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84 COOKE AND MEYER 

1. EXISTENCE OF SOLUTIONS AND FORMULAS FOR SOLUTIONS 

We shall consider the following system of equations 

whereO=w,<w,<...<w,and 

and 

Bkii are n X n real constant matrices for k = 0, . . . . h 

B kla are n X m real constant matrices for k = 0, . . . . h 

B,,, are m x n real constant matrices for k = 0, . . . . h 

B k22 are m x m real constant matrices for k = 0, . . . . h 

& is the n x n identity matrix 

1, is the m x m identity matrix. 

Thus B, and E(E) are (n + m) x (n + m) matrices. Both x(t) and f(t) are 
(n + m)-vector functions of the real variable t. We shall take (d/dt){E(~)x(t)} 

to mean the right hand derivative of E(E)x(~). Thus when E = 0 the right 
hand derivative of x(t) may not in general exist but it will for E(O)%(t). The 

scalar E is to be nonnegative. We shall write X(E, t) in place of x(t) when we 
wish to show the dependence of the solutions of (1) on the parameter E. 
Also we shall take x(t) = (y(t)‘, x(t)‘)‘, X(E, 1) = (y(c, t)‘, Z(E, t)‘)’ and 

,f(t) = (.fi(t)‘, f2(t)‘)’ where y(t), y(~, t) and fi(t) are n-vectors and z(t), Z(E, t) 
andf,(t) are m-vectors. (The prime denotes the transpose). 

The convergence of the solutions of (1) is to be discussed as 6 + O+. 
In particular does the solution of (1) when E f  0 tend uniformly as E --f 0 

to the solution of (1) when E = 0 ? Is this convergence uniform over a finite 
or infinite interval of 2? 

Before treating these questions it will be necessary first to discuss the 
existence of solutions to the above equations and to find explicit formulas 
for these solutions. The methods for treating these questions are slight 
extensions of those found in [l]. In particular it is found that analogs of the 

kernel K(t) as found in [I] cannot be defined. But one can define the analog 
of the integral of K(t) and thus obtain expressions for the solutions as 
integral operators on the initial conditions. In this case though, the integrals 
are Stieltjes integrals. 

Let us now consider the existence of solutions. When E # 0 we may apply 
Theorem 6.2 of Bellman and Cooke [2] to insure existence and uniqueness 
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to the initial value problem since det E(E) = l f: 0. When l = 0 we require 
the following 

THEOREM 1. Consider the system (1) when E = 0. Let x,,(t) be un (n + m)- 
vector function that is continuous and of bounded variation for t E [0, WJ and 
let f(t) be an (n + m)-vector function that is continuous and of bounded 

variation for t E [wh , CO). Assume that 

det Bozz # 0. (2) 

Then there exists a unique (n + m)-vector function x(t) (or x(0, t)) defined for 
all t > 0 such that 

(a) x(t) = x0(t) for t E [0, wh] 

(b) x(t) satis$es (1) for all t E (wh, 03) 

(c) y(t) is continuous and z(t) is continuous from the left. 

Moreover x(t) and j(t) are of bounded variation for t E [0, R] for any 
0 < R < CO and the set of discontinuities of x(t) (properly just of z(t)) is 
contained in the set Q = {t* 1 t* = cb, jpl, , where j, is a nonnegative ititeger 
for each k = 1,2 , . . ., h}. I f  

;~E(o)xo(t)) I t’wh-O = 2 B,xo(w, - or) + f(wh) k=O 
then j(t) and z(t) are continuous for all t 3 0. 

PROOF: When E = 0 the system (1) can be written 

j(t) = 2 {&At - 4 + &At - WA) +fi(t) 
k=O 

0 = $o{&s& - wk) + BkzzZ(t - wk)) +fi(t). 

By (2) the matrix B,,, is nonsingular and so the second equation above can 
be solved for z(t) and this expression substituted into the first equation to 
obtain 

P(t) - (Boll - BonB&Bozh’(t) = 2 (Bk~~ - Bo,,B&Bkn)Y(t - wk) 
k=l 

+ @kl, - Bo12Biii&&dt - wk)> +f&) - Bo12BG~f~(t) (4a) 

z(t) = - B,-,‘, 12 (&lY(t - wk) + Bkzdt - wk>> + Bozl~(t) +fi(t> 1. (4b) 
k=l 
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Let the coefficient matrix for y(t) in (4a) be A and let the right hand side 
of (4a) be v(t). Then (4a) may be written 

-$ e-Aty(t) = e-%(t). 

Since v(t) contains y and z only with arguments t - wk , k # 0, it is clear 
that v(t) is defined and continuous for t E [wh , mh + WJ and so y(t) can be 
continued to [wh , wh -L wl] continuously. By (4b) z(t) can be continued to 

( wh , wh + wl] uniquely and such that z(t) is continuous save possibly for 
a jump at t = wh . Clearly the theorem follows by induction on this process. 

Henceforth we shall assume that (2) holds and that x0(t) and f(t) are 
continuous and of bounded variation for t in [0, wh] and t in [w?~, 00) 
respectively. Throughout we shall denote by X(E, t) the unique function 
defined for all t >, 0 that satisfies (I ) for all t > wh , has initial value x0(t) 
and whose existence is assured by Theorem 6.2 of Bellman and Cooke [2] 
for E # 0 and by Theorem 1 for E = 0. 

It is well known that when E # 0 the solution X(E, t) is exponentially 
bounded provided f(t) is exponentially bounded. By a simple but lengthy 
inductive argument the same is true when E = 0. Thus the LaPlace Stieltjes 
transform of x(t, G) exists in some right hand plane and satisfies 

H(r, 4 jm 
98 
e-St dx(6, t) = e-Wh* G E(t)X(E, t) 

t=q 

i- 2 e-Wk*Bk /“‘̂  m e-8t dx& t) + e-st df(t) 
%-Wk WI 

(5) 

= e--Whs 
I$ BkXO(wk - wkc> +.f(%) 1 

+ $I e-'&c j-" ecst dx,(t) + 
s 

m e-st df(t) 

wh-wk WI 

where 

H(c, S) = s,!?(r) - i e-s%Bk . 

In a manner similar to that found in [I] we wish to find a matrix function 
W(E, t) whose LaPlace Stieltjes transform is H(E, s)-1. 

By the same procedure as found in the proof of Theorem 1 we find that 

there exists a unique (n + m) x (n + m) matrix function W(E, t) defined for all 
t and c > 0 that satis$es the following conditions: 
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(a) W(6, t) = 0 for t < 0, E 2 0; 

(b) W(E, t) is continuous for all t zf E # 0; 

(c) W(0, t) has its jirst n rows continuous and the last m rows are continuous 

from the left for all t; 

where I,,+m is the (n + m) identity matrix and the above derivative is a right hand 
derivative when E = 0. Moreover W(E, t) and (d/dt){E(r)W(E, t)} are of 
bounded variation for t in [0, R] when E 3 0 and R > 0 are fixed. 

Again by a simple but lengthy argument it can be shown that the variation 
of W(E, t) is exponentially bounded. Thus the LaPlace Stieltjes transform of 
W(E, t) converges absolutely in some right hand plane and furthermore it 
is clear that 

H(E, s)-1 = / f f  e-St dW(E, t) (7) 

for those values of s for which the integral converges. 
Now we shall use (5) and (7) to show that the solution X(E, t) can be 

expressed as an integral operator on the initial conditions. This will be done 
by showing that each term in (5) is the LaPlace Stieltjes transform of a 
certain function and then applying the uniqueness theorem. First 

Now let 

Then 

H(E, s)-lecswk = 
I 

m ecst dW(E, t - w,). 
?I 

/J(t) = 1; 
for t < 0 
for t > 0. 

s % 
e--St dx,( t) = 

“‘h-w) 
J ; t+ d{xo(M+, - t)P(t - % + @k)) 

- e-8(~h-4Xo(W* - Wk) + e-~~hxo(wJ 

and hence by the convolution theorem 

H(E, s)-4-wk8 r e-s* d&x,,(t) 
a-, 
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In the same manner 

H(e, s)-1 Irn e-t df(t) =:- j= e-st d, It W(E, t - a) df(a) 
Wh Wh Wh 

and so by the uniqueness theorem for Laplace Stieltjes transforms 

In general the uniqueness theorem would state that (8) holds only at 
points of continuity but since both sides of (8) are continuous from the left 
it holds for all t > wh and all E 3 0. 

We have derived (8) under the assumption that f(t) is exponentially 
bounded. Iff(t) is not exponentially bounded we can define 

h-(t) = 1;;;) 
for t E [wh , T] 

for t E [T, co) 

for any T > wh . Then the formula (8) is valid for the solution xr(e, t) of (1) 
withf(t) replaced byf,(t). For t E [w& , T], F&E, t) = X(E, t) and so (8) holds 
for X(E, t) if t E [wh , T]. But T is arbitrary and so (8) holds in general. 

2. THE REGULARITY CONDITIONS AND THE MAIN CONVERGENCE THEOREMS 

As was pointed out in Cooke [l] the degeneration problem can be discussed 
in terms of the new condition of complete regularity. This condition is 
useful in the discussion of the convergence of the roots of det H(E, s) as 
E -+ 0+ and thus gives the needed information about the convergence of 
W(E, t) as E --+ O+. The following is our working definition of u-regularity 
and a-complete regularity. In the following section an equivalent formulation 
is given that is easier to check in examples. 

DEFINITION 1. Let o,, and o1 be real numbers, (pi > u. . The equation (1) 
will be said to be [u. , o,]-reguZar (as E - 0+) if the following condition holds. 

CONDITION A. There exist positive numbers <I and y1 such that 

I O(% 41 2 Yl (9) 
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for all s, E satisfying 0 < E < pi and a, < Re(s) < u1 where 

The equation (1) will be said to be o,-completely regular if there exist 
positive numbers pi and y1 such that (9) holds for 0 < E ,< e1 and 
o,, < Re(s) < u1 for all o1 > o,, , pi and yi are independent of (pi , and all 

. . 
the characteristic roots of Bass have negative real parts. 

NOTE. In comparing the above with [l] it should be noted that the 
condition A stated above corresponds to the condition AC of [l]. There is 
no condition needed here that corresponds to condition B of [l], since in the 
present paper the singularly perturbed derivative is evaluated only at t. 

The usefulness of the concept of [u ,, , oil-regularity can readily be seen 
from the following theorem. This theorem states that [a,, , oil-regularity 
insures a uniform lower bound on / det H(E, s)I in a certain strip. 

THEOREM 2. Let u. and u1 be jnite real numbers, u0 6 u1 . Let S[u, , uJ 
be a closed region obtained by removing from the strip u,, < Re(s) < ui circles 

of any jixed radius centered at the zeros of det H(0, s). Assume the equation (1) 
is [uO, uJ-regular. Then there exist positive numbers Ed , yz such that 

I det WE, 4 3 yzl s In (10) 

for 0 < E < cZ, s 6 S[uO , uJ. In particular, for 0 6 E < c2 , any zeros of 

det H(E, s) in the strip u,, < Re(s) < u1 must lie within the circles about the 
zeros of det H(0, s). 

Furthermore, if the equation (1) is a,-completely regular, and if S[u,] denotes 
a closed region obtained by removing from the half plane Re(s) > us circles of 

fixed radius about the zeros of det H(0, s), then there exist postive numbers Ed 

and yz such that (10) holds for 0 < E < c2 , s E S[U,,]. Any zeros of det H(E, s) 
in Re(s) > u0 must lie within the circles about the zeros of det H(0, s). 

PROOF: Let (1) be [a,, . ail-regular. The highest degree term in det H(E, s) 
ins is Ps”+~. Choose ~a so large that 1 det H(E, s)I > &?I s ln+m for 1 s / > ~s/c, 
Re s > us; then 1 det H(E, s)] > &,,l”j s jlE for all s such that / s I > ~,,/c and 
s E S[ua , ui] and for E in any fixed interval 0 < E < E,, . Now consider 
I s I < ~,,/e, E # 0. In general det H(E, s) = Cyzopj(~, s)si where pj(c, s) is a 
polynomial is es with coefficients of the form C aie-flis, ai and pi are real 
numbers. For I s I < rs/e each pj(e, s) is bounded with a bound that is 
independent of E. By condition A there exists or > 0 such that / pn(c, s)I = 
) B(E, s)] > y1 for all 0 < E < pi . Thus for s E S[u, , ui] and T~/Q > I s ) 3 M 
for E f 0 and I s I > M for E = 0 where M is some fixed number we have 
I det H(E, s)l > &i] s /R for 0 < E ,( pi . Since there are no zeros of det H(0, s) 
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in the set 3 = S[o ,, , ui] n {si / s / < n/l> then by Rouche’s theorem there is 
an ~a such that for 0 < E < ~a there are no zeros of det H(c, s) in 3. Since 
3 x [0, l ,] is a compact set, j det H(E, s)] has a positive lower bound on 
3 x [0, E.J and so clearly we may pick a y3 > 0 small enough so that 

1 det N(E, s)i 3 ysl s jn for all s E s” and 0 < E < l a . Thus the theorem is 
proved by taking ya = min[&TO*l, -hi , y3] and l a = min[c, , ~a]. The second 
part of the theorem follows in the same way. 

The above theorem is useful in the discussion of the convergence of 
W(E, 2) as E + O+ since by the inverse theorem for Laplace Stieltjes transforms 
(see Widder [3]) 

where o’i is the abscissa of convergence for the transform of W(E, t). 
Since H(E, s)-l = (det H(c, s))-l adj H(E, s), a typical element of H(E, s)-l 

will be a quasi-polynomial in s and e? with coefficients that depend on c, 
divided by det H(e, s). A typical term is then of the form 

beisje-us 

det H(E, s) 

where 01 = C”,=, jrcWk , j, are nonnegative integers and b is a real number. 
It is therefore necessary to investigate integrals of the following form 

s &i-les(t-a) 
cc) det H(E, 4 

ds (12) 

as E -+ O+. In the above and henceforth stG) = lim,, si’:;. The following 
lemmas will cover the convergence properties of (12) for all cases we shall 
find necessary to discuss. Since some of the lemmas are proved the same way 
as in Cooke [l] we shall only give the reference to the corresponding lemmas 
in [l] where the proofs can be found. 

It is easy to see from (11) and (6) that i - j + n 3 0, m 2 i > 0, and 
n+m>j>O. 

LEMMA 1. Let i-j+n>O, m>,i>O and n+m>,j>O. Assume 
that Eq. (1) is a-completely regular and that all SYOS of det H(0, s) lie in the 
half plane R(s) < o1 where u1 < u. Then 

lim s sj-les(t-a) 

G+O+ to) to) det H(0, s) ds (13) 

ifi=Oand 

lim 
I 

Eisj-les(t--a) ds = o 

c-+0+ (.A det H(e, s) 
(14) 
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for i # 0. The convergence in (13) and (14) is uniform for t in any finite interval 

[to , tl] and if (T < 0 the convergence is un;;form for t E [t, , co). Moreover 

IS 
Eisj-les( t-cd 

ds < y,,eot, 0 < E < E. ) t > to (15) co) det WC 4 

for some E,, > 0 where 3/e depends on o but not on E or t. 

The proof is similar to the proof of Lemmas 11.1 and 11.7 in [l]. 

LEMMA 2. Let i-j+n=O, m>i>O and n+m>j>O. Assume 
that equation (1) is o-completely regular and that all zeros of det H(0, s) lie 

in the half plane Re(s) < u1 where (TV < 0. Then there exist constants y,, and E,, 
such that 

If 
&-les(t-d 

t3) det H(E, s) ds ’ ‘OFt’ 
0 < E < Eg . 

Thus the above integral is bounded as E + 0+ for t in any finite interval [t,, , tI] 
andifo<Ofortin[t,,a). 

The proof is similar to the proofs of Lemmas 11.2 and 11.7 of [I]. 

LEMMA 3. Let i -j + ?I = 0, m >i>O and n+m>,j>O. Assume 
that Eq. (1) is o-completely regular and that all zeros of det H(0, s) lie in a 
plane Re(s) < u1 where u1 < u. Then 

lim 
s 

p-les(t-c4 p-leslt-a) 

E+O+ (,,) det H(E, s) 
ds = 

s 6) det H(O, 4 
4 i =0 (17) 

lim 
s 

EiSi-les(t-a) 

ds = 0, 
E-O+ 

if0 
(.,j det WE, s) 

for each t E CQ where CQ = {t* 1 t* > 0, t* # 01 + xi=, j,w, where j, are 
nonnegative integers). The convergence is uniform in any compact subset of CQ. 

The following proof of this lemma is slightly different from that found in 
Cooke [l] so it will be included. 

PROOF: We shall consider the case when u > 0 (the argument for u < 0 
is almost the same). Let 

“(” t, = f( ) 

&+n-les(t-d 

cl det H(E, s) ds 

and write I*(E, t) = JIi(e, t) + jz*(c, t) where 

Jli(% t) = s &-lss(t-a) 

ds 
(0) 6(% s) 



92 COOKE AND MEYER 

an d 

where as before O(E, S) = detjcsl,, - xz=, e+~~~B~a~}. By the same method as 

used to prove Lemma 1 it follows that lim,+,+ Jai(q f) = jZi(O, t) uniformly 
for t in any compact subset of [0, co). For the treatment of Jli(c, t) we must 

be more careful. First let z = ES and then 

Now let 0(6, x/e) = e,(x) + 8i(z)e-~lZl~ -+ *.a + 0r(~)e-a+16 where O,(Z) is a 
polynomial in z and ai = Ch- j k-l k~k where j, are nonnegative integers. (Note 
that f?,,(x) is the characteristic polynomial for the matrix B,,, .) Clearly we 
can pick u, sufficiently large such that for Re z > ui we have 

1 el(+-w + . . . + er(+-+lf j < ij 1 e,(q 

for a fixed E f: 0. Thus 

A typical term after the expression in the bracket has been expanded by the 

binomial theorem is 

where p(x) is a polynomial and /3 = 01 + Cp,jSw, where jS are nonnegative 
integers. If  t < p we may move the contour to +KI and show Li = 0. I f  

t > /3 we may move the contour to the left to prove that Li is the sum of the 
residues of the integrand. The residues are of two types. The first comes from 
the zeros (z,} of 0,(s). Th e sum of the residues due to these poles is of the 
form 

where P, is a polynomial of degree less than the multiplicity of .a,, in B,(z)k+l. 
These terms clearly tend to zero as E + 0+ except where t = p and uniformly 
if t is in a compact set that does not contain t = /3. This proves the second 
part of the lemma since when i # 0 there are no other poles of the 
integrand. 
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Let us consider the case when i = 0 further. In this case the pole at z = 0 

has the residue p(0)(8,(O))-~-1. Thus the pole at x = 0 is independent of e 

and it is clear that the sum of these residues is JiO(O, t) since 

Thus JrO(e, t) - JrO(O, t) for all t E CQ and uniformly if t is any compact 

subset of CQ. 
We are now ready to state the first main theorem. 

THEOREM 3. (The Convergence Theorem). Let X(E, t) be the solution of(l) 
corresponding to the initialfunction x,(t) where x0(t) is continuous and of bounded 
variation in [0, wh] and where .f(t) is conti&ous and of bounded variation in 

[wh, 00). Assume that for some su$icientZy large o. the equation (1) is uo- 
completely regu1ar.l Let Q = {t* 1 t* = &=, j,w, where j, is a nonnegative 

integer for k = 1, 2, . . . . h}. Let X(E, t) = (y(~, t)‘, ~(6, t)‘)’ where y  and z are 
as before. Then 

lim y(~, t) = ~(0, t) 
c+o+ 

where the convergence is uniform in t for any bounded subset of [wh , CO). If ko(t) 
exists, is continuous and is of bounded variation in [0, wh] (where U+(O) is the 

right hand derivative and $uJ,J is the left hand derivative) and if f(t) exists, 
is continuous and is of bounded variation in [wh , 03) (wheref(w,) is the left hand 
derivative) then 

lim Z(E, t) = ~(0, t) 
E-q+ 

where the convergence is bounded in any bounded subset of CQ = [wh , co) - Q 
and uniform in any compact subset of CQ. Moreover if (3) holds then the con- 

vergence in (20) is uniform for t in any compact subset of [We , CD). 

PROOF: Let 

and 

Wll(% t> W”(% t) 
WE7 t, = L,,(‘, t) w&, t) 1 (21) 

(22) 

‘See the remark following Theorem 6. 
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where WI, and r?,, are n x n submatrices, WI, and Bra are n x m sub- 
matrices, etc. By the inverse theorem for Laplace Stieltjes transforms 

W&?(c, t) =z & I‘, ) a,,(,, s) $ ds; 1,p = 1,2 
0 

where c is greater than the abscissa of convergence of W(E, t) and c is positive. 

By considering (6) it is clear that each term of each element of W,, , WI2 
and W,, is of the form (12) with i - j + n > 0 and so lim,,, W&E, t) = 
W&JO, t) uniformly for t in any bounded subset of [0, CO) for I = 1, p = 1; 
I = I, p = 2, and I = 2, p = I by Lemma 1. Thus (19) follows at once from 

Lemma 1 and (8). 
As for the second part of the theorem we must integrate by parts all the inte- 

grals in (8). First we define a new function I’(E, t) such that (d/dt)V(e, t) = 

W(E, t) and V(E, 0) = 0. It is easy to verify that jr ePt N(E, t) = s-lH(e, s)-l 

and thus V(E, t) = j, ) H(E, s)-l est/s2 ds. By Lemma 1 we have lim,,s+ V(E, t) = 
V(0, t) where the coivergence is uniform for t in any compact subset of [0, CO). 

Now 

I” W(E, t - a) df(ol) = f’ W(E, t - ol)f’(ci) dol 
9 Wh 

and 

I 
wh W(E, t - wk - LY) d&q,(a) = V(E, t - o~)&.T~‘(w~ - wk) 
Wb-*k 

- V(E, t - Wk - ~,)&q,‘(4 + j-” V(c, t - ok - 4 d&a,?+ 
%-=Jk 

Substituting the above in (8) we have 

4% t) = %(%) + WC% t - Wh) [So Bk%(% - Wk) +f(wh)l 

+ 2 { v(% t - Wh)B$,‘(Wh - @k) - v(% t - wh - Wk)&?;(Wh)} 
k=l 

V( E, t - a) df(a). (24) 
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All terms that do not contain W converge uniformly for t in any bounded 
subset of [wk , co). The term that does contain W is not under the integral 
sign. By Lemma 1 and 3 lim,,s+ Ws2(c, t) = W&O, t) for all t E CQ and 
uniformly for t in a compact subset of CQ, and by Lemmas 1 and 2 the 
convergence is bounded. Thus the last m rows converge as stated in the 
theorem. 

Now if (3) holds, the submatrix Wzz(<, t) multiples a zero vector and so 
does not appear in the expression for x(t). Thus the convergence in (20) 
will be uniform for t in any compact set of [ah, co). 

For the next theorem we shall use the following notation. Let 
(/ x 1) = sup{) xi j 1 where xi is the ith component of the vector X} and 
11 A (1 = sup{// Ax // 1 for all x such that Ii x’ // = 1). Let Vf(t) be the m + n 

vector whose ith component is the variation of the ith component of f(t) 
from w,, to t and let Vx,(t) be the n + m vector whose ith component is the 
variation of the ith component of x0(t) from 0 to t. 

THEOREM 4. (Asymptotic Stability Theorem.) Let X(E, t) be the solution 
of (1) corresponding to the initial function x,(t) where x,(t) is continuous and of 

bounded variation for t E [0, WJ and where f(t) is continuous and of bounded 
variation for t E [wh , co). Assume that Eq. (1) s i a,-completely regular and that 

all zeros of det H(0, s) lie in a half plane Re(s) < ua where u2 < a, . Suppose 
also that 

m 
e-“ot dVf(t) < y1 

Wh 

and if u0 < 0 that /f(t)/i < yle-oot for t > wh . Then there exist positive 
constants c2 and yz such that 

II 4% t>l! G Y&t 0 < E < Es ) t 3 Wk. (25) 

PROOF: By the hypothesis we may apply Lemmas 1 and 2 to obtain 
/I W(E, t)ll < yst+ if a0 > 0 and (/ W(E, t) - W(E, CCJ)~~ < y.+@ if us < 0 
for all 0 < E < 6s where 3/a is independent of E. If cr,, > 0 it follows from (8) 
that 
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Hence (25) holds if CQ, > 0. Let u,, < 0 then we can rewrite (8) as 

+ (W(E, t - Wh) - W(E, a,> 2 BkXO(% - 4 -t-fc%)[ 1 k=O 

The theorem will follow in the same way as in the above case if it can be shown 
that the first two terms are zero. If o. = 0 we can shift all the contour integrals 
to the left and so there is no loss in generality in assuming ua < 0. 

Consider 

) H(E, s)-l$ BkeF‘Q $ , uo < a. 
a k=O 

From the fact that W(E, t) = 0 for t < 0, E # 0 and from (11) it follows that 

0 if a>0 

R(a) = 
2 w(t-, CO)Bk if u. < a < 0. 
k=O 

Since H(E, S) = s E(c) - C”,=, e-%B, 

where I is the identity matrix. By direct computation 

s 
Ids= -&I 

1 
if a<0 

(a) s $I if a > 0. 

and since H(E, s)-lE(s) has no poles for s > (TV the integral 

1 
7 zaz I ( ) W% 4-w4 as a 

is independent of a for a > o. and so equal to *I. Hence R(a) = -I for a < 0. 



SINGULARLY PERTURBED SYSTEMS 

Thus 

and so the second part of the theorem (i.e., with go < 0) follows. 
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3. NECESSARY AND SUFFICIENT CONDITIONS FOR REGULARITY 

Definitions of [a, , r o ]-regularity and of a,-complete regularity (as E --+ 0+) 
of Eq. (1) were given in Definition 1 of Section 2, in terms of Condition A. 
In this section we shall give several other characterizations of regularity, 
including one which can be used as a practical test in at least some examples. 
One such example is treated at the end of the section. The methods used are 
similar to those in Cooke [I], Section 8. A theorem on Diophantine approxi- 
mation plays an important role. 

As observed in the proof of Lemma 3, the function f3(e, s) defined by 

can be written in the form 

O(E, s) = B,(e) + 2 e-%S6p(~s), 
“=l 

where each 0,(z) is a polynomial in z and 

O,(z) = det(z1, - B,,,) 

is a polynomial of degree m, the characteristic polynomial of the matrix B,,, . 
The numbers % are combinations of the wk with integer coefficients, 

a, = e. fkWk 9 jk > 0, 
k=O 

which can be supposed arranged so that 

The polynomials e”(z), 1 < Y < r, have degree m - 1 at most. 
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Along with the above condition A, we now consider a new 
Condition A’. There exists a postive number 6 such that 

for - co < y < co, a,, - 6 < Re(s) < or + 6. 
That is, for every y the exponential polynomial 

2 d”(zj)e-%s 
u=o 

(which has constant coefficients for fixed y) has no zero for s in a strip 
enclosing the strip as < Re(s) < ur . 

We shall now establish the equivalence of conditions A and A’. The proof 
will be given in detail, since it is more difficult than the corresponding proof 
in [1] (Theorem 4), although similar in basic approach. 

THEOREM 5. Let u0 and ul befinite real numbers, u0 < u1 . Then Condition A 

and Condition A’ are equivalent. 

PROOF: We shall first show that the negation of A’ implies the negation 
of ,4. If A’ fails, then there are sequences {a,}, {uj}, {TV}, and {yj} such that 
6j-tO+,u,-S~~ui~ul+6~,and 

(26) 

If {yi} has zero as a limit point, then on a subsequence we have 

= lim 0(0, uj + iTi) = 0. 
j+m 

Since the sequence {ui> has all its limit points on the interval [us, or], this 
contradicts Condition A. 

The sequence {yi> for which (26) holds cannot be unbounded, since on an 
unbounded sequence B,,(iy,) would grow more rapidly than 6,(iyj) (1 < v < Y), 
because ~9, is a polynomial of higher degree than 19. . 

We are left with the case in which the sequence {yj} has only finite nonzero 
limit points. Let y be one of them, and choose a subsequence on which 
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oi -+ u, yj -+ y, where a0 ,< u < or . From (26) we get 

e&y) + 2 e-%(~+w,(iy) = o(l),j -+ co. 
“=l 

Suppose that the numbers OCR, 01a, . . . . 01, satisfy exactly r - p linearly 
independent relations 

7 

2 cuyLyy=o (p=1,2,...,r-p) 
v=l 

with integral coefficients cP . Th e numbers are rationally independent if and 
only if r - p = 0. It follows from (28) that 

for p = 1, 2, . . . . r - p and j = 1,2, 3, . . . . Therefore, according to a known 
theorem on rational approximation,2 given any positive number b , there 
are integers Njl , . . . . Nj, and real numbers wj such that 

2 wj - Njy - F 
2a 

< rlj , (v = 1, ..*, r; j = 1, 2, . ..). (29) 

Moreover, given Q, the number wi can be taken positive or negative and of 
absolute value as large as desired. 3 We can therefore suppose that Q --+ 0 
andy/wi-+O+asj+co. 

Now let cj = yIwj, zi = eja + iy. Then as j --+ co, we have Ej ---f 0+, 
zj -+ ;y, and e,(z,) + &,(iy). Also using (29) we obtain 

a, - = a,u + ia,wj 
9 

= CL"U + i(2nNj, + OL”T~ + 2vk,jTj), 

where 1 kPj 1 < 1. Therefore 

e-OLvZj/Fj = e-““‘“+i’l’e-2”i’Cyj’lj = e-++i9)[1 + o(l)], j + co, 

and consequently 

B&T,) + * &,(,z,)e-Vfk = e,(iy) + zj: tVy(iy)e-+fi*j) + o(l), j-t cn. 
v=l V=l 

B Cf. Perron, [4], Satz 65. The condition of Satz 65 is satisfied with all g” = 0. 
a See the argument in Perron, op. cit., $43, p, 163. 



100 COOKE AND MEYER 

By Equation (27), th’ is is o(1) asj -+ co. Putting cjsj = .zi , we get B(cj , sj) z 
o(l) as j+ co, which contradicts Condition A since CJ~ < Re(s?) < (or . 

Now it has to be shown that the negation of r3 implies the negation of A’. 
If A fails, there exist sequences (~~1 and (si} such that cj ---+ O+, o,, < Re(sj) < 
u1 , and O(ej , sj) -+ 0 asj ---f x?. If t, -= 0 for j > j0 , then 0(0, sj) ---f 0, that is 

O,(O) + 2 B,(O)ePA == o(l), ,j -+ 32. 

If not, then on a subsequence we have cj > 0, cl --+ 01 . Let z, = sjej = 
cjxj 4 iyi . Then 

j ---z co. (31) 

Again the sequence {yj} cannot be unbounded, since 0, has higher degree than 
than 8, (v = 1, . . . . r). Let y be a limit point, and choose a subsequence for 
which yi --f y, z5 + iy. Letf(y; s) be defined by 

f(y; s> = 4&y) + f$ thi)e-~~S 
v=l 

It follows that in the case F~ = 0 for j > j, we have 

f(O; 4 = o(l), j-t a, 

and in the contrary case 

f(Yi 4 = o(l), j+ccL 

In either case, sj cannot be bounded away from the set of zeros of the 
exponential polynomial f(. ; s), hence f(* ; s) has a zero in every strip 
(I,, - 6 < Re(s) < oi + 6 (6 > 0). This contradicts Condition A’. 

THEOREM 6. In order that Eq. (1) b e a,-completely regular, it is su.cient 
that it be [uO , o,]-regular for each u1 > crO , and that all characteristic roots of 
the matrix B,,, have negative real parts. 

PROOF: For any Q > 0, consider the regions 

I: I s I 2 & Re(s) > 0, 

II: 1 s 1 f To/E, Re(s) 3 0) 

where we shall choose 7s and u large and independent of E. 
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Select 7,, so large that in region I, the polynomial 8,,(~) is dominated by its 
leading term, that is, 1 &,(G)] 3 $1 ES lm > &T,,~. Since ] B,(~s)l < cl ES /“-l 
(v = 1, . ..) r), 70 can be selected large enough that I 0(,, s)l >, t I 6s Im 3 4~~” 
for s in I, cr 3 0, and any E > 0. 

For any (T > 0, c > 0, / B,,(G)~ has a positive lower bound y in region II, 
since all characteristic roots of B,,, , that is, zeros of e,(z), have negative 
real parts. Since B,(G) is bounded in II (v = 1, . . . . Y), there is a u* independent 
of E such that I t9(~, s)i > & for s in II and u > u*. 

Combining these conclusions, we have I 0(<, s)l > yi for Re(s) > u*, 
E > 0, where yi is a fixed positive constant. If u* is large enough the same 
relation holds also for E = 0 and Re(s) > u*, since t9(0, s) = e,(O) + C e-V&,(O) 
and I f+,(O)I = I det(-&,,,)I > 0. Finally for the o* chosen, Eq. (1) is 

bo J a*]-regular. Condition A shows that there exist positive numbers ~a 
and yz such that / 8(<, s)j > ya , (0 < l < ~a, u. < Re(s) < u*). Let 
~a = min(y, , ~a). Then we have / t9(F, s)l > 3/a , (0 < E < l a , ~a < Re(s) < co). 
This relation implies u,-complete regularity in the sense defined at the 
beginning of Part II. 

COROLLARY. If all characteristic roots of B,,, have negative real parts, 
then Eq. (1) is uO-completely regular for every large real number u, . 

The proof is similar to that of the analogous result in [I], and is omitted. 
The following consequence of the Corollary is noteworthy. 

REMARK. In the Convergence Theorem, Theorem 3 in Section 2, the 

hypothesis that Eq. (1) 6 e uo-completely regular for some u. can be replaced by the 
hypothesis that all characteristic roots of Bozz have negative real parts. In other 
words, a purely algebraic criterion is available for the convergence question. 

The next theorem is a converse of Theorem 2. In statement and proof it 
differs somewhat from Theorem 6 in [l]. 

THEOREM 7. Suppose that det H(0, s) has at most a jnite number of 

zeros in u. ,< Re(s) < u1 and there exist positive numbers <I and y1 such that 

I det We, 4 2 ~~1 s In (32) 

f~O<E=G9, s E S[u, , aI]. Then Eq. (1) is [u,, , u,]-regular. Moreover, zf 
for every a, 2 u,, there are numbers l 1 and v1 for which (32) holds, and if all 
characteristic roots of B,,, have negative realparts, then Eq. (1) is uO-completely 
regular. 

PROOF: We argue by contradiction. If Eq. (1) is not [uO, or]-regular, 
Condition A fails, and there are sequences {cj> and {si} such that l j -+ O+, 
u0 < Re(sj) < a1 , and B(cj , si) + 0 as j-+ co. Either Eq. (30) or Eq. (31) 
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holds. Recall from the proof of Theorem 2 that det H(E, s) = ~~=~P~(E, s)sk 
where P~(E, s) is a polynomial in ES with coefficients which are exponential 
polynomials, and p,(~, s) = 0(~, s). We consider several cases, 

(1) It is impossible that z+ = ejsi be unbounded as J’ -+ co, since 0,(x) is 
of higher degree than 0,(z). 

(2) If cjsi is bounded but sj is unbounded, that is, Im(sJ is unbounded, 
then pk(ei , si) is bounded, and 

Since det H(0, s) has at most a finite number of zeros in us < Re(s) Q ur , jS 
cannot for large j lie in one of the circles surrounding these zeros, hence 
sj E S[aa , ur] for J’ large. The above estimate therefore contradicts the 
hypothesis (32). 

(3) If d els, an s, are bounded, then ejsj + 0; and for a suitable subsequence 
sj -+ s where a0 < Re(s) < o1 . From (30) or (31) we derive 

19(0, s) = O,(O) + 2 f$(O)e-+V = 0. 
v=l 

Let s = u + in, and assume that Eq. (28) holds. Then, as in the proof of 
Theorem 5, given any positive number Q , there are integers IV,, and there 
is a real number wk such that 

au wk - N,, - 01,7 
% 

2= < vk 9 v = 1, . . . . r; K = 1, 2, . . . . 

Moreover we can arrange that 7k -+ 0, wk --f ~0 as k -+ ~0. Then 

where 1 &, I < 1. Since vk --+ 0 it follows that 

e,(o) + 2 ev(0)e-5Jo+iwk) = 0(l), k+co. 
“=l 

That is, 0(0, sk) = o(1) as k -+ co, where sk = u + iw, , and this is impossible 
for the same reason as in (1). 

The second part of Theorem 7 follows what has just been proved and 
from Theorem 6. 

The next theorem shows that the uniform absence of zeros is of itself 
enough to imply regularity. 
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THEOREM 8. Let a,, < u1 and suppose that det H(0, s) has at most a Jinite 

number of zeros in u,, < Re(s) < ur . Also suppose that for some positive 

numbers 6, e,, , the function det H(E, s) has no zeros in S[u,, - 6, u, + 61, fiw 
0 < E < E() . Assume that all the characteristic roots of the matrix Bozz have 
negative real parts. Then there are positive numbers cl , yl such that 

for 0 < c < 61 , s E S[u, , u,]. In particular, Eq. (1) is [ua , a,]-regular. 

PROOF: If there are no such numbers or , yr , there are sequences {Q} and 
{sj} such that ei > 0, 6j + O+, sj is in S[u, , ui], and 

$i+z 1 det H(cj, sj)l 1 sj I-n = 0. (33) 

We examine the various possible cases. 
First, if {si} is bounded, there is a subsequence such that si + ss where 

sa E S[u, , uJ. Then det H(ej , si) -+ det H(0, s,,), and from (33) it follows 
that det H(0, s,,) = 0. This is impossible, since det H(0, s) has no zeros in 

xuo 3 4 
If {si} is unbounded, and ci = 0 for j > j,, , / det H(0, sj)[ / sj I+‘ -+ 0. 

Now if M is large enough, det H(0, s) h as no zeroes in the intersection of 
a0 < Re(s) < or and 1 Im(s)l > M, and so ( det H(0, s)I > y1 1 s In in that 
region, This contradicts the previous relation. 

If {sj} is unbounded and cj > 0, cj + O+, we consider several subcases. 
Let Sj = Xj + iy, , and suppose first that cjyj is unbounded. Pick a subse- 
quence on whcih ejyj + 03, xj -+ X. Since I EjSj I--+ 00, we have 

as in the proof of Theorem 2. This contradicts (33). 
Next suppose that yj -+ 00 but cjyj + 0. Since cjsj -+ 0, and each pk(e, s) 

is a polynomial in cs with coefficients which are independent of l and are 
exponentials in s, it follows that pk(ej , sj) = ~~(0, si) + o( 1) as j -+ co. 
Therefore 

det H(cj, s,) = det H(0, sJ + i) 0(1)s,~. 
k=O 

Since j Sj / -+ 00, and Sj E S[uo , a,], we have 1 det H(0, +)I > ~1 s, 1% and 
( det H(cj , Sj)l 2 ~a] S, 1%) where y1 > 0, ~.a > 0. This contradicts (33). 

It remains only to consider the case in which yj --+ co and l jyj has a finite 
nonzero limit point. Let this limit point be z and choose a subsequence 
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such that xj + x, cjyj + x. Take 6 > 0 and, as in [l], introduce the sequence 
of functions 

fj(~) =;: (S -; s~)P” det H(<j , s + sj), 

which are regular in 1 s ( < 6 for all sufficiently large j since 1 sj 1 -+ 00. 

We have 

fd4 = 3 Pk(Ei , 5. + Sj)(S + q--n. 
k=O 

Since Q(S + si) --+ ix as j -+ CD and / s + sj 1 -+ co, the family {fi(s)} is 
uniformly bounded for ) s 1 < 6, and by Montel’s Selection Theorem (see [l]) 
there is a subsequence, which we again denote by {fi(s)}, which converges 
uniformly in 1 s j < 6, < 6. Let F(s) be the limit of this subsequence. 
Clearly 

F(s) = pip& , s + Sj) = pz B(Ej , s -t Sj) 

= e,(iZ) + 2 Oy(ix)e-~Js+s~) + o(l), j-f(% 

where the o(l) is uniform in 1 s / < 6, . 
If F(s) is identically zero, we have 

0,(k) + 2 e,(k) e-We-V = o(l), j + 00, I4 < 4 . 
v=l 

It follows that the coefficients tend to zero as j ---)r co, that is, 0,(k) = 0 and 

lim e,(iz)e-Vi = 0. 
j+w 

However, it is impossible to have e,(k) = 0, since iz cannot be a characteristic 
root of B,,, . Thus F(s) is not identically zero, and there is a 6, , 0 < 6, < 6, 
so thatF(s) has no zero on ) s ! = 6, . It now follows from Rouche’s Theorem, 
as in [l], that for every large j, fi(s) and F(s) have the same number of zeros 
inside 1 s I = 6, . Since F(0) = 0, by (33), there is at least one zero, and so 
det H(E~ , s + sj) = 0 for some s in 1 s ) < 6, . Since 1 s + sj I--+ CD, s + si 
is in S[u, - 6, ur + S]. This shows that for arbitrarily small values of E 
there are zeros of det H(E, s) in S[ u. - 6, or + S]. This contradicts the 
hypothesis, and the proof of Theorem 8 is complete. 

The proof of the following lemma is similar to that of Lemma 7.1 in [l], 
and is omitted. 

LEMMA 4. Let C be a closed contour containing v  zeros Xi of det H(0, s), of 

multiplicities t.~( , respectively. Let Ci denote a circle with center at Xi of radius 
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so small that no C+ intersects C or another Cj . Then there exists an E,, > 0 
such that for 0 < E < Q, the circle Ci contains zeros of det H(E, s) of total 

multiplicity /Li (i = 1, . . . . v), and the set inside C and outside all Ci contains 

no zero of det H(E, s). 
For each E >, 0, we now let M(E) denote the supremum of real parts of 

zeroes h(c) of det H(E, s): 

M(E) = sup[Re(X(c)) : det H(E, h(c)) = 01. 

Also, define 

M* = lim+;rp M(E), 

U* = inf us, 

the last taken over all u,, for which Eq. (1) is us-completely regular. 

(34) 

(35) 

(36) 

THEOREM 9. Dejke M(O), &I*, and u* as in (34), (35), and (36). Assume 

that all characteristic roots of the matrix B,,, have negative real parts. Then 
M* = max(M(O), c*). 

The proof is almost identical to the proof of Theorem 8 in [l], and is 
therefore omitted. 

We shall conclude this discussion with an example of the use of Con- 
dition A’ to compute the number o*. Let 

that is 

4h) = 1 + z, e,(x) = a, e&4 = h 

B(E, s) = ES + 1 + ae-Y8 + beFzS, 

where a and b are real numbers and 0 < 01~ < 01s . We assume that CQ and 01s 
are rationally independent. Let (T denote the unique real solution of the 
equation 

1 a le-a10 + / b je-%f = 1. (37) 

We shall prove that u* = u. Condition A’ for [us , u&regularity requires 
that for some 6 the equation 

1 + iy + ae-Ys + be-V = 0 (38) 

have no solution in the strip us - 6 < Re(s) < ur + 6, for any real y. 
Take S > 0, us > u + S, where u satisfies (37). Then for Re(s) > us - 6(S > 0) 
we have 

/ ae-OLls + be-azs 1 < 1 a 1 e-%(00+) + 1 b 1 e-a2h-8) < 1, 

and therefore Eq. (38) cannot be satisfied. Hence we have [us , &j-regularity 
for every a, > o,, > u + 6, and since the root z = -1 of 13,(z) is negative, 
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it follows from Theorem 6 that our equation is a,-completely regular if 
u. :> u + 6. Hence u* < U. 

On the other hand, take (TV < 0, so that 

/ a /e~-aPu + 1 b le--Vo > 1 

For s = o0 + A, we get 

Since CQ and 01~ are rationally independent, there is a T for which this is as 
nearly equal to 1 - / a /exp(--olla0) - 1 b / exp(--oc,o,) as desired, and 

another for which it is as nearly equal to 1 as desired, and therefore there is 
a 7 for which 

1 + Re(aepals + be-%“) = 0. 

Then if we define y  by 

y  = -Im(ue-Ys + beYS), 

we see that s = u0 + in is a solution of Eq. (38) for this y. Hence Condition A’ 

is violated and the equation is not o,-completely regular. Since this is true 
for any u,, < 0, it follows that U* 2 o, which together with the previous 

result D* < (r yields u* = u. 
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