Stability of a Lurie Type Equation

E. R Meyer

In their study of nonlinear elecirical cireuits Brayton and Moser [1]
investigated the asympiotic behaviar of a system of nonlinear differential
equations that describe the state of an electrical network. The aim was to
give conditions that insure noroscillating solutions. The criterion obtained in
[1] was very restrictive and Moser in {27 obtained more general criteria by
using the method of Popov of automatic control theory. The method of Popov
has been very successful in the study of the stability properties of the Lurie
equations {see ‘LB} for a detailed discussion).

At first glance the equations of Brayton and Moser bear no resemblance
to the usuel Lurie equations but this note will show that by a change of variables
the equations take 2 form similar to the Lurie equations. Once the eguations
are writlen in this new form it is then clear how to use the methods developed
in control theory to study their stability properties. In particular it is clear
that Popov's method would yield a stability criterion. It is also clear how to
construct a Liapunov function for these equations. We choose the latter to
reprove Moser's theorem in a straightforward way.

The system considered in[1,2] is of the form

f(:—AX+B}7

¥ = Cx - fly)
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where x 1s an n-vector, y an m vector, A, BE and C are consiant
matrices of appropriate dimensions, A nonsingular, and { is an m vector
valued function of the m veector y.

One wishes to find conditions on A, B, C and { so that all solutions of (1)
approach a finite number of equilibrium states and hence rule our osciliatory

behavior. The fundamental assumption on { is that it can be written in the

form  f{iy) = vG(y} - cA "By where O iz a scalar fuaction and 7 stands

for gradient. It is also assumed that G tends to infinity as y tends to o
and G has a finite number of critical points {y,, ..., yk).

Moser thern obtains conditions on the coefficients A, B and € such that all
soluticns of (Il tend to x =0, y=v., 3=1,..., k,
J
. . -1 -
If one makes the change of variables u=x, vs-y -cA "x and lets
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{ =-{A+BCA 7), D=-CA = then the Equations (1} become
& =Ku - By
{2) v =vGly)
v = Dy - v
y
If y is a scalar and Gly) = I ©(7) dr then Equations (2) reduce to the usual
0 .

indirect control equations of Lurie.
Thus it is natural to make the Lefschetz change of variables

z = Ku - Bv, ¢=Du - v which is nonsingular provided

(3) =k||-1-DE'Bl£0

D -1

This condition is clearly necessary for isolated equilbrium points. Under this
change of variables the Equations (2) become

zZ

Kz - BYG(o)
(4)
5 =Dz - vG(o)



For Equations(4) the natural Liapunov function ig of the form

{3) Y = z'Pz + Glg)

where P is a positive definite symmetric rmatrix
We shall show that cne can give conditions on the coefficients of (4) such
that one can find a P that makes V a Liapunov function for (4}, The
existence of such 2 P is the result of a lemma by Anderson [4]. Anderson's
lemma is a natural generalization of the Kalman- Yarnkovich lemma discussed
in {3] Henceforth we shall assume that (K, B, D, is a completely controllable,
completely observable triple. This assumption is necessary for the application
of the iemma of Anderson but one couid dispense with this as sumption by using
the methods developed in
The condition on the coefficients of (4} are stated in terms of the

transfer function
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An m xm matrix function Z of a complex variable 7 it called

pos itive real if

i) the elements of Z are rational functions with no poles for Rei >0

s

3

i~

i) Z(i} = Z{

T

i)z o+ Z{)} 1is nonnegative definite for Re’ » 0. Z Iis called
_ - T L
strictly positive real if i) holds for Rexr > 0, ii} holds and Z{3)7 + Z(%}

is positive definite for Rei > 0.

The main theorem is then

Theorem 1. If T(3)=1+D {)1-K }—1 B is positive real then all solutions

of {4} are bounded and if it is strictly positive real all solutions of (4)

approach one of the equilibrium points (0, Ci) where o5 is such that

vGlos) = 0.
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We can state Theorem: 1 for the original system of Equationg (1} by

tracing back the coordinate changes. In terms of the original matrices

1 L,-1

T(;) =1+ (-CA )i I+A+BCA™TY B

=I-Cl7A A%y BC) 1p
17} 1
[ oL 2 - -
—1-ca+a% B 1+ coarady eyt
S 1+ch A+ A% ey
thus
-l - 2.-1, . . s N .
Corollarv 1. 4 T " ={I1+C.A+A") "B} is strictly positive real and {3)

helds them all solutions of (1) approach one of the equilibrium points (0, y‘i)

where ¥y is a critical points of G.

Remark. Moser does not assume that (3) hold explicitly but one can easily
show that (3) is equivalent to the condition that the residue at o of

T(3) + Tih )= is nonsingular. This is an easy consequence of Moser's

condition.

Proof of Theorem 1.

We prove Theorem 1 by using the lemima given below to show that
there exists a Idapunov function of the form (3) for (4).

1

Anderson's Lemma: If T(:) =I+D(3I+K) "B is positive real then there

exists a positive definite nxn matrix P and an m xn matrix L such that

PK +X P=.L1

PB =1L - l—D
2
In the proof of this lemma one has also the following matrix identity

(9) (m*(ix) L - D {Lmliw) - D = L+ = {C'miie) + m*(iw) C}

Nl)-—‘

where miw) = ({w] - K)_lB and * denotes conjugate transpose. One sees
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at once that the right hand side of (8} 1is é* {Tlygy =T {-iw}} and soif T ie
strictly positive real then

' -1 ‘ .
(10) I-L (lwI-K)7™B=(1_1 (i Y

is nonsingular for all real ¢ ., This fact i¢ useful in the analysis of set where

V' is identically zero.
Let the P in (5) be as glven by Anderson’s lemma then the derivative

V of V along the trajectories of (4) is giveu by

-V =2 (K P+ PR} 41422 {PBA%D P UG+ 9G G = eG ¢ L gl

Since Vo o as z and g w and V<0 it follows by the well-known Liapunov
theorems that all solutions of {4) are bounded.

In order to conclude that all solutions of () tend tq G,c. ) we must use
/ O /

the theorem of LaSalle (6] that states that all solutions tend to the largest
invariant set of {4) that is contained in the set where V =0. Thus Theorem 1
is established once one shows that the largest invariant set contained in the set

where V =0 is the set {(O,gl) P (O,ok);.

Let z(t), o(t) be a solution of (4) that is such that z(t) # 0 and

F

V{z(t), @(t)) =0. Then G{o{t)) = - Lz(t) and so z(t) satisfies

Z={K+BL) ¢

r
But Z is bounded for all t and 50 the matrix XK + BL must have an eigenvalue

on the imaginary axis. The characteristic equation for K + BIL, is
PI-K- BL'] =D - K10 )y B P=r1-K]l1-L(1I- K>*1B1

But we have seen that if T ) is strictly positive real the matrix I.L (» I—K)ilB

is nonsingular for 3= i, u real. Hence z(t) =0, of(t) =0 .
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