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This paper discusses the existence of solutions to linear differential-
difference equations in certain degenerate cases. Questions of this type occur
in connection with singular perturbations of differential-difference equations
(see [2]). In singular perturbation theory, one is interested in relating the
behavior of a perturbed equation with the behavior of an unperturbed
equation that is degenerate in some sense. It is the existence of solutions to
the degenerate equations of singular perturbations that is investigated here.

Consider the equation

=
(AP — ) 4 AFN( — w0} = S0, ()
k=0

where 47, j =0,1,...,2h + 1 are m > m constant matrices: w;, j=0,
1, ..., h are real scalars; 0 = w, << @, <<+ <_m, , and J(t) is a real m-vector
function of the scalar 7. The mi-vector function x(1) is to be determined so as
to satisfy (*) and certain initial conditions. x'V(¢) = dx(¢)/dt.

The problem of the existence of solutions to (*), when det 4° =40 is
adequately discussed in [7]. The case of det 4° = 0 will be the primary
one in this treatment.

The first section gives a simple procedure for reducing Eq. (*) to one of
the same form with det(A4° + A4') =£ 0, i.e., A° + AA" is a regular pencil
(see [3]). Thus there is no loss of generality in assuming that det
(A° + A4Y) = 0.

The second section shows that solutions to (*) always exist, provided
the initial conditions and forcing functions are suitably restricted. The
third section shows that solutions to (*) exist under much weaker assump-
tions on the initial conditions and forcing functions, provided the spectrum
of the associated linear operator is suitably well behaved. This last result
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establishes a close connection between the phenomenon of “loss of deriva-

tives” and the existence of advanced chains of zeros to the characteristic
equation.

In order to discuss the existence of solutions to (*), it is convenient to
assume that the pencil 4° + 14" is regular. This section will show that there
is no loss of generality in making this assumption, in the sense that the ques-
tion of the existence of a solution to Eq. (*) can always be reduced to the
question of the existence of solutions of an equation of the same form but
with A% 4 4%, a regular pencil.

The reduction will consist of a finite sequence of row and column opera-
tions plus a finite sequence of one additional operation.

Consider the characteristic matrix

h
H(s) = X {sexp(— m,8) 4% -+ exp(— w;s) 4211, (LD

k=0
The entries in (1. 1) are exponential polynomials of the form
Pi(s) = salj + afj + - + exp(— wys) @+

We shall use p;;(s) as a generic symbol representing the i, jth element of
H(s) at each stage of the reduction. These exponential polynomials can be
ordered in the following way

Pi(s) = puls), (pij(5) > puls)).

provided af; = - =a}; =0; a! #0; then al, = - = ai; =0 (and
aif* = 0).

A finite sequence of row and column operations on the matrix (I.1)
is equivalent to changing 47 to PA/Q for j =0, 1, ..., 2h + 1, where P and
O are nonsingular m x m matrices. These operations correspond to multi-
plying Eq. (*) by P from the left and making the substitution x(t) = Qy(1).

By standard row and column operations, the matrix (L.1) can be reduced
to a matrix of the same form with the following properties:

Pi = py for i >,
Pi > pji s py > py forall j#iif p; #0, (L.2)
Py = pji =0 for all jif p,; =0.
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To make this reduction one simply takes one of the polynomials that is
maximal with respect to this ordering to the 1,1th position. Then to every
row (column) except the first, one adds a scalar multiple of the first row
(column) so that py; > p;(py, = py;) for all j == 1. By repeating this pro-
cess in the standard way, one arrives at a matrix of the same form as (I.D
such that (I.2) holds.

Now if p;i(s) = sal; + - + exp(— wys) @' and a; = a% =+ — ¥
= 0 and either af} 220 or a¥*' 3£ 0, then multiply the ith row by (a%)!
exp(w;s) or (a#*1)~Lexp(w;s). This is equivalent to making the substitution
xi{1) = yi(t + wp) in (*).

Now by rearranging rows and columns, (I.2) will hold and furthermore,
if p;; 7 0, then either a; = 1 or a}; = 0 and a2 = 1.

The last operation may introduce new exponents in the exponential poly-
nomials, i.e., there may now exist terms in the exponential polynomial of
the form s exp(w; — w;)s. If we call these new exponents Ny k=0,..,1
where O = 9, << 9, << - < #;, then the matrix (1.2) is reduced to one of the
form

{
2 {sexp(— n;8) B* L exp(— ;s) B,
k=0

where B® = diag{l, , 0,,0,}, B' = diag{C", /,.,0,} and B* = diag{D", 0,1}
for k = 2,...,2h + 1, where I, and I, are the p x p and ¢ x g idenity ma-
trices, 0, and O, are the g X g and s x s zero matrices, and C! and D¥,
k=2,..,2141 are pxp and (p + q) x (p -+ g) matrices. Thus the
equation is reduced to the form

!
= {B“’xm(l‘ — ) + B’”*lx(f — m-)} :f'(f),
k=0

where the B/ are as above. Clearly for the existence of a solution for ¢ = 0,
one must have f;+q+l(t) = f"pﬂ”(r) = = f(t) = 0 for all 1 = 0. If this
requirement is met, we are reduced to considering an equation of the same
form as the above with s = 0 and B* = diag{/,, 0,} and B! = diag{C", 1,}
and thus B% 4 AB' is regular.

In this section it will be shown that a solution to (*) always exists pro-
vided the initial conditions and forcing function are sufficiently smooth.

Let u(#) be the function that is zero for ¢ < 0 and one for ¢ > 0 and let
A% 4+ AA4' be a regular pencil.
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Lemma 1. There exists a unique m X m matrix function U(r) defined for
all 7 such that A°U(r) is differentiable and dldi{AU()} + AUG) = p(DI, .
If f(-)e CHO, c0) (or f(-) e 0, c0)) then

K0 = 3 = U, — [ UG- 9)) 1)

satisfies the equation dlde{ (1)} + A'x(1) = f(¢) for all ¢ = 0, x(0) = x,.
Moreover x(-) & CH0, 00) (or x(+) € €0, 00)) if By, — f(0) is in the
range of 4°.

Proof. There exist nonsingular matrices P and 0 such that PA°Q
= diag{l,,0,} and PAQ = diag{C, I,}, where C is some p x p matrix
and [, , I, and 0, are as before. If 4° and A" are as described above, then
U(r) = diag{pu(t) [; exp(— CB) dB, u(t) ,+ and the rest of the lemma fol-
lows by direct verification.

Henceforth if ¢(-) e CHa, b), k = 1, g"(ty) will denote the rth deriv-
ative of g(+) at #, if r < k and 1o € (a,b), and the rth right (or left) de-
rivative if 1y =a (or t, = b).

Theorem. Let x,(.)e C[— o, 0] and f(-) & C0, 00). If 32,
{A¥ XD (= ) + AL (= w) b = FU50) for all J=0,1,2 ., then
there exists a unique m vector function x(-) € C¥[— w,, 00), such that
x(t) = x,(1) for t € [~ w,, 0] and ko {A%x0(r — w,) + A (1 — wy))
= f(t) for all t = 0.

Proof. The function x(t) will be defined by induction. We shall show that
there exists a sequence of functions {x,(1)} such that:

TH: (1) x,(-) e C¥[— wy, n w,].
(2) Yj_o {A%x(s ) + A¥ (1 — 0} = A1) for te [0, no,).
(3) x,(1) = x,(t) for re [— g, 0].

Xo(+) is given by hypothesis. Let X,(+) satisfy IH and define N,(r) =
= Tia A — ) + A%t — w,)) 4 fir),
Clearly N,(-) e C=[0,(n + Day]. Define x,,,(+) by

Ya(t) = x,(1) for te[— o, , o]
and
Xuir(l) = x,(no ) — U(t — nw ) A, (no,)

!
- {n {dU(r — s = nw,)! Nu(s) for tefnw;, (n+ o,
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Clearly x,.,(-) is well defined and satisfies (3). Moreover x,,,(-) satisfies
(2), except possibly at 1 = new,; , and hence, it only remains to show (1).
By (2) there exists a vector u, such that 4%, + AW (nw,) = N¥(nw,)
—namely u, = x$V(nw,). Thus by the preceding lemma, x{,(-) is
continuous for 1€ [— w,, (n -+ Dw,] and all s. Thus (2) is established.
The function x(¢) is defined by x(¢) = x;(¢), where j = 0, il t€ [~ w, , 0]
and j=nif te€ ((n — Dw, ., nw,l.

11l

In this section, 1t will be shown that solutions to (*) exist under much
weaker conditions of initial data and forcing function if the spectrum of
the associated linear operator is restricted. That is, if the roots of the char-
acteristic equation lie to the left of some ling in the complex plane, then so-
lutions to (*) exist for all + under much weaker smoothness conditions.

The proof of the following lemma is almost identical to the proof of
Theorem 12.19 of [I].

Lemma 2. Let 4? 4 44" be a regular pencil and let there exist a real
number a, such that if 2 is a root of fi(s) = det H(s) = 0. then Re /1 < a.
Let ¢ be the nullity of A°and S = {t |t = 3}_,mw;, ny an integer }. Then

atics eXp(ts) H™' (s) s

Sq+1

wa) = |

a—too
converges for all ¢ and uniformly for ¢ in a compact set, and W () converges
for all t€ (—oo, c0) M S and uniformly to a continuous function for ¢
in a compact subset of (—oo, c0) M S.

A complete discussion of and a simple criterion for the condition that
all roots of h(s) lie to the left of some line in the complex plane can be
found in [/].

Moreover for all re[0,00) N S

avizo H(s) H{s)™!

s¢+1

It
Z {AZKW(T - (Ul‘) + AQk+1 ”/(t - (UA')} e [

F=0 4 a—ino

14
- ‘[l(f) ‘E[T ]m

and

A . 14
AE (W (t — oA¥ + Wi — o)A = 1) 4l 1, .
- !

Theorem. Let 4° 4 14" be a regular pencil, g the nullity of 4° and let
there exist a real number a such that if 4 is a root of A(s) = det H(s) = 0,
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then Red < a. If xo(-)e CT[— w,, 0], /() € CY0, 00) and
h
T ARG (— wy) - AN (= o)} = F9(0) (11L.1)
§—0

for j =0,1,2,.., g, then there exists a unique m-vector function x(+)
€ C[—w, oo), such that x(t) = x,(¢) for t € [~w,, 0] and

h
Y {A%( — ) + AFrix(t — wp)} = f(t)
k=0

for all t € [0, o). Moreover x(r) is given by

q h
x(ty = uft) Z T X0+ X W — ) AP x§(0)

t
j=0 J* k=0
~t 0

- ' W(t — a)df ' (a) — é ‘ Wt — a — o) d{A%*x{V (a)
v 0 k=0 *

—wg

AT L a() ) v, (11L.2)

Proof. First we shall derive formula (I1II.1) and thus show uniqueness.
The following derivation is similar to the method described in [/; Chapter
10]. Let x be a function satisfying the conditions of the above theorem and

let W be the function given by Lemma 2. By multiplying Eq. (*) by W and
integrating, one obtains for > 0:

h
T | ; SW( — 5142 dxD(s — wy) -+ W(t — A% dx(s — )}
f=0

~ J: Wit — s) df(s),
and thus

¢

I~

G = |

0 (WOt — ), — A + W(t — wp — 5)A*H1} dx(s)
Jo g

0
N h
- | : Wt — ) dfs) + % Wit — w)A%x(0)
k=0
R 0
.S H WO — o, — s)A% dxtD(s)
im0 Y —wx
0
+ f W(t — wp — s)A*+ dx(s)}.
.

By Lemma 2 and the definition of W it follows that

to(f — s\ 12x(0 t s Sy
G(t) = JO ( n!S) dx(s) = \(!) 4 JO fol JO lx(s,,) ds, = ds,

n
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and so
d” i ‘ h 3
() = x(0) + —- Hf Wit —s)dfis) + ¥ W — «”.)A%\*U(O)}
0 Fe0

h 0
- {f WDt — wp — s)A% dxs)
k=0

—wp

— W

-+ fo Wt — w; — s)A%+1 d,\‘(S)H .

By successive differentiation, integration by parts, and use of the addition-
al boundary conditions, one obtains the formula (H1.1) for x(#). Thus
uniqueness has been shown. Existence can be shown by direct substitution
of (III.1) into (*).

The following example illustrates that, in general, if a C! solution is to
exist and the nullity of 4° is g, then the initial data must be of class (2!
and the forcing function of class C¢.

x{P(t) = fi(2).
X(1) 4 X{P(t — 1) = folr).

Here the nullity of A° is one and i(s) = s. Clearly if x,(¢) is to be C! for
t€ [0, 1}, the x,(z) must be C% for r e [— I, 0]. Higher order examples can
be constructed in the same way.
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