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The Hamiltonian of the restricted three-body problem:
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Hamiltonian equation in R* with one parameter 1 the mass
ratio parameter, 0 < p < %

There are five equilibrium (libration) points
L1, Ly, L3 the unstable collinear points of Eulerian,
L4, Ls the equilateral triangle points of Lagrange.

1R = 3(1—v/69/9) ~ 0.0385 the Routh value.
L4, Ls stable for 0 < p < pg with 2 known exceptions.
L4, Ls unstable for ug < p < %

For 1w = ug there are many false proofs of the stability of
L4, L5 dating back to the 1960s and one recent long
complicated proof that maybe correct.



We give a relatively simple proof of the stability of L4, L5
when p = pg based on four simple ideas.

» An approbate scaling
» Understanding the local geometry
» Coordinates adapted to the geometry

» Special polar coordinates for a section map



Shift origin so z =0 € R* is L4.
Equations z = JVH(z,vg) = Az + - --.
A'is a 4 x 4 Hamiltonian matrix.

Eigenvalues double +/ and not diagonalizable.



Invariants:

M1 =Xxy1 — x1Y2, M2 =3¢+ x3),
(1)
M3 =3(y7 +3), M4 =x1y1 + X2y,
where z = (x1, x2, y1, y2). Sokol'skii's normal form
H=T1+ 00+ HI(M,T3,0), (2)

where § = £1.



Quadratic Hamiltonian or linear equations

Hy =T1+6l>.
Coefficient matrix
0 1 00
-1 0 0 O
A=l 5 o0 o0 1| (3)
0 -6 -1 O

with eigenvalues A = +/.

(This is the Hamiltonian equivalent of a Jordan form.)



Scale the variables by

X1 — €2X1, Xo — €2x0,
Y1 — ey, Y2 — €ys, (4)
H— e 3H

(Meyer & Schmidt 1971)

The Hamiltonian becomes
H=T1+ {6l +noT3} + O(e?). (5)

(This uneven scaling has found the important terms.)



Theorem: If n > 0 then the origin is stable.

Corollary: L4 is stable when 1 = pg.

(It was known and easy that n < 0 implies instability.)



H=T1+e{dlo+noM3}+---,

and when e =0

1
Ho=T1= 5(—U%+U§— Vi +v3).

This is two harmonic oscillators, so use action-angle variables
(I17 I2> 917 02) and

Ho=h—-1h
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Figure: Tori Coordinates
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Figure: Cross Section in a Energy Level

Oops: F = H.
> is cross section; X is cross section in energy level.
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Take a cross section in the H = 0 level set.

Use the scaled normalized equations and compute the Poincaré
map
g q+ep’+--,  pop—eqt--

where (g, p) are rectangular coordinates in the section.

This looks like the time € map defined by the sin lemniscate
function. (C. F. Gauss, January 8, 1797)
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The sin lemniscate function, denoted sl v, is the solution of
¢4+ 2e3 =0, £0) =0, £0)=1 (6)

where ' = d/da.

This equation has an integral given by
(a) + &) = 1 with n(a) = €(a) (7)

which implies £(«) is periodic — see Figure 3a.
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Figure: The sin lemn function: (a) its integral and (b) its graph
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Let k be the least positive value such that (k) = 1.

Solving for n = d¢/da and then separating variables one finds

! 1 11
m:/ 4 _lg (1LY L 1311008777,
0 1—74 4 4’2

where B is the classical Beta function.

By symmetry arguments £(«) is odd and even about o = &,
i.e., {(k+ a) =&(k — ), and therefore () is 4xk—periodic —
see Figure 3b.
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Recall that the Poincaré map looks like
q—q+ep’+--,  pop—eqt--
Change to “polar coordinates” (p, «) by
q=p"n(),  p=péla),
so the Poincaré map becomes
p— p+ O(e?), o — a—2ep+ O(é?).

It is a twist map!
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So Moser's invariant curve theorem implies the existence of a
big set of invariant circles encircling the fixed point and thus
the fixed point is stable.

This in turn implies the equation is stable in H = 0 and a slight
variation of the argument implies stability for H very small.

Which implies the origin is stable and the Theorem is proved.

Since it is known that 1 > 0 in the restricted three body
problem, L4 is stable for yu = ug.
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