = L‘]'F(a,b,c,M).

We define a subset ¥ C ¢ such that if p €% then [p]; < X where K is
some constent. We define amap JF: X -4 : p— L_lF(p). It is easy to see that

if. K and & are small enough

(o)l < e llolly for peX

and so i - & provided X and 6§ are small enough. Also it is easy to see that
if K end 8 are small enough [[F(p) - F(p")|[; < e p - p' |, for p, o' €K
and so & 1is contracting if K and & are small enéﬁgh.

Thus the contracting maﬁping principle yield a fixed point of & and thus a

‘solution of 9), 10), and -11).
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