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The linearization of the spatial restricted three�body problem at the collinear equi-
librium point L2 has two pairs of pure imaginary eigenvalues and one pair of real
eigenvalues so the center manifold is four dimensional. By the classical Lyapunov
center theorem there are two families of periodic solutions emanating from this
equilibrium point. Using normal form techniques we investigate the existence of
bridges of periodic solutions connecting these two Lyapunov families. A bridge is
a third family of periodic solutions which bifurcates from both the Lyapunov
families. We show that for the mass ratio parameter + near 1�2 and near 0 there are
many bridges of periodic solutions. � 1999 Academic Press
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1. INTRODUCTION

In general periodic solutions of Hamiltonian systems are not isolated.
They are typically found in families parameterized by the Hamiltonian
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and�or the period and often as the parameter is varied a multitude of other
families of periodic solutions bifurcate from the original family. The evolu-
tion of these families can be quite complicated. The classic numerical
investigation of the families of periodic solutions connected to L4 in the
planar restricted three�body problem by Deprit and Henrard [8] is a case
in point.

For this paper the families of periodic solutions will be parameterized by
h the value of the Hamiltonian. If F1(h) and F2(h) are two one�parameter
families of periodic solutions of a Hamiltonian system then a bridge
between F1 and F2 is a third one-parameter family F3(h) connecting the
two, i.e. there exist h1 and h2 such that F3(h) exists for h1<h<h2 (or
h2<h<h1) and F3(h) bifurcates from F1(h) at h=h1 and from F2(h) at
h=h2 . In general the period of the solutions in the bridge will be much
longer than the periods in either of the other two families.

We will investigate bridges of periodic solutions in the Hamiltonian
system of three degrees of freedom defined by the spatial circular restricted
three�body problem near the L2 equilibrium point for values of the mass
parameter + near 1�2 and near 0. The linear system at L2 contains three
two�dimensional invariant planes, two of them containing harmonic
oscillators, and the third one having a hyperbolic saddle.

The spatial circular restricted three�body problem is defined by two
positive masses 1&+ and + (called the primaries) which move in circular
orbits around their center of mass, and of a massless particle (the
infinitesimal) which is attracted by the gravitational force of the primaries
but the infinitesimal does not perturb the primaries motion. The position
and momentum of the infinitesimal in the usual rotating coordinates will be
denoted by (q, p)=(q1 , q2 , q3 , p1 , p2 , p3). In these coordinates the
primaries are fixed on the q1 axis��see (3.7).

It is known that for the planar circular restricted three�body problem a
family of periodic orbits emerges from the equilibrium point L2 , this family
is usually called the Lyapunov family at L2 . Additional information on this
family can be found in Siegel and Moser [15] or Szebehely [17]. For the
planar case the linear system at L2 has eigenvalues \|1 i and \*.
The Lyapunov family of periodic solutions is associated to the imaginary
eigenvalues \|1 i.

For the spatial problem and for +=1�2 if we choose initial position and
velocity of the infinitesimal mass on the q3 -axis its motion remains forever
on this axis. The study of such a motion is called the circular Sitnikov
problem. In fact the existence of a family of periodic orbits living on the
q3 -axis is well�known, and it will be called the Sitnikov family. For more
details, see Sitnikov [16], Alekseev [2] and Moser [12].

For the spatial case the linear system at L2 has eigenvalues \|1 i, \|2 i
and \*. Now, again associated to the imaginary eigenvalues \|1 i there
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is the planar Lyapunov family, and associated to the imaginary eigenvalues
\|2 i there is a family of periodic solutions emanating from L2 called the
generalized Sitnikov family which coincides with the Sitnikov family when
+=1�2.

The main goal of this paper is to prove the existence of bridges con-
necting the generalized Sitnikov and Lyapunov families for values of the
mass parameter + near 1�2 and near 0. In [5], bridges of periodic orbits
connecting the Sitnikov family and the Lyapunov family are found numeri-
cally. The key tools for proving this will be normalization by Lie
transforms, Mathematica and a result of Meyer and Palmore [11], who
proved the existence of this kind of bridges between the two Lyapunov
families near the triangular equilibrium points L4 or L5 of the planar
circular restricted three�body problem.

2. BRIDGES CONNECTING LYAPUNOV FAMILIES

In this section we state a variation of one of the main results of [11].
Consider an analytic Hamiltonian system of three�degrees of freedom with
an equilibrium point at the origin with Hamiltonian

H(x, y)= :
�

j=2

Hj (x, y), (1)

where Hj is a homogeneous polynomial of degree j in (x, y)=(x1 , x2 , x3 ,
y1 , y2 , y3). Assume that the linearized system with Hamiltonian H2 has
two pair of pure imaginary eigenvalues \|1 i, \|2 i and one pair of real
eigenvalues \*. If |1 {|2 , |1|2 {0, and *{0 then we can assume that
a linear symplectic change of coordinates has been made so that

H2=|1 I1+|2I2+*I3 , (2)

where

I1= 1
2 (x2

1+ y2
1), I2= 1

2 (x2
2+ y2

2), I3=x3 y3 .

If in addition k1|1+k2|2 {0 for all integers k1 , k2 such that
|k1 |+|k2 |�4 then we can assume that a symplectic polynomial change of
coordinates has been made so that

H3=0, H4= 1
2 (AI 2

1+2BI1I2+CI 2
2)+D1I1I3+D2I2I3+D3I 2

3 . (3)

Thus, we can assume that the Hamiltonian is in Birkhoff normal form
through terms of order four. If in addition the Hamiltonian H depends

142 LLIBRE, MEYER, AND SOLER



analytically on a parameter $, and the above assumptions hold when $=0
then there is a $0 such that the change of variables and the quantities |1 ,
|2 , *, A, B, C, D1 , D2 , D3 are analytic in $ for |$|�$0��see [6, 10] for
details.

Since two of the six eigenvalues of the linearized system have nonzero
real part the system admits a four dimensional center manifold [7] and the
Hamiltonian on this center manifold is

H=|1I1+|2 I2+ 1
2 (AI 2

1+2BI1I2+CI 2
2)+h.o.t. (4)

There are many theorems about Hamiltonian systems of the form
discussed above. We have applications of the following theorems in mind.

Theorem 2.1 (Lypunov's Center Theorem [9]). If |1 �|2 {k, 1�k for
all nonzero integers k then there are two families of periodic solutions of the
system whose Hamiltonian is (1) with H2 as in (2) emanating from the origin
with periods which limit to 2?�|1 and 2?�|2 at the origin.

Theorem 2.2 (Arnold's Theorem [3, 4]). Assume H is of the form (1)
with H2 , H3 , H4 as in (2) and (3) and

2=A|2
2&2B|2 |1+C|2

1 {0. (5)

Then the flow admits smooth invariant two�tori on the center manifold and
the flow on the center manifold has the origin as a stable equilibrium point.

If in addition H depends analytically on a parameter $ for $<$0 and

|1($)=|1(0)+|$1 (0)$+h.o.t., |2($)=|2(0)+|$2 (0)$+h.o.t.,

then we define

M1=
|1(0) |$2 (0)&|2(0) |$1 (0)

A|2(0)&B|1(0)
, M2=

|1(0) |$2 (0)&|2(0) |$1 (0)
B|2(0)&C|1(0)

.

(6)

Theorem 2.3 (Meyer�Palmore Theorem [11]). If in addition to the
hypothesis of Theorems 2.5 and 2.5 the quantities M1 and M2 are defined and
nonzero with opposite sign then there exist bridges of periodic solutions
between the two Lyapunov families.

The conditions in Theorem 2.3 need explanation. Since the quantities
M1 , M2 are nonzero the ratio of the frequencies |1($)�|2($) has nonzero
derivative at $=0 and so as the parameter $ varies the frequency ratio
sweeps through rational values. Let $a�b denote the value of $ when the
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frequency ratio is rational, a�b. (In this informal discussion we assume that
a and b are not small integers.) When $=$a�b the linearized system has the
two normal mode families of periodic solutions (the linearized Lyapunov
families) of period T1=2?�|1 and T2=2?�|2 and all the other solutions
are periodic with the common period Tc=2a?�|1=2b?�|2 . The charac-
teristic multipliers of the periodic solutions with period T1 (resp. T2) are ath

(resp. bth) roots of unity.
The fact that M1 and M2 are defined implies that the periods vary as one

moves along a Lyapunov family for fixed $. The fact that they are of dif-
ferent sign implies that for $ near $a�b there is a unique periodic solution
on one of the Lyapunov families whose multipliers are ath roots of unity
and there is a unique periodic solution on the other the Lyapunov families
whose multipliers are bth roots of unity. These are the candidates for the
bifurcation orbits.

2{0 is a condition on the nonlinear terms. It is not only the twist con-
dition of KAM theory but the twist condition needed to apply one of the
variants of the Poincare� �Birkhoff fixed point theorem. It is this condition
that implies that bifurcations actually occur at the candidates for bifurcat-
ing orbits in the previous paragraph and that these bifurcated orbits
actually form a bridge between the two Lyapunov families.

This theorem has its strengths and its weakness. Its strength lies in the
fact that hypothesis are only on the quadratic and quartic terms in the nor-
malized Hamiltonian no matter what the frequency ratio is. Its weakness
come from the fact that the existence is established by a fixed point
theorem and so there is no uniqueness information. All the theorem says is
that for each value of h there are at least two periodic solutions in the
bridge family. If you wish to compute many more terms in the normal form
then Schmidt [14] proves that generically there are two periodic solutions
in the bridge one elliptic and one hyperbolic for each value of h. His
theorem requires a different computation of the normal form for each ratio
a�b.

3. THE HAMILTONIAN AT L2 FOR + NEAR 1
2

In this section we will apply Theorems 2.1, 2.2, and 2.3 to the spatial cir-
cular restricted problem at L4 at +=1�2. If the masses of primaries
m1=1&+ and m2=+ are fixed at (&+, 0, 0) and (1&+, 0, 0), then the
restricted three�body problem is defined by the Hamiltonian function

H(q1 , q2 , q3 , p1 , p2 , p3 , &)=
1
2

( p2
1+ p2

2+ p2
3)& p2 q1+ p1q2&

1&+
r1

&
+
r2

,

(7)
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where q=(q1 , q2 , q3) and p=( p1 , p2 , p3) are the position and generalized
momentum of the infinitesimal and

r2
1=(q1++)2+q2

2+q2
3 , r2

2=(q1&1++)2+q2
2+q2

3 .

In this section we replace 1&+ by 1
2+& and + by 1

2&& so that & small
means + is near 1�2. For &=0 the equilibrium point L2 is the origin of
coordinates. Expanding the Hamiltonian H at the origin up to terms of
order 4 we obtain H=H2+H4+ } } } where

H2= 1
2 ( p2

1+ p2
2+ p2

3)& p2q1+ p1q2&8q2
1+4q2

2+4q2
3

H4=&32q4
1&12q4

2&12q4
3+96q2

1 q2
2&24q2

2q2
3+96q2

3q2
1 ,

where we have dropped the constant term.
The linearized system is Q4 =RQ=J{H2 where Q=(qT, pT)T and

R=\
0 1 0 1 0 0

+ ,

&1 0 0 0 1 0
0 0 0 0 0 1

16 0 0 0 1 0
0 &8 0 &1 0 0
0 0 &8 0 0 0

(8)

J=\
0 0 0 1 0 0

+ .

0 0 0 0 1 0
0 0 0 0 0 1

&1 0 0 0 0 0
0 &1 0 0 0 0
0 0 &1 0 0 0

The eigenvalues of R are \|1 i, \|2 i, and \* where

|1=- 8 - 2&3, |2=2 - 2, *=- 8 - 2+3.

Since the ratio |1 �|2 is irrational Lyapunov's Center Theorem applies not
only for &=0 but for a small range of &. Even though the existence of these
two families is a consequence of Lyapunov's Center Theorem we shall call
the one associated to |1 the planar Lyapunov family and the one
associated to |2 the generalized Sitnikov family.

Next we must put the quadratic part of the Hamiltonian when &=0 into
the form (2) by a linear symplectic change of variables. A basis for R6 con-
sisting of real and imaginary parts of eigenvectors of R is
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v1=(1, 0, 0, 0, &4 - 2&6, 0)T,

v2=(0, &1
7 (4 - 2+5) |1 , 0, 1

7 (4 - 2&2) |1 , 0, 0)T,

v3=(0, 0, 1, 0, 0, 0)T,

v4=(0, 0, 0, 0, 0, &|2)T,

v5=(1, &1
7 (4 - 2&5) *, 0, 1

7 (4 - 2+2) *, 4 - 2&6, 0)T,

v6=(1, 1
7 (4 - 2&5) *, 0, &1

7 (4 - 2+2) *, 4 - 2&6, 0)T.

Now we make a linear change of variables to bring the Hamiltonian H2

into the form (2) by

(q1 , q2 , q3 , p1 , p2 , p3)T=MZ=M(x1 , x2 , x3 , y1 , y2 , y3)T, (9)

where M is the symplectic matrix

\ v2

- &vT
1 Jv2

,
v4

- &vT
3 Jv4

,
v6

- &vT
5 Jv6

,
v1

- &vT
1 Jv2

,
v3

- &vT
3 Jv4

,
v5

- &vT
5 Jv6

+ .

The linearized equations become Z4 =SZ where

S=\
0 0 0 |1 0 0

+ .

0 0 0 0 |2 0
0 0 &* 0 0 0

&|1 0 0 0 0 0
0 &|2 0 0 0 0
0 0 0 0 0 *

In the new variables

H2=|1 I1+|2I2&*I3 ,

with

I1= 1
2 (x2

1+ y2
1), I2= 1

2 (x2
2+ y2

2), I3=x3 y3 .

Since H3=0 to put the quartic terms into Birkhoff normal form we must
write H4 in the new x, y-variables (Appendix (25)) and then keep only the
terms in H4 which are functions of I1 , I2 , and I3 . This can be done by
changing to action-angle coordinates I1 , %1=tan&1 y1 �x1 , I2 , %1=
tan&1 y2 �x2 and then ignoring all terms that contain an angle %1 , %2 or
contain x3 and y3 in any form other than as a power of x3 y3 . See [6, 10]
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for a discussion of the normalization procedure. With the help of Mathe-
matica we find that the normalized quartic terms are

H4=
1
2

(AI 2
1+2BI1I2+CI 2

2)&\117&72|2

:2|2

I2&
11151
8:2;2 I1+ I3

&
71793&24912|2

32:4 I 2
3 ,

where

A=&
71793+24912|2

16;4 , B=&
117+72|2

;2|2

, C=&
9
2

,

and

:=- (8&5 - 2) *, ;=- (8+5 - 2) |2 .

Now we compute

2=A|2
2&2B|2 |1+C|2

1 r &33.1785{0,

so Arnold's Theorem applies and there are invariant two-dimensional tori
in the center manifold of L2 for +r1�2.

In order to apply Theorem 2.3 to prove the existence of bridges connect-
ing the generalized Sitnikov family with the Lyapunov family of periodic
orbits near L2(&), we need to compute the derivative of the eigenvalues of
the equilibrium point L2(&) with respect to &. To do that we write the
Hamiltonian (1) in power series of & up to order 4 of the form

H= :
4

k=0

H k(q, p) &k+O(&5),

where we have expanded each Hk(q, p) up to order 4 in the variables qi

and pi��see (26). Finally we compute the equations of motion associated to
H up to order 3 in qi and pi , and up to order 4 in &��see (27). With these
expansions we compute the position of the equilibrium point L2(&) of this
system, and we obtain

q1= p2=
24
17

&+
36064
83521

&3+O(&5),

q2=q3= p1= p3=0.
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The eigenvalues of the Hamiltonian system at L2(&) are \|1(&) i,
\|2(&) i, and \*(&) where

|1(&)=|1+
63(8&17 - 2) *

289 - 119
&2+O(&4),

|2(&)=|2 \1&
126
289

&2++O(&4),

*(&)=*&
63(8+17 - 2) |1

289 - 119
&2+O(&4).

This is an expansion in $=&2 and thus

|$1 (0)=
63(8&17 - 2) *

289 - 119
, |$2 (0)=&

126

289
|2 ,

and so

M1=
|1(0) |$2 (0)&|2(0) |$1 (0)

A|2(0)&B|1(0)
r0.021616,

(10)

M2=
|1(0) |$2 (0)&|2(0) |$1 (0)

B|2(0)&C|1(0)
r&0.022384.

Since the M1 and M2 have opposite signs Theorem 2.3 applies and so there
are bridges between the planar Lyapunov family and the generalized
Sitnikov family for + near 1�2.

4. THE HAMILTONIAN AT L4 FOR SMALL +

The location of the primary of mass 1&+ and the equilibrium point L2

of the restricted problem all tend to the origin as + tends to zero. Thus it
is useless to set +=0 in (7) when studying the equilibrium point for small +.
But Hill's lunar problem can be used since it can be considered as a
limit of the restricted problem. To see this we shall make a sequence of
symplectic coordinate changes and scaling.

In what follows we shall drop all constants from the Hamiltonian. In the
restricted problem (7) move one primary to the origin by the change of
coordinates

q1 � q1+1&+, q2 � q2 , q3 � q3 ,

p1 � p1 , p2 � p2+1&+, p3 � p3 ,
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so that the Hamiltonian becomes

H=
1
2

( p2
1+ p2

2+ p2
3)& p2q1+ p1q2&

1&+
r1

&
+
r2

&(1&+) q1 , (11)

where

r2
1=(q1+1)2+q2

2+q2
3 , r2

2=q2
1+q2

2+q2
3 .

By Newton's binomial series

[1+u]&1�2=1& 1
2u+ 3

8u2+ } } }

so

&
1&+

- (q1+1)2+q2
2+q2

3

=&(1&+) {1&q1+q2
1&

1

2
q2

2&
1

2
q2

3+ } } } =
and the Hamiltonian becomes

H=
1
2

( p2
1+ p2

2+ p2
3)& p2q1+ p1q2&

+
r2

&(1&+) {q2
1&

1
2

q2
2&

1
2

q2
3+ } } } = .

(12)

We consider the mass + as a small parameter and distance to the primary
to be small by scaling

q � +1�3q, p � +1�3p,

which is symplectic with multiplier +&2�3 so the Hamiltonian becomes

H=L+O(+1�3), (13)

where L is the Hamiltonian of Hill's lunar problem

L=
1
2

( p2
1+ p2

2+ p2
3)& p2 q1+ p1q2&

1
&q&

&q2
1+

1
2

(q2
2+q3

3). (14)

The Hamiltonian L has an equilibrium point at

(q1 , q2 , q3 , p1 , p2 , p3)=(&3&1�3, 0, 0, 0, &3&1�3, 0),

which is the limit of the equilibrium point L2 as + � 0 in the scaling given
above. We will call this equilibrium point L2 also. First shift the origin to
this equilibrium point by q1 � q1&3&1�3, p2 � p2&3&1�3 and then expand
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the Hamiltonian L about this equilibrium point up to terms of order 4 to
obtain L=L2+L3+L4+ } } } where

L2=
1
2

(&8q2
1+4q2

2+4q2
3+2q2p1&2q1p2+ p2

1+ p2
2+ p2

3),

L3=&
34�3

2
(2q3

1&3q1 q2
2&3q1q2

3),

L4=&
35�3

8
(8q4

1+3q4
2+3q4

3&24q2
1q2

2&24q2
1q2

3+6q2
2q2

3).

The linearized system is Q4 =RQ=J{L2 where Q=(qT, pT)T and

R=\
0 1 0 1 0 0

+ . (15)

&1 0 0 0 1 0
0 0 0 0 0 1
8 0 0 0 1 0
0 &4 0 &1 0 0
0 0 &4 0 0 0

The eigenvalues of R are \|1 i, \|2 i and \*, where

|1=- 2 - 7&1, |2=2, *=- 2 - 7+1.

Since the ratio |1 �|2 is irrational Lyapunov's Center Theorem applies not
only for +=0 but for small positive values of + also. Again we shall call the
one associated to |1 the planar Lyapunov family and the one associated to
|2 the generalized Sitnikov family.

Since in this case L3 {0, the normalization is a bit harder, so instead of
using real coordinates we shall use complex coordinates remembering the
reality conditions. We must put the quadratic part of the Hamiltonian
when +=0 into the complex normal form by a linear symplectic change of
variables. The eigenvectors of R are

v1=v� 2=(&1&- 7, i(3+- 7) - 2 - 7&1, 0,

&2i - 2 - 7&1, 4 - 7+10, 0),

v3=v� 4=(0, 0, i, 0, 0, 2 ),

v5=(1&- 7, (- 7&3) - 2 - 7+1, 0, 2 - 2 - 7+1, 4 - 7&10, 0),

v6=(1&- 7, &(- 7&3) - 2 - 7+1, 0, &2 - 2- 7+1, 4 - 7&10, 0).
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Now we make a complex linear symplectic (with multiplier i) change of
variables to the Hamiltonian H2 in the form (2.2) by

(q1 , q2 , q3 , p1 , p2 , p3)T=MZ=M(z1 , z2 , z3 , z4 , z5 , z6)T, (16)

where M is the symplectic matrix

\ v2

- |vT
1 Jv2 |

,
v4

- |vT
3 Jv4 |

,
v5

- |vT
5 Jv6 |

,
v1

- |vT
1 Jv2 |

,
v3

- |vT
3 Jv4 |

,
iv6

- |vT
5 Jv6 |+ .

The linearized equations become Z4 =SZ where S is the complex diagonal
matrix,

S=\
i|1 0 0 0 0 0

+
0 i|2 0 0 0 0
0 0 &* 0 0 0
0 0 0 &i|1 0 0
0 0 0 0 &i|2 0
0 0 0 0 0 *

In the new variables

L2=i|1I1+i|2I2&*I3 , (17)

with

I1=z1 z4 , I2=z2z5 , I3=z3z6 . (18)

The reality conditions are

z1=z� 4 , z2=z� 5 , z3=iz6 . (19)

By the theory of Lie transforms L=L2+L3+L4+ } } } can be put into
complex normal form L=L2+L3+L4 by finding generating functions W1

and W2 such that

0=L3=L3+[W1 , L2], L4=L4+[W1 , L3]+[W2 , L2].

In the normal form L2=L2, L3=0, and L4 is a function of I1 , I2 , I3

only. Let k=(k1 , k2 , k3 , k4 , k5 , k6), zk=zk1
1 zk2

2 zk3
3 zk4

4 zk5
5 zk6

6 , and dk=
(k1&k4) i|1+(k2&k5) i|2&(k3&k6)*. If

L3=: akzk, W1=: bk zk, with bk=&
ak

dk

,
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then we have 0=L3=L3+[W1 , L2]. Similarly if

L2+[W1 , L3]=: ckzk, W2=: ek zk,

with

ek={&
ck

dk

when dk {0

0 when dk=0

then we have L4=L4+[W1 , L3]+[W2 , L2] and L4 is a function of
I1 , I2 , I3 only.

Since the numeric coefficients kept as rational functions of surds become
unwieldy we use Mathematica with floating point coefficients. We compute

L4=0.590564iI 2
1+0.554764iI 2

2&1.02741iI 2
3

+0.994856iI1I2&1.56157I2I3&1.7266I3 I1 . (20)

The terms L2 and L4 are not yet in the real normal form of (2) and (3),
but we make yet another change of variables

z1=
1

- 2
(x1& y1 i), z4=

1

- 2
(x1+ y1 i),

(21)z2=
1

- 2
(x2& y2 i), z5=

1

- 2
(x2+ y2 i),

z3=x3 , z6=iy3 ,

which is symplectic with multiplier &i so that

L2=L2=|1 I1+|2I2&*I3

L4=0.590564I 2
1+0.554764I 2

2+1.02741I 2
3 (22)

+0.994856I1I2&1.56157I2 I3&1.7266I3I1 .

where now

I1= 1
2 (x2

1+ y2
1), I2= 1

2 (x2
2+ y2

2), I3=x3y3 .

Now we compute

2=A|2
2&2B|2 |1+C|2

1 r0.621151{0,
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so Arnold's Theorem applies and there are invariant two-dimensional tori
in the center manifold of Hill's problem at L2 and also in the center
manifold of the restricted problem at L2 for + near 0.

In order to apply Theorem 2.3 to prove the existence of bridges con-
necting the generalized Sitnikov family with the Lyapunov family for +
small, we need to compute the derivative of the eigenvalues linearized
equation at the equilibrium point L2(+) with respect to $=+1�3.

The first correction term in (13) is

H=L+
$
2

[2q3
1&3q1q2

2&3q1q2
3]+O($2). (23)

With this we compute that the equilibrium point L2 is at

q1=&3&1�3+3&5�3$, q2=0, q3=0,

p1=0, p2=&3&1�3+3&5�3$, p3=0.

We can then compute that

|1($)=- 2 - 7&1+
(35&2 - 7) 32�3 - 2- 7&1

126
$

r2.07159+1.0160$+ } } } ,

|2($)=2+
32�3

2
$r2.0000+1.04004$+ } } } ,

*($)=- 2 - 7+1+
(35+2 - 7) 32�3 - 2 - 7+1

126
$

r2.50829+1.66840$+ } } } .

Thus

|$1 (0)=
(35&2 - 7) 32�3 - 2 - 7&1

126
r1.0160, |$2 (0)=

32�3

2
r1.04004,

and so

M1=
|1(0) |$2 (0)&|2(0) |$1 (0)

A|2(0)&B|1(0)
r0.8133658,

(24)

M2=
|1(0) |$2 (0)&|2(0) |$1 (0)

B|2(0)&C|1(0)
r&0.7937111.
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Since the M1 and M2 have opposite signs Theorem 2.3 applies and so there
are bridges between the planar Lyapunov family and the generalized Sit-
nikov family for + near 0.

5. APPENDIX A: ADDITIONAL FORMULAS

The Hamiltonian H4 after the change of variables (9) is

H4=&
3
2

x4
1+

21|1

2;2 x2
1x2

2+
42
:;

(x2
1x2x3+x2

1x2 y3)&
201+72|1

;2|1

x2
1 y2

2

&
3*|2

2:;
(x2

1 y2x3&x2
1 y2 y3)+

285&72|1

2:2|1

(x2
1x2

3+x2
1 y2

3)

+
72|1&117

:2|1

x2
1x3 y3 &

49
2;4 x4

2&
49|1

2:;3 (x3
2x3+x3

2 y3)

+
1407+504|1

2;4 x2
2 y2

2+
42*|2

:;3|1

(x2
2 y2x3&x2

2 y2 y3)

+
504|1&1701

4:2;2 (x2
2x2

3+x2
2 y2

3)+
1113&504|1

2:2;2 x2
2 x3 y3

+
2814+1008|1

:;3|1

(x2 y2
2x3+x2 y2

2 y3)+
21*|2

:2;2 (x2 y2 x2
3&x2 y2 y2

3)

&
1505&504|1

:3;|1

(x2 x3
3+x2 y3

3)+
1113&504|1

:3;|1

(x2x2
3 y3+x2x3 y2

3)

&
27291+9648|1

16;4 y4
2 &

(201+72|1) *|2

2:;3|1

( y3
2x3& y3

2 y3)

+
4557+2016|1

16:2;2 ( y2
2 x2

3+ y2
2 y2

3)+
6699+2016|1

8:2;2 y2
2x3 y3

+
(285&72|1) *|2

4:3;|1

( y2x3
3& y2 y3

3)

&
(519&216|1) *|2

4:3;|1

( y2x2
3 y3& y2 x3 y2

3)

+
109440&38939|1

64:4|1

(x4
3+ y4

3)+
26899&9648|1

16:4 (x3
3 y3+x3 y3

3)

&
71793&24912|1

32:4 x2
3 y2

3 , (25)

where :=- (8&5 - 2) * and ;=- (8+5 - 2) |1 .
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The terms in the expansion of the Hamiltonian up to order 4 in the qi ,
pi and & up to order 3 are

H0= 1
2 ( p2

1+ p2
2+ p2

3)& p2q1+ p1q2+4(&2q2
1+q2

2+q2
3)

&4(8q4
1+3q4

2+3q4
3)+24(4q2

1q2
2&q2

2q2
3+4q2

3q2
1),

H1=24q1+80q1(2q2
1&3q2

2&3q2
3),

H2=&16+144(&2q2
1+q2

2+q2
3)+2560q2

1(&q2
1+3q2

2+3q2
3)

&960(q2
2+q2

3)2,

H3=224q1+1920q1(2q2
1&3q2

2&3q2
3),

H4=&64+1600(&2q2
1+q2

2+q2
3)

+6720(&8q4
1+24q2

1q2
2&3q4

2+24q2
1q2

3&6q2
2 q2

3&3q4
3). (26)

The expansion of the equations of motion in the qi , pi to order 3 and in
& up to order 3 are

q* 1= p1+q2 ,

q* 2= p2&q1 ,

q* 3= p3 ,

p* 1= p2+16q1+128q3
1&192q1(q2

2+q2
3)+24(&1&20q2

1+10q2
2+10q2

3) &

+64q1(9+160q2
1&240q2

2&240q2
3)&2

+32(&7&360q2
1+180q2

2+180q2
3) &3

+1280q1(5+168q2
1&252q2

2&252q2
3) &4,

p* 2=&p1&8q2+48q2(&4q2
1+q2

2+q2
3)+480q1 q2&

+96q2(&3&160q2
1+40q2

2+40q2
3)&2+11520q1q2&3

+640q2(&5&504q2
1+126q2

2+126q2
3) &4,

p* 3=&8q3+48q3(&4q2
1+q2

2+q2
3)+480q1 q3&

+96q3(&3&160q2
1+40q2

2+40q2
3) &2

+11520q1q3 &3+640q3(&5&504q2
1+126q2

2+126q2
3) &4. (27)
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