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We study discrete skew product systems over an almost periodic system. We
generalize the concepts of hyperbolic structure, shadowing, basic set, etc., in order
to prove the natural generalization of Smale’s Q-stability theorem for skew product
systems. Some of the lemmas are extensions of classical results on almost periodic
differential equations.  © 1996 Academic Press, Inc.

1. INTRODUCTION

The theory of differentiable dynamical systems was motivated by the
geometric theory of autonomous ordinary differential equations. In a
similar manner, our motivation is the study of the geometric theory of
almost periodic ordinary differential equations. Given an almost periodic
system of a differential equation, the Miller-Sell construction [11, 15]
defines a skew product flow with an almost periodic base. Since an almost
periodic flow admits a cross section, the skew product flow admits a cross
section also [ 10]. Thus we are led to the study of a discrete skew product
system. In particular, we study the following system.

Let M be a compact n-dimensional differential manifold and 7 a
compact metric space. Suppose

fTMxT->MxT
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is a homeomorphism, where

Jx 1) =(¥(x, 1), V(1))

and V: T — T is a homeomorphism also. For fixed ¢ let ¥(-, t): M - M be
a diffefomophism and let its partial derivatives vary continuously in 7. Let
V: T— T be almost periodic. Here “almost periodic” is in the sense of Bohr
[16]. Since V is almost periodic for any re T and ke Z*, the orbit of V'*
through ¢ is dense in 7. Such a system is called a smooth skew dynamical
system over the base V: T — T or simply a skew system.

Our main result is a generalization of Smale’s Q-stability theory, which
asserts that an ordinary dynamical system is Q-stable if it satisfies axiom
A and has the no-cycle property. Once the correct definitions are given the
proofs are the same, mutatis mutandis, and therefore several proofs are
skipped or only outlined. More complete proofs can be found in [21].
Several of the lemmas shed new light on the stability of the local structures
of almost periodic systems under perturbations.

Since the system is defined on M x T where T is only a metric space, we
cannot impose a hyperbolicity condition in the 7 direction. Therefore, our
perturbations are only in the M direction and the map on 7T is held fixed.
When thinking about almost periodic differential equations, this is like
allowing the size of the harmonics of the external force to vary, while
requiring the frequencies of the external force to be fixed. One of the main
tools is the stable manifold theorem. The proof of the stable manifold
theorem in [ 7] can be naturally extended here, but we will follow the proof
in [14]. We like the geometry of this proof.

Actually, a further generalization is possible. Almost all that follows can be
generalized to a fiber-preserving map of fiber bundle; however, the incremental
generality does not warrant the additional notational complexity.

2. DEFINITIONS, STABLE MANIFOLDS, AND SHADOWING

In this section, we will extend the definitions of hyperbolic structure,
shadowing orbit, pseudo-orbit, etc. in order to discuss the Stable Manifold
Theorem and the Shadowing Lemma. This version of the Shadowing
Lemma for skew systems is stronger than the version found in [10].

The orbit through (x, 1) is the set O(x, t)={ f*(x, 1), ke Z}. A sequence

{(x,,1,),n=0, £1, £2, ..}
in M x T is called an a-pseudo-orbit if ¢, ., = V(¢,), and

dlLf(x,, 1), (X,i1,thi)]<a for n=0, +1, £2, ...
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A pseudo-orbit {(x,,?,), n=0, +1, +2..} is p-shadowed by an orbit
([ (x, 1), keZ} if t=1, and d[ f*(x, 1), (x4, 1,)] <p for k=0, +1, £2....
The limit set L, nonwandering set 2, and invariant set are defined in the usual
way [17]. A closed invariant set A is isolated if there is a neighborhood U of
A such that 4 = (*__ f"(U), where U is the closure of U.

We make the set of all functions f, g: M xT—> M x T, f(x,t)=(D(x, t),
V(t)), satisfying above assumptions into a metric space by using the C"°
topology on this space, that is, two functions are close if and only if their
partial derivatives with respect to x and their values are close.

Suppose f'is a skew system on M x T and (x, t)e M x T. Since M is a dif-
ferential manifold, M has a tangent space 7. M at x. We call T, M x {t}
with the natural linear structure the tangent space of M x T at (x, t) and
denote it by T, ,M x T. Because f(x, t) has a continuous partial derivative
with respect to x and f(x,7) maps Mx{t} to Mx{V(t)} for fixed ¢,
Df.(x, t) maps T, z\MxT to Ty, ,MxT. For convenience, we will use
Df, instead of Df., to denote the partial derivative of f(x, #) with respect
to x. Because the tangent spaces 7. M and T, M are isomorphic and essen-
tially 7' , M xT and T, ,,M x T are just T .M and T, M, we will denote
the tangent space T, ,,M x T by E for all (x,t) in M xT.

Let 4 be an invariant set of f. 4 is a hyperbolic invariant set or f has a
hyperbolic structure on A if there exist constants C, u, 4, 0<u <1< 4, and
a continuous map P: A — L(E, E), such that P(x, t) is a linear projection
operator that satisfies the following:

(1) P(f(x, 1)) Df(x, t) = Df(x, t) P(x, 1),
(2) | Df¥(x, t) P(x, t)| < Cu*, where (x, t)e A, k>0,
() IDf (x, O)[I— P(x, 1)]]| = Ci¥, where (x, 1) € 4, k > 0.

Let

EY

(x, 1) P(X, t)(E)a E?

G =[1—P(x, 1)](E).

We call £, and E{, , the stable and unstable spaces at (x, t) respectively.
Thus, for any (x, t) € 4, the tangent space T, ,, M x T can be split into the
dlrect sum of E{_, and E{ . Because P(x,?) is continuous, E{, ,, and

E(. depend on (x, ) continuously. (1) implies Df(, ,(E{, ,)=E}. , and
Df .. o(E{(. ) =EY.. .- We will assume that the constant C in the definition
of the hyperbolic structure is 1 by using the adapted norm [10]. In the
following, when studying the map f(y, t) near (x, ¢) for fixed ¢, we will use
the splitting E{, , x E{_ , of T, ,M xT. We w111 identify the ball of radius
r and center (x, 1),

B(x,z( ) B(;\ t)( )XB:/x,t)(r)’
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in the tangent space 7', ,, M x T with a neighborhood of (x, ¢) in M x {¢ }

where B{ , (r) and B{ , (r) are the balls of radius r and center (x, t) in

E{. ,and E{_, respectively. In the following, all balls will be to be closed.
The set

fo P {(yn t) EMX {l}a nlin; d[fn(xn t)afn(ya t)] :0}

is called the stable manifold at (x, t). Since the proof of the local stable
manifold theorems follows one of the standard proofs [ 14], we shall only
sketch the proof here. Also see [21].

THEOREM 2.1 (Local Stable Manifold Theorem). Assume f: M x T —
MxT is a skew system and A is a closed hyperbolic invariant set with
constants u, A, and C. Then there is an r>0 such that for any (x,t) in A
there is a C' embedded disk

Wi o) ={(y.t)eB . o(r):f"(y,t) €Bru, (1) forn=0,1,2..}

which is tangent to E7, , at (x,t). In fact, Wi _ ,(r) is a graph of a C!
Sfunction

Px, 0 B(\ l)( )_>B'(4x,l)(r)

with ¢ (0)=0 and Do, ,(0)=0, ie.,

sz z)( r)= {(u, Px, r)(“))f MEB?xW z)(”)}-

Moreover there is an o, 0 <o <1, such that

fo I) ﬂ f (B/"(\ 1) ))

:{ V1) EB(x, ,)(V)Zf (y, 1) er*'(x, z)(") and
Lf"(p, ) =f"(x, )| <o |x —y| forn=0,1,2..}.

Also, W{_ ,(r) continuously depends on (x, t). Furthermore, ¢, ,(z) and
Do, ,(z) continuously depend on (x, t).

Even though the theorem looks like the Stable Manifold Theorem in
regular dynamical systems and the proof is similar, the geometric picture is
different. Here f has a partial derivative with respect to x only and we talk
about the hyperbolic structure only in the x direction: so we can expect a
local stable manifold around (x, 7) in M x {t}.

Proof. For each point (x, ) in 4, we can identify the ball B, ,(r) of
radius » > 0 in the tangent space T, ,M x T with a neighborhood of (x, ?)
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in M x{t}. Because M is compact, we can choose r>0 small enough so
that we can identify the ball B ,(r) of radius >0 in the tangent space
T . ,M x T with a neighborhood of (x, 7) in M x {¢} for all (x, 7) in M x T..
Thus, the map from a neighborhood of (x, ¢) in M x {¢} to a neighborhood
of f(x, t) in M x { V(¢)} induces a C' map f: B, ,(r) = B ,(Cor), where
Cy> A is a constant. C, can be taken uniformly for all (x, ¢) in A since A
is compact. We will choose r small enough so that for all (x, t) e 4 we can
identify B, ,(Cor) in T\, ,,M x T with a neighborhood of (x, 7) in M x {t}.
Since fis hyperbolic on A, there are ¢ and A, 0 <u <1< 4, such that

HDf(x, 1) | BEX, t)(r)” <u and m(Dﬁx, 1) | B?x, t)(r)) > ;“

for all (x, t) in A, where m(A4) is the minimum norm of A,

m(A) = inf 121

u##0 HuH ’

Take &> 0 small enough so that u+2¢<1 and A —6¢> 1. Since Df maps
E{. ., and E{ , onto Ej , and EY_ , respectively,

(A%, 1) 0
Df“"’)_< 0 A"(x, t)>'

Given such an ¢>0, there is an r>0 small enough so that for (x, t) e A
and (y9 Z‘) eB(x,l)(r)a

(A0 A
Df(y’t)_<AuS(y, l) A"”(y, l)>

satisfies the following: [[A%(y, 1) <u, [14™(y, )| <&, m(A™(y,t))> 4,
|4y, ) <&, [A%(p, 1) =A(x, )| <e, and [A™(p, 1) — A" (x, 1)|| <e.
Here we used the fact that Df is continuous and A is compact.

Let

W;v t)(r) = {(ys l) eB(x, l)(r) :fn(ys t) EBf”(x, t)(r) for n =0> 17 2}9

where we think of the local stable manifold as being represented in local
coordinates on T, ,M x T. We want to prove that it is a graph of a C'
function

@2 Bl (1) = B{, (1)

satisfying ¢(0) =0 and D¢(0) = 0. The stable cone C7, , and unstable cone
C{.., at (x, t) are defined as follows:
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A(«x,l) = {(U?,x,t)’ Ul(lx,l)) eEfx, 1) X El(lx,l) : |U?x,1)| < |Uf,r,l)|}
= {U(x, 1) € T(x,l)MX T: |D?x,l)| < |U?x,l)|}a

Clon=1ve €T oM xT:|v(, | =vi, I}

We are going to divide the proof into four steps. First we will prove that
the local stable manifold at (x, 7) is a graph of some function

@: Bl (1) = B ,(r).

Second we are going to prove that ¢ is 1-Lipschitz. Then we will prove that
@ is C', (0)=0, and Dp(0)=0. And at last we will prove that

Wi o= () £ B}

={(» )€ B (r):f"(», 1) € Bui, y(r)  and
/" ) =f"(x, ] <o |[y—x]  for n=0,1,2..}

and the local stable manifold W7, ,(r) continuously depends on (x, 7).

The following lemmas outline the proof of the Stable Manifold Theorem,
which follows the four steps. However, because the similarity of the proofs
of these lemmas to the proofs of those lemmas in regular dynamical
systems, the proofs to these lemmas will not be provided. Readers can
compare these lemmas with the corresponding lemmas in Robinson [14]
or see [21].

Lemma 2.1. Suppose f(x,t)=(¥(x, t), V(1)) is a continuous map from
UxT to ExT where U is an open set in E, and f has a continuous partial
derivative with respect to the first variable. Assume (x,,t)e UxT and let
L= Df(x,, t) be an invertible linear map. We denote f(x,,t) by (yy, V(1))
Let B be any number with 0 < <1. Let r> 0 satisfy

(1) By, (1) is contained in Ux{t} and
(2) IL—=Df(x, )l <m(L)(1 = pB) for all (x,1)€ B ., ,(r).

Then f(B(., 1(1)) 2 L(B . o(r)) 2B, vir(m(L) pr). Moreover, every
point (y, V(1)) in L(B,, ,(pr)) has exactly one preimage (x, t)e B ., (1),
either f(x, t)=(y, V(1)) or ¥(x,t)=y. So, the inverse function f " exists
with domain B, yy(m(L) fr) and range B ., ,(r) and has a continuous
partial derivative with respect to the first variable and is from

DEFINITION.  Assume ¢ is a C' function from B{_,(r) into B{_,(r). Its
graph is called an unstable disk at (x,t) if Lip(c)<1. Similarly we can
define a stable disk.
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LeEmMA 2.2. If Do(x, t) is an unstable disk at (x, t), then

(1) Di(f(x, t)) f (Do(x, 1)) N By ,(r) is an unstable disk at f(x,t)
and diam{z [ f~'(D\(f(x,1))) " Do(x, 1)1} <2r(A—¢) "'

2. D, (f"(x, l))=f(D,1,1(f”’1 (x,1))) N By (Y (1) is an unstable disk
at f"(x, t) and diam{r{ [ (Vi_of 7 (D;(f/(x, 1)1} <2r(A—g)~"

Lemma 2.3.  The local stable manifold
Wi ()= {0 0" )€ By o) forall n>0}
is the graph of some function
@2 By, (r) = B{ ,(r)
satisfying ¢(0) =0.

LEMMA 24. Assume (y, 1), (z,1)€ B, (r) and (z,t)e{(y, )} + Cl ).
Then

(1) 7y LSz ) —=f(y, O] < (u+e) =g, (z—p)I
(2) 7fe oSz 0) =f(y, )] = (A—e) |7, ,(z—p)
(3) flzel{f(y, 0} +Cj )

Similarly, if

SN 0), [ Nz 1) € By (1) and [ Nz, ) e {7 (st )b+ Clamiie s
then

17, o LS (2, ) = [, O] Z (A—e)" |7l (2= )
and f"(z, t) e { f"(y, )} + Cluc 1)

Lemma 2.5, The local stable manifold, W _,(r), is a graph of an
1-Lipschitz function

@: B, ,(r) = B, ,(r).
Define

Cly o(m)=(Df"(p, ) {3 )+ Chu )
Clyn(n ) =CP, (m) 0 {(y, ) + (i, ) " Bl (1)}
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LemMmA 2.6. If (y,t)e B, (1), then

DA e D 0+ Ch )
s u 5 lLt+8 u
= (0% 0 € By I <0 o

and C{, (n)=C{, ,(n—1) for n=1, 2,3.... Furthermore, (\,_, C{, ,(n) is
a graph of some linear map from E{, , to E{_ .

Suppose the local stable manifold is the graph of

@2 Bl (1) = B{ (1)

We anticipate that, this linear map is the derivative of ¢. But to prove this,
we need the following lemma.

Lemma 2.7, Assume (y,t)e W{, ,(r) and n>0. Then there exists an
n(n) >0 such that the following are true:

(1) If lz—yl<n and f"(z,t)e{f"(y, 1)+ Cu n}> then (z, )€
Czy ,)( —1,n) and

2. If(z,0)e W, (r) and |z —y|<n, then (z,1)e C{, ,(n—1,7).

LEMMA 2.8.  The local stable manifold is C' and is tangent to E7_, at
(x, 1).

LEMMA 2.9.

WS

(x, 1)

Il
I—8
~

T By, (1))

0

= {(ya [) EB(X’ t)(r):fn(ya Z)GB/‘n(IJ)(r) and
|f"(y, t) —f"(x, )| <o |y—x| forn=0,1,2...}

n

and the local stable manifold W, (r) continuously depends on (X, 1).

Lemma 2.10. o, ,(u) and Do, ,(u) continuously depend on (x, t).

This finishes the outline of the proof of the Local Stable Manifold
Theorem. |

The Local Unstable Manifold Theorem can be stated and proved in a
similar way. It will not be repeated here.
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LemmA 2.11 (Shadowing Lemma). Let A be a closed hyperbolic
invariant set of f: M xT— M x T. Then there are a neighborhood U of A
and a neighborhood W of f having the following properties:

(1) For any B>0 there is an a>0 such that every a-pseudo-orbit
{(x;,t;,)} of g has a B-shadowing orbit {g'(x}, to)}, where {(x,, t,)} = U and
gew.

(2) There is a f,>0 such that if 0<f<p,, then the [-shadowing
orbit {g'(x,', ty)} is uniquely determined by the a-pseudo-orbit {(x;, 1,)}.

(3) If A is an isolated invariant set of f, then for any ge W, g has a
closed isolated hyperbolic invariant set A in U and the shadowing orbit

{g'(xh, to)} is in A.

Proof.  First we can continuously extend the splitting E7, , x E{, , from
A to a neighborhood G of A. Suppose U is a neighborhood of A such that
Uc G, where U is the closure of U. For >0, we choose r, ¢>0 small
enough such that r<f, A—6e>1, u+5<1, and B, ,(r)=G for any
(x, 1) € U. Notice that for fixed (x, t) e A, Df(x, t) is of the form

(70" awtsn) g

We can choose >0 small enough so that for all (y, 1) € B, ,(r),

A¥(y, 1) A™(y, l))
D 91 :< us uu (2)
S D= gy ) Ay, 1)
satisfying
145, 0l <p, m(A4™(p, ) >
4™y, 1)l <z, 4ol <e ()
[A*(p, 1) — A%(x, 1)|| <e, [A*(py, 1) — A" (x, 1)| <e.

Because Df(x, t) continuously depends on (x, ) and we have extended
the splitting continuously to G > U, the above property still holds for
(x, t)e U if U is small enough. Notice that U is compact, we can choose an
r> 0 small enough so that for all (x, #)e U and all (y, 1) € B, ,(r), Df(y, 1)
is of the form (2) with (3) holding.

Because we are using C"° topology, if g is close to f, then Dg is close
to Df. So we can choose a neighborhood W of f such that for all (x, t) e U,
ge W and for all (y,t)eB ,(r), Dg(y,t) is of the form (2) with (3)
holding.
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Because U is compact, we can choose W and « > 0 small enough such that
g(B..(r)) = B,(Cyr), whenever d(g(x, 1), p) <a, (x, 1) e U, pe M x { (1)},
and ge W, where C, is the constant in the proof of the Stable Manifold
Theorem. We will also choose r>0 small enough so that we can identify
B, ,(Cyr) as a neighborhood of (x, ¢) in M x {t}. Notice that 1 —6e>1
and u +e< 1. For any (x, t) e U, we can choose a > 0 small enough so that
it o: B ,((A=06e)r)—> B, ((u+e)r) satisfies |[Do| <(u+e)(d—e) -1
then B, ,(r) ngraph(o) is an unstable disk at (y, #) whenever d(x, y) <«
Since P(x, t) in the definition of hyperbolic set continuously depends on
(x, t), this property can be extended to a neighborhood of (x, ¢). That is,
for any (x, t) € U, there is a neighborhood N of (x, ) and an « > 0 such that
if o: B, . ((A—6¢)r r) = Bi, (e +e)r) satisfies || Do| < (u+¢e)(A—e) ™1,
then B ,(r) ngraph(c) is an unstable disk at (z, t), whenever d(y, z) <«
and (y,7)eN. Since U is compact, there is an o>0 such that if
o B{, ,((A—6¢)r )—>BE\ o((u+e)r) satisfies | Do < (u +e)(A—e)~", then
B, ,(r) ngraph(o) is an unstable disk at (y, t), whenever d(x, y) <a and
x € U. In the same way, for 6 >0 with (1 +0J) <A1 —¢, we can choose a>0
small enough so that if (x, #)e U and d(x, y) <a, then diam([I— P(y, t)]
(graph(y))) <(1+0)2r, where y: B{_,(r)— B{, ,(r) is an unstable disk at
(x, t). We choose «, 6, and W small enough so all conditions above are
satisfied. Now we need the following lemmas.

LEMMA 2.12.  Suppose {(x;,t;)} is an a-pseudo-orbit in U of g and
Dy(xq, ty) is an unstable disk of ge W at (x,, ty). Then the following are
true:

(1) Dy(xy,t;)=8g(Dy(xg, to)) "B, ,(r) is an unstable disk at (x,, t,)
and diam{[IfP(xo, [0)](g71(D1(x1a 1)) N Dy(xo, to))} <2r(1 +5)(/‘L*8)71

(2) D, x,,t,)=gD, (x, \,t, 1) "B, ;) \r)is an unstable disk at
(x,, t,) and diam{[ I — P(xq, t0)1((Vi_o & (Di(x; 1,))} <2r(140)" (A—g) "
forn=0,1,2...

Lemma 213, N, o8& "(B(x,. () is a stable disk at (x,,t,) and
0 g "(B(x,..,)(r)) is an unstable disk at (x, ).

n= —aoo

The proofs of these two lemmas are similar to the proofs of Lemma 2.2
and 2.5 in the proof of Stable Manifold Theorem, so they will be omitted
here.

Now let’s continue the proof of the Shadowing Lemma. By Lemma 2.13,

w__ . 8B, )(r)) contains one and only one point because the stable
disk and unstable disk intersect at one and only one point. We denote
it by (xp. fo). Since (xp, 1) €8 "(Bivy, (1), &' (o 10)) € By, (1) for
n=0, +1, +2... Notice that r <f. Hence {g"(x{,y), n=0, £1, +2..} is
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an orbit that f-shadows the a-pseudo-orbit {(x,,?,), n=0, +1, +2..}.
This finishes the proof of part (1).

To prove part (2), we choose f§, as r. It is obvious that for any p,
0<p<p,, the orbit which f-shadows the a-pseudo-orbit is uniquely deter-
mined by the a-pseudo-orbit because the stable and the unstable disks
intersect at one and only one point.

Now we prove part (3). Since 4 is an isolated invariant set of f, there is
an isolated neighborhood G’ of A such that . _ f"(G') = A. Without
loss of generality, we assume that the above U and r are small enough that
B .(r)= G for all (x,t)e U. Since (), _, f"(G") = A, there is an integer
m such that "\”"_ _ f"(G") < U. Therefore if Wis small, \7__, g"(G')cU
for any ge W. If we denote (\7_ _ g"(G')=4, then Ac U and G’ is an
isolated neighborhood of 4. Because 4 is the largest invariant set in G’ and
the orbit which f-shadows the a-pseudo-orbit is in G, it is in 4. If W is
small, g has a hyperbolic structure on 4 for all ge W. This finishes the
proof of the Shadowing Lemma. ||

This is a stronger version of the Shadowing Lemma than the one found
in [10], but some say the one given above was known to Lamont
Cranston and Margo Lane.

COROLLARY 2.1. Suppose A is a closed hyperbolic invariant set of f.
There are a neighborhood U of A, a neighborhood W of f, and an o> 0 such
that if ge W and {g"(x, )}, {g"(y, 1)} = U are a-shadowed by each other,
then x =y.

3. LOCAL STABILITY OF ALMOST PERIODIC SETS

Suppose 4 is a closed invariant set of f. 4 is called a base-like set if the
projection map, p: A — T, p(x, t) =t, is a homeomorphism. A point (x, ) is
called a base-like point if the closure of its orbit is a base-like set. A point
(x, t) is called a periodic-like point if (x,t) is a base-like point of f* for
some k, that is, if the closure of the orbit of /* through (x, ) is a base-like
set. The smallest such &> 0 is called the period of the periodic-like point.
The closure of the orbit through a periodic-like point is called a periodic-
like set. Periodic-like sets will play the same role as periodic points did in
the classical theory.

Suppose f and g: M x T — M x T are two skew dynamical systems. We
say the two systems are topologically skew-conjugate if there is a homeo-
morphism

H(x,t): MxT—->MxT, H(x, t)=(h(x, 1), 1),
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such that Hof=go H. In this case we also say H skew-conjugates f and g.
Under skew-conjugacy, the base-like point is invariant. In the following, we
will call skew-conjugacy just conjugacy. We have the following obvious
result.

LemMA 3.1.  Suppose f and g are toplogically conjugate and H conjugates
fand g. If (x,t) is a base-like ( periodic-like) point of f, then H(x,t) is a
base-like ( periodic-like) point of g.

If (x, 7) is a base-like point of f, then the closure of the orbit of f/ through
(x, 1), denoted by A, is homeomorphic to 7. The restriction of fto 4 is in
fact topologically conjugate to V on T, where V' is the map in the definition
of f. Furthermore the projection map p conjugates /| 4 and V.

In skew dynamical systems, the smallest closed invariant sets seem to be
the base-like sets since { V*(z), ke Z} is dense in 7. A natural question is
whether a hyperbolic base-like set is stable. The following two theorems
answer the question positively.

THEOREM 3.1.  Suppose A is a hyperbolic base-like set of f. Then there are
a neighborhood U of A and a neighborhood W of f such that for every ge W,
there is one and only one hyperbolic base-like set S of g in U and f| A is
topologically conjugate to g | S.

Proof. Since A4 is a closed hyperbolic invariant set, there is an r>0
such that

fﬁn(Bf"(x, z)(”))

0

I~ 8

n

is the local stable manifold of f at (x, ¢) for any (x, t)e A by the Stable
Manifold Theorem. Similarly,

0

ﬂ fﬁn(Bf"(x,z)("))

is the local unstable manifold of f at (x, ¢) for any (x, 7) € A. Therefore,

o0

(S 7"(Byu, ()

n=—o

contains one and only one point. Here B/, ,(r) is the ball neighborhood
of f"(x, t) with radius r in the tangent space T, ,, M x T, which we iden-
tify with a neighborhood of f”(x, 7) in M x {V"(¢)}, and the point is the
intersection of the local stable and unstable manifolds of f at (x, ¢) , which
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is (x, ) itself. Let D =), syes Br.n(r). D is a closed neighborhood of 4.
For any fixed ¢,

o]

{ ﬁ_ \fn(D)} A = B B (o) = (1)),

n=—o

where (x, ¢) is the only point in 4 whose second coordinate is z. Thus

* L f"D)=4: so D is an isolated neighborhood of A. By the
Shadowing Lemma, there are a neighborhood W of f and a neighborhood
U of A4 such that for any g e W, g has a closed hyperbolic invariant .S con-
tained in U. Suppose f, is the positive number in the Shadowing Lemma.
That is for any 0 < f < f,, there is an o >0 such that any a-pseudo-orbit
of g in U can be uniquely f shadowed by an orbit in S, where ge W.

Without loss of generality, we suppose W is contained in the a-neighbor-
hood of f. Then

{g"(y.1). ke Z}

is an a-pseudo-orbit of fin U for all (y, ¢) in S. By the Shadowing Lemma,
there is one and only one point (x,7) in A4 such that {f*(x, 1), keZ}
B-shadows {g*(y, 1), ke Z}. On the other hand, for any (x, 7) € 4, there is
one and only one point (y,7)eS such that {g"(y,1),keZ} p-shadows
{f¥(x,1), ke Z}. For any t € T, there is one and only one point (x, #) in 4
whose second coordinate is . Now for this 7, there is one and only one
point (y, t) in S with the second coordinate z. If there are two points ( y, )
and (z, ¢) in S for this 7, then both {g*(y, 1), ke Z} and {g"(z, 1), ke Z}
are f-shadowed by { f*(x, 1), k e Z}. This implies that {g*(y, t), ke Z} and
{g"(z, 1), keZ} B-shadow {f*(x,t), ke Z}, contradicting the uniqueness
of shadowing. Thus the map

H: S— A, H(y, t)=(x,1)

is one-to-one and onto, and it is continuous by the Shadowing Lemma.
Therefore, H is a homeomorphism from S to A4. Notice that for any
(y,t)eS, g(y,t) and fo H(y, t) have the same second coordinates: so

Hog(y, 1)=/H(y,1),
and Hog=f-H. Hence f| A and g | S are topologically conjugate. ||

The theorem above guarantees that under small perturbations the hyper-
bolic base-like set is stable. In fact, under small perturbations the local
structure near a hyperbolic base-like set is stable. The following is a
Hartman—Grobman type theorem.
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THEOREM 3.2.  Suppose
f[iR"XT— R"xT,f(x,1)=(¥(x,1), V(1))

is a homeomorphism with a continuous partial derivative with respect to Xx,
and let f(0,1)=(0, V(t)), and P={0} xT be a hyperbolic base-like set.
Then there are neighborhoods U and D of P such that f | U and (Df, V)| D
are topologically conjugate.

We omit the proof since the proof in Palis and Melo [13] carries over
with little change.

Suppose (x, ) is a point in M x T. For fixed ¢, f(x,¢) is a diffeo-
morphism from M x {t} onto M x {V(¢)}. In particular, Df(x, t) maps
T, nMxT onto Ty, ,2MxT and both T, M xT and Ty, ,, M xT are
isomorphic to R”. We have commented already that there is an r >0 such
that we can identify a neighborhood of any point (y, 7) in M x {t} with
B, ,(r), a ball with radius r and center (y, ?) in the tangent space of M x T
at (y, t); so for fixed ¢, locally we can think that both fand Df map a small
neighborhood in B, ,(r) into By, ,(r). If A4 is a hyperbolic base-like set
of f, then 4 has a closed neighborhood (J, ;4 B(. »(r) in M x T. Thus
both fand Df map one neighborhood of 4 in (J, ;<4 B ,(r) to another
neighborhood of 4 in |J, ,jc4 B »(r)- Because we are going to consider
only the local property, we can think both f'and Df map T ,, M xT to
Ty nMxT for fixed ¢, or as maps from U yes T, nMxT to
U yea T nM x T. However, the maps fand Dfon . yyeu T(x. nMxT
behave exactly like the f'and Df on (J e R x {(0,7)} in the preceding
theorem, so we have the following corollary.

COROLLARY 3.1.  Suppose A is a hyperbolic base-like set of f. Then there
are two neighborhoods U and D of A such that the dynamical systems f | U
and (df, V) | D are topologically conjugate.

Combining this corollary with the stability theorem for base-like set, we
have the following corollary.

COROLLARY 3.2. Suppose A is a hyperbolic base-like set of f. Then there
are a neighborhood U of A and a neighborhood W of f such that for any
ge W, g has a hyperbolic base-like set S in U. Furthermore there is a neigh-
borhood U' of S such that (f, U) and (g, U") are topologically conjugate.

4. Q-STABILITY OF SKEW SYSTEMS

We have shown that the local structure near a base-like set is stable.
Now we are going to study the global stability of the nonwandering set Q.
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THEOREM 4.1.  Suppose A is a closed isolated hyperbolic invariant set of
fand U is an isolated neighborhood of A. Then there is a neighborhood W
of f such that for every ge W, g has a closed isolated hyperbolic invariant set
Sin Uand f| A is topologically conjugate to g | S.

Proof. The proof is straightforward. The existence of W and S is a
direct consequence of the Shadowing Lemma. Using the Shadowing
Lemma, we construct the homeomorphism H between 4 and S so that,
H(x,t)=(y,t), where (x,t)e A and (y,t)eS. Observe that two corre-
sponding points have the same second coordinate. Using this fact and the
uniqueness of shadowing, we can prove that H conjugates f| 4 and

glS 1

THEOREM 4.2. An Anosov skew system is structurally stable.

Meyer [ 8] has a complete proof, Frank’s proof [4] can be generalized
to this case, and the above theorem can also be used to give a proof.

LemmaA 4.1 (Lambda Lemma). Suppose that A and S are two hyperbolic
periodic base-like sets and let (x,t)€ A, (y, t)€S. Assume the dimension of
the local unstable manifold of (x, t) is larger than zero and less than the
dimension of the manifold M. If the stable and unstable manifolds W7, , and
Wi, ., have a transverse intersection, then for any &> 0, there is an N and

a cell D in W, , which is e— C' close to W}, ,(r) if n=N.

(y, 1

Again the proof of this lemma will be omitted-see [21].

Assume A and S are two hyperbolic periodic-like sets. We say that 4
and S are equivalent, denoted 4 ~ S, if there are (x,7)e A and (y,t)eS
such that W7 _, and W{, , have a transverse intersection and W, , and
W7, ., have a transverse intersection. The set of all hyperbolic periodic-like
points is denoted by @. Suppose (x, t), (y, 7)€ ©. Then there are periodic-
like sets 4 and S such that (x,f)ed and (y,7)eS, and we say
(x,t)~(y,7)if A~ S.

The following lemma gives a very nice picture of how equivalent hyper-
bolic periodic-like sets are related.

LEMMA 4.2. Suppose A and S are two hyperbolic base-like sets with
A~S. Then for any teT, W7, , and W,  have a transverse intersection
and W{_, and W7, . have a transverse intersection whenever (x,t)e A
and (y, t) e S. Similarly if A and S are two hyperbolic periodic-like sets and
A~ S, then for any (x, t) € A, there is a point (y, t) €S such that W7, and
W, ., have a transverse intersection and W, and W7, . have a transverse

intersection.

. 1)
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Proof. Since A and S are base-like sets, there are continuous functions
a(t), s(t): T— M such that 4= {(a(z),t),1e T} and S={(s(¢),1),teT}.
To prove W{, , and W, , have a transverse intersection for all (x, 7)€ 4
and (y,1)e S, we need only to prove W3, , and W, . have a trans-
verse intersection for all e T. Because A ~ S, there is a te T such that
Wiaeo. o) and Wi ) have a transverse intersection (z, t), where Wi, .
and W{, ., are stable and unstable manifolds at (a(7),7)e4 and
(s(7), ) € S respectively. Suppose W7, ,(r) is the local stable manifold at
(x, t). Then

Wi o) ={(u, o (), ue Bi, ,(r)}

and ¢, ,(u) and Do, ,(u) continuously depend on (x, ¢) by the Local
Stable Manifold Theorem. Let W7, ,, be the stable manifold at (x, 7). Then

(x n= U fﬁ” Ws"(x 1)( ))

and

(a(r) 1) U fﬁn S”(a(r) 1)( ))

Because W{,,, ., and W{,, ., have a transverse intersection (z, 7), there is
a positive integer N such that

N

(Z> T)E U f_n( W} "(a(t), T) ( )):f_N( W;N(a(f)» T)(r))'

n=0

Here we also require that (z, 7) belongs to the interior of f ~( WiN aey, o(1))-
By choosing a larger N if necessary, we also require that (z, t) belongs
to the interior of the set /™( W5 N, N)(r)) Since ¢, ,(u) and Do, ,(u)
continuously depend on (x, ) and f™(x, t) continuously depends (x, ?),
Wine o (r) and its tangent spaces contlnuously depend on (x, t). Notice
that [ 1s a diffeomorphism from M x {V"(¢)} onto M x {t} and /"
and Df ~" continuously depend on (x, ¢). f ~™( Win.. n(r)) and its tangent
spaces continuously depend on (x, ¢). In a similar manner, /( W5y, n(r)
and its tangent spaces continuously depend on (y, t). Because «(¢) and
s(t) are continuous, there is a neighborhood U of 7 in T such that
SN W5 aey. (1)) and fY(W 5y, (1) have a transverse intersection for
all re U. Thus Wi, , and W(S(,) ., have a transverse intersection for all
te U. Because any orblt of Vis dense in 7,

{(V'(U),n=0, £1, +2, .}
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is a cover of 7. On the other hand, for any fixed ¢, f(x,?) is a dif-
feomorphism from M x {t} onto M x{V(t)}, thus if W{_, and W{,
have a transverse intersection, W7} and W5, . also have a transverse
intersection. Similarly if W{_, and WY, , have a transverse intersection,
then W7 - and Wi, , " have a transverse intersection too, and by
repeatmg thls procedure we can see that if W{_, and W{  have a trans-
verse intersection, W7, , and W7, have a transverse intersection for
any integer n. Notice that for any re U, W{,, , and W{, ., have a
transverse intersection and

(x, 1)

{(V(U),n=0, £1, 2, .}

is a cover of T. W7, , and W{ , , have a transverse intersection for all
teT. So Wy and W{ , have a transverse intersection whenever
(x,1)eA and ( )€ S. In the same way we can prove W{ _, and W7,
have a transverse intersection whenever (x, )€ 4 and (y, t) € S

If A and S are two periodic-like sets with period m and n respectively,
then A contains m branches 4., ..., 4,, and S contains n branches S, ..., S,,.
Each of the branches is a base-like set of f™. If 4 ~S, then there are
(x,7)ed; and (y,7)€S; such that Wi _, and WY, _ have a transverse
intersection and W:’\ o and Wi _ have a transverse intersection. Using the
lemma above, we know that for any teT, Wi, and W,  have a trans-
verse intersection and W{_ , and W7, , have a transverse intersection
where (z, ¢) is the only one point in A4, with the second coordinate ¢ and
(w, t) is the only one point in §; with the second coordinate ¢. Suppose
(x,2)e A. Then (x,t)e A, for some 1 </<m, and there is a k, 0<k<n
such that f*(x, t) € A,. Therefore there is a point (y, 7)e S, V*(¢) =1, such
that Wy, and W{,  have a transverse intersection and W7y, and
Wi, ., have a transverse intersection. Thus W7 _, and Wj_, ., have a
transverse intersection and W, ,, and W7y, ., have a transverse intersec-
tion. However, f *(y, 1) e S. Thls ﬁmshes the proof of the lemma. ||

(x, 1)

THEOREM 4.3. The relation ~ is an equivalence relation on 6.

Proof. Suppose (x,,t,), (x,5,1), (x3,23)€@ and (x,t;)~(x,, 1),
(x5, t;) ~ (x5, t3). Then there are periodic-like sets A4, S, and L such that
(x1,1,)€A, (x,,1,)€S and (x5, t;)e L. To prove the relation ~ is an
equivalence relation on ®, we only need to prove A ~ L under the assump-
tion that 4 ~ S and S~ C. Because 4, S, and L is a periodic-like set, there
is K such that each branch of 4, S and L are base-like sets of /. Without
loss of generality, we suppose that 4, S, and L are all base-like sets of f.

Assume (x, 7)€ 4, (y,7)eS and (z, 7)€ L. By the lemma above, W{, ,
and W{, . have a transverse intersection (v, 7) and W,  and W{_  have

(rz (¥, 7) (z,7)
a transverse intersection (w, 7). Suppose r and ¢ are two small positive
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numbers. Using the Lambda Lemma, there is an N such that if n > N, there
exists a cell neighborhood D,, of (v, 7) in W’(‘x o such that f"(D,,) is &/3 — C!
close to W3, ,(r), where Wn(} o(r) is the local stable manifold at
f*(y, 7). In partlcular fY(Dy) is &/3—C" close to Wiy, . (r), where

Wix(,.+(r) is the local stable manifold at f N(y, 7). We know that

o0
Wirie.o=U S Wi, op(1)
n=>0

and it is not difficult to see that f~(Dy) < Win. «)- Therefore, there is a
positive integer m such that fV(D,) is contained in the interior of
o S (W ias N(x. oy (1)). However,

m

U f"( W;{*"(f’v(x, z))(")) = fm( W;{‘*m(f”'(x, r))(’))-

n=0

Since 4, S, and L are base-like sets, there are continuous functions a(?),
s(t) and /(¢) such that

A={(a(t),t),1eT}, S={(S(1),t),teT},and L= {(l(1), 1), te T}.
Notice that

S ) =@V (VN (), V().

In the proof of last lemma, we proved that for fixed m, f™(Wj-u. (1))
and its tangent spaces continuously depend on (x', #). Using this conclu-
sion at (a(V™(z)), VN(r)), we see that a(t) is continuous. There is a
neighborhood U, of V¥(z) in T such that if re U,, f™( W o niatn, (1)) 18
(¢/3)—C' close to f™(WH Fom N (). Likewise, s(z) is continuous and
@ . n(u) and Do ,(u) contmuously depend on (X', t), where

{(@ e (), u), ue B, \(r)} =W (r).

There is a neighborhood U, of V™(7) in T such that if te U,, Wi, o(r)
is (¢/3) — C' close to

u
W orvion. yieen(r)-

We denote U; n U, by U. Therefore, there is a cell in /™ (W5 y,.,)(7))
which is ¢ — C' close to W, ,(r) for all € U.

On another hand, W, ., and W{_ , have a transverse intersection (w, 7).
Using the Lambda Lemma again, there is an N’ such that if n> N ', there
is a cell neighborhood D_, of (w,7) in W7, ) such that f~"(D_,) is

n
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C'e —close to Win(y. (), where Wi, (r) is the local stable manifold
at f ~"(y, t). Because

(V1) k=0,1,2,..}

is dense in T, there is a k>N’ such that V~%(z)eU. Since k>N,
fHD_,) is e—C!' close to Wik, o(r). If we denote V'™ k(1) by t, then
te U. Thus there is a cell in W(a(,) ,(r) which is ¢ — C' close to WY, ,(r),
and W{,, ,(r)and f~* ) have a transverse intersection. Notice that

fﬁk(D )CW "(z‘r

and Wi and W{,, , have a transverse intersection. By the lemma
above, for any teT, Wi, , and W{,, , have a transverse intersection.
Similarly we can prove that for any e T, W, , and W{,, , have a
transverse intersection. Therefore 4 ~ L. |I

We denote the closure of the set of all the periodic-like points by O.

LemMa 4.3. If O is hyperbolic, then there are only finitely many equiv-
alence classes A, ..., A, such that @ =)7_, A

Proof. Note that the equivalence relation ~ partitions 0. Fix te€ T and
consider the set ©® N {M x {7}}. We have an equivalence relation on this
set, inherited from the relation above. Because @ is hyperbolic, there is an
¢>0 such that if (x,7), (y,7)e@n{Mx{z}} and d[(x,7), (y,7)]<e,
then Wi __(r) and WY, (r) intersect transversely and W{  (r) and
Wi, (r) intersect transversely. Thus there are only finitely many equiv-

alent classes in @ N { M x {7} }. If we denote them by I7,, ..., IT,, then

A;={(x,1)€0, AnII;# ¢, where A is the periodic-like

set containing (x, 7)}.

Therefore, A4,, ..., 4, are all of the equivalence classes of ©. ||
From this proof, we see that for any fixed te€ 7,

n

O ({Mx{z}} = U]H,-
and d(11;, IT;)) > ¢, i # j.

Definition: Suppose 4,, 4,, ..., 4,, are sets. If there is an ¢ >0 such that
d(A;, A;) = ¢ for i#j, then we say that 4,, 4,, .., 4,, have the separated
property and if A4, .4, have the separated property, then we say @ has the
separated property.
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If @ has the separated property, then @ can be divided into n closed dis-
joint invariant sets, namely, the closures of A4, ..., 4. The closure of A, will
still be denoted by A;. Note that @ = J7_, 4,.

LemMma 44. If @ is hyperbolic and @ has the separated property, then @
can be divided into finitely many closed disjoint invariant sets A, ..., A,, such
that each A; is topologically transitive.

We use the usual definition of the limit set Z( f) and nonwandering set
Q(f). They are closed invariant sets. Suppose O is the set of periodic-like
points. It is not difficult to see that ® = L(f) = Q(f).

Suppose @ is dense in Q(f). Then @ = Q(f). According to the lemma
above, Q(f) can be divided into finitely many topologically transitive sets
in which the periodic-like points are dense. If Q(f) has the no-cycle
property, then we have a filtration—see [21].

Definition: If Q(f) is a hyperbolic closed invariant set and © is dense in
Q(f), then we say that Q(f) satisfies axiom A.

THEOREM 4.4. Assume O has the separated property and Q(f) satisfies
axiom A. If Q(f) has the no-cycle property, then f is Q-stable.

Proof. [Sketch] Notice that here, the “hyperbolic” means something
different than it does for regular dynamical systems. Since Q(f) satisfies
axiom A, @ = Q(f), and by the separated property of @,

O=Q(f)=4,0 ---UA,.

However, Q(f) has the no-cycle property. Without loss of generality, we
can assume that the ordering by indices is a filtration ordering. Thus there
is a filtration

D=MycM,c - -M,=MxT

such that

A;= ﬂ fj(Mi_Mi—l)-

j=—=

Thus, each A, is a closed isolated invariant sets. We have proved the
stability of hyperbolic isolated closed invariant sets. Thus there is a
neighborhood W of f such that each A, topologically conjugates to a closed
invariant set 4; of g for any ge W. Because periodic-like points are
invariant under conjugacy and periodic-like points are dense in each A,
Ui, 4, =Q(g). If W is small, this filtration is also a filtration adapted to
g. Using this we can prove (J7_, 4, > 2(g). This gives the conjugacy of f

i=1

and g. Therefore, f'is Q-stable. ||
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