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We study discrete skew product systems over an almost periodic system. We
generalize the concepts of hyperbolic structure, shadowing, basic set, etc., in order
to prove the natural generalization of Smale's 0-stability theorem for skew product
systems. Some of the lemmas are extensions of classical results on almost periodic
differential equations. � 1996 Academic Press, Inc.

1. INTRODUCTION

The theory of differentiable dynamical systems was motivated by the
geometric theory of autonomous ordinary differential equations. In a
similar manner, our motivation is the study of the geometric theory of
almost periodic ordinary differential equations. Given an almost periodic
system of a differential equation, the Miller�Sell construction [11, 15]
defines a skew product flow with an almost periodic base. Since an almost
periodic flow admits a cross section, the skew product flow admits a cross
section also [10]. Thus we are led to the study of a discrete skew product
system. In particular, we study the following system.

Let M be a compact n-dimensional differential manifold and T a
compact metric space. Suppose

f : M_T � M_T
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is a homeomorphism, where

f (x, t)=(9(x, t), V(t))

and V : T � T is a homeomorphism also. For fixed t let 9( } , t): M � M be
a diffeomophism and let its partial derivatives vary continuously in t. Let
V : T � T be almost periodic. Here ``almost periodic'' is in the sense of Bohr
[16]. Since V is almost periodic for any t # T and k # Z+, the orbit of Vk

through t is dense in T. Such a system is called a smooth skew dynamical
system over the base V : T � T or simply a skew system.

Our main result is a generalization of Smale's 0-stability theory, which
asserts that an ordinary dynamical system is 0-stable if it satisfies axiom
A and has the no-cycle property. Once the correct definitions are given the
proofs are the same, mutatis mutandis, and therefore several proofs are
skipped or only outlined. More complete proofs can be found in [21].
Several of the lemmas shed new light on the stability of the local structures
of almost periodic systems under perturbations.

Since the system is defined on M_T where T is only a metric space, we
cannot impose a hyperbolicity condition in the T direction. Therefore, our
perturbations are only in the M direction and the map on T is held fixed.
When thinking about almost periodic differential equations, this is like
allowing the size of the harmonics of the external force to vary, while
requiring the frequencies of the external force to be fixed. One of the main
tools is the stable manifold theorem. The proof of the stable manifold
theorem in [7] can be naturally extended here, but we will follow the proof
in [14]. We like the geometry of this proof.

Actually, a further generalization is possible. Almost all that follows can be
generalized to a fiber-preserving map of fiber bundle; however, the incremental
generality does not warrant the additional notational complexity.

2. DEFINITIONS, STABLE MANIFOLDS, AND SHADOWING

In this section, we will extend the definitions of hyperbolic structure,
shadowing orbit, pseudo-orbit, etc. in order to discuss the Stable Manifold
Theorem and the Shadowing Lemma. This version of the Shadowing
Lemma for skew systems is stronger than the version found in [10].

The orbit through (x, t) is the set O(x, t)=[ f k(x, t), k # Z]. A sequence

[(xn , tn), n=0, \1, \2, ...]

in M_T is called an :-pseudo-orbit if tn+1=V(tn), and

d[ f (xn , tn), (xn+1 , tn+1)]<: for n=0, \1, \2, ... .
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A pseudo-orbit [(xn , tn), n=0, \1, \2...] is ;-shadowed by an orbit
[ f k(x, t), k # Z] if t=t0 and d[ f k(x, t), (xk , tk)]<; for k=0, \1, \2... .
The limit set L, nonwandering set 0, and invariant set are defined in the usual
way [17]. A closed invariant set 4 is isolated if there is a neighborhood U of
4 such that 4=��

&� f n(U� ), where U� is the closure of U.
We make the set of all functions f, g : M_T � M_T, f (x, t)=(8(x, t),

V(t)), satisfying above assumptions into a metric space by using the C1, 0

topology on this space, that is, two functions are close if and only if their
partial derivatives with respect to x and their values are close.

Suppose f is a skew system on M_T and (x, t) # M_T. Since M is a dif-
ferential manifold, M has a tangent space TxM at x. We call TxM_[t]
with the natural linear structure the tangent space of M_T at (x, t) and
denote it by T(x, t)M_T. Because f (x, t) has a continuous partial derivative
with respect to x and f (x, t) maps M_[t] to M_[V(t)] for fixed t,
Dfx(x, t) maps T(x, t)M_T to Tf (x, t) M_T. For convenience, we will use
Df, instead of Dfx , to denote the partial derivative of f (x, t) with respect
to x. Because the tangent spaces TxM and TyM are isomorphic and essen-
tially T(x, t) M_T and T( y, {) M_T are just TxM and Ty M, we will denote
the tangent space T(x, t)M_T by E for all (x, t) in M_T.

Let 4 be an invariant set of f. 4 is a hyperbolic invariant set or f has a
hyperbolic structure on 4 if there exist constants C, +, *, 0<+<1<*, and
a continuous map P: 4 � L(E, E), such that P(x, t) is a linear projection
operator that satisfies the following:

(1) P( f (x, t)) Df (x, t)=Df (x, t) P(x, t),

(2) &Df k(x, t) P(x, t)&�C+k, where (x, t) # 4, k�0,

(3) &Df k(x, t)[I&P(x, t)]&�C*k, where (x, t) # 4, k�0.

Let

E s
(x, t)=P(x, t)(E), E u

(x, t)=[I&P(x, t)](E).

We call E s
(x, t) and E u

(x, t) the stable and unstable spaces at (x, t) respectively.
Thus, for any (x, t) # 4, the tangent space T(x, t) M_T can be split into the
direct sum of E s

(x, t) and E u
(x, t) . Because P(x, t) is continuous, E s

(x, t) and
Eu

(x, t) depend on (x, t) continuously. (1) implies Df(x, t)(E s
(x, t))=E s

f (x, t) and
Df(x, t)(E u

(x, t))=E u
f (x, t) . We will assume that the constant C in the definition

of the hyperbolic structure is 1 by using the adapted norm [10]. In the
following, when studying the map f ( y, t) near (x, t) for fixed t, we will use
the splitting E s

(x, t)_E u
(x, t) of T(x, t) M_T. We will identify the ball of radius

r and center (x, t),

B(x, t)(r)=Bs
(x, t) (r)_Bu

(x, t) (r),
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in the tangent space T(x, t)M_T with a neighborhood of (x, t) in M_[t],
where Bs

(x, t) (r) and Bu
(x, t) (r) are the balls of radius r and center (x, t) in

Es
(x, t) and E u

(x, t) respectively. In the following, all balls will be to be closed.
The set

Ws
(x, t)=[( y, t) # M_[t], lim

n � �
d[ f n(x, t), f n( y, t)]=0]

is called the stable manifold at (x, t). Since the proof of the local stable
manifold theorems follows one of the standard proofs [14], we shall only
sketch the proof here. Also see [21].

Theorem 2.1 (Local Stable Manifold Theorem). Assume f : M_T �
M_T is a skew system and 4 is a closed hyperbolic invariant set with
constants +, *, and C. Then there is an r>0 such that for any (x, t) in 4
there is a C1 embedded disk

Ws
(x, t)(r)=[( y, t) # B(x, t)(r) : f n( y, t) # Bf n(x, t)(r) for n=0, 1, 2...]

which is tangent to E s
(x, t) at (x, t). In fact, W s

(x, t)(r) is a graph of a C 1

function

.(x, t) : Bs
(x, t)(r) � Bu

(x, t)(r)

with .(x, t)(0)=0 and D.(x, t)(0)=0, i.e.,

W s
(x, t)(r)=[(u, .(x, t)(u)): u # Bs

(x, t)(r)].

Moreover there is an :, 0<:<1, such that

W s
(x, t)(r)= ,

�

n=0

f &n(Bf n(x, t)(r))

=[( y, t) # B(x, t)(r) : f n( y, t) # Bf n(x, t)(r) and

| f n( y, t)&f n(x, t)|�:n |x&y| for n=0, 1, 2...].

Also, W s
(x, t)(r) continuously depends on (x, t). Furthermore, .(x, t)(z) and

D.(x, t)(z) continuously depend on (x, t).

Even though the theorem looks like the Stable Manifold Theorem in
regular dynamical systems and the proof is similar, the geometric picture is
different. Here f has a partial derivative with respect to x only and we talk
about the hyperbolic structure only in the x direction: so we can expect a
local stable manifold around (x, t) in M_[t].

Proof. For each point (x, t) in 4, we can identify the ball B(x, t)(r) of
radius r>0 in the tangent space T(x, t)M_T with a neighborhood of (x, t)
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in M_[t]. Because M is compact, we can choose r>0 small enough so
that we can identify the ball B(x, t)(r) of radius r>0 in the tangent space
T(x, t) M_T with a neighborhood of (x, t) in M_[t] for all (x, t) in M_T.
Thus, the map from a neighborhood of (x, t) in M_[t] to a neighborhood
of f (x, t) in M_[V(t)] induces a C1 map f : B(x, t)(r) � Bf (x, t)(C0 r), where
C0>* is a constant. C0 can be taken uniformly for all (x, t) in 4 since 4
is compact. We will choose r small enough so that for all (x, t) # 4 we can
identify B(x, t)(C0 r) in T(x, t)M_T with a neighborhood of (x, t) in M_[t].

Since f is hyperbolic on 4, there are + and *, 0<+<1<*, such that

&Df(x, t) | Bs
(x, t)(r)&<u and m(Df(x, t) | Bu

(x, t)(r))>*

for all (x, t) in 4, where m(A) is the minimum norm of A,

m(A)= inf
u{0

&Au&

&u&
.

Take =>0 small enough so that ++2=<1 and *&6=>1. Since Df maps
Es

(x, t) and E s
(x, t) onto E s

f (x, t) and E u
f (x, t) respectively,

Df(x, t)=\Ass(x, t)
0

0
Auu(x, t)+ .

Given such an =>0, there is an r>0 small enough so that for (x, t) # 4
and ( y, t) # B(x, t)(r),

Df( y, t)=\Ass( y, t)
Aus( y, t)

Asu( y, t)
Auu( y, t)+

satisfies the following: &Ass( y, t)&<+, &Asu( y, t)&<=, m(Auu( y, t))>*,
&Aus( y, t)&<=, &Ass( y, t)&Ass(x, t)&<=, and &Auu( y, t)&Auu(x, t)&<=.
Here we used the fact that Df is continuous and 4 is compact.

Let

W s
(x, t)(r)=[( y, t) # B(x, t)(r) : f n( y, t) # Bf n(x, t)(r) for n=0, 1, 2...],

where we think of the local stable manifold as being represented in local
coordinates on T(x, t)M_T. We want to prove that it is a graph of a C1

function

.: Bs
(x, t)(r) � Bu

(x, t)(r)

satisfying .(0)=0 and D.(0)=0. The stable cone C s
(x, t) and unstable cone

Cu
(x, t) at (x, t) are defined as follows:
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Cs
(x, t)=[(vs

(x, t) , vu
(x, t)) # E s

(x, t)_E u
(x, t) : |vu

(x, t) |�|vs
(x, t) |]

=[v(x, t) # T(x, t) M_T : |vu
(x, t) |�|vs

(x, t) |],

Cu
(x, t)=[v(x, t) # T(x, t) M_T : |vu

(x, t) |�|vs
(x, t) |].

We are going to divide the proof into four steps. First we will prove that
the local stable manifold at (x, t) is a graph of some function

.: Bs
(x, t) (r) � Bu

(x, t) (r).

Second we are going to prove that . is 1-Lipschitz. Then we will prove that
. is C1, .(0)=0, and D.(0)=0. And at last we will prove that

W s
(x, t)(r)= ,

�

n=0

f &n[Bf n(x, t)(r)]

=[( y, t) # B(x, t)(r) : f n( y, t) # Bf n(x, t)(r) and

| f n( y, t)&f n(x, t)|�:n | y&x| for n=0, 1, 2...]

and the local stable manifold W s
(x, t)(r) continuously depends on (x, t).

The following lemmas outline the proof of the Stable Manifold Theorem,
which follows the four steps. However, because the similarity of the proofs
of these lemmas to the proofs of those lemmas in regular dynamical
systems, the proofs to these lemmas will not be provided. Readers can
compare these lemmas with the corresponding lemmas in Robinson [14]
or see [21].

Lemma 2.1. Suppose f (x, t)=(9(x, t), V(t)) is a continuous map from
U_T to E_T where U is an open set in E, and f has a continuous partial
derivative with respect to the first variable. Assume (x0 , t) # U_T and let
L=Df (x0 , t) be an invertible linear map. We denote f (x0 , t) by ( y0 , V(t)).
Let ; be any number with 0<;<1. Let r>0 satisfy

(1) B(x 0, t)(r) is contained in U_[t] and
(2) &L&Df (x, t)&�m(L)(1&;) for all (x, t) # B (x0, t)(r).

Then f (B(x0, t)(r))#L(B(x0, t)(;r))#B( y0, V(t))(m(L) ;r). Moreover, every
point ( y, V(t)) in L(B(x0, t)(;r)) has exactly one preimage (x, t) # B(x 0, t)(r),
either f (x, t)=( y, V(t)) or 9(x, t)= y. So, the inverse function f &1 exists
with domain B( y 0, V(t))(m(L) ;r) and range B(x 0, t)(r) and has a continuous
partial derivative with respect to the first variable and is from

Definition. Assume _ is a C1 function from Bu
(x, t)(r) into Bs

(x, t)(r). Its
graph is called an unstable disk at (x, t) if Lip(_)�1. Similarly we can
define a stable disk.
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Lemma 2.2. If D0(x, t) is an unstable disk at (x, t), then

(1) D1( f (x, t))=f (D0(x, t)) & Bf (x, t)(r) is an unstable disk at f (x, t)
and diam[?u

(x, t)[ f &1(D1( f (x, t))) & D0(x, t)]]�2r(*&=)&1

2. Dn( f n(x, t))=f (Dn&1( f n&1(x, t))) & Bf n(x, t)(r) is an unstable disk
at f n(x, t) and diam[?u

(x, t)[�n
j=0 f &j (Dj ( f j (x, t)))]]�2r(*&=)&n.

Lemma 2.3. The local stable manifold

Ws
(x, t)(r)=[( y, t): f n( y, t) # Bf n(x, t)(r) for all n�0]

is the graph of some function

.: Bs
(x, t)(r) � Bu

(x, t)(r)

satisfying .(0)=0.

Lemma 2.4. Assume ( y, t), (z, t) # B(x, t)(r) and (z, t) # [( y, t)]+C u
(x, t) .

Then

(1) |?s
f (x, t))[ f (z, t)&f ( y, t)]|�(++=) |?u

(x, t)(z&y )|

(2) |?u
f (x, t))[ f (z, t)&f ( y, t)]|�(*&=) |?u

(x, t)(z&y )|

(3) f (z, t) # [ f ( y, t)]+C u
f (x, t) .

Similarly, if

f n&1( y, t), f n&1(z, t) # Bf n&1(x, t)(r) and f n&1(z, t) # [ f n&1( y, t)]+C u
f n&1(x, t) ,

then

|?u
f n(x, t)[ f n(z, t)&f n( y, t)|�(*&=)n |?u

(x, t)(z&y )|

and f n(z, t) # [ f n( y, t)]+C u
f n(x, t) .

Lemma 2.5. The local stable manifold, W s
(x, t)(r), is a graph of an

1-Lipschitz function

.: Bs
(x, t)(r) � Bu

(x, t)(r).

Define

C s
( y, t)(n)=(Df n( y, t))&1 [ f n( y, t)+C s

f n(x, t)]

C s
( y, t)(n, ')=C s

( y, t)(n) & [( y, t)+(?s
(x, t))

&1 Bs
(x, t)(')].
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Lemma 2.6. If ( y, t) # B(x, t)(r), then

Df ( f n&1( y, t))[ f n&1( y, t)+C u
f n&1(x, t)]

/{(vs, vu) # Ef n( y, t) , |vs |�
++=
*&=

|vu |=
and C s

( y, t)(n)/C s
( y, t)(n&1) for n=1, 2, 3... . Furthermore, ��

n=0 C s
( y, t)(n) is

a graph of some linear map from E s
(x, t) to E u

(x, t) .

Suppose the local stable manifold is the graph of

.: Bs
(x, t)(r) � Bu

(x, t)(r).

We anticipate that, this linear map is the derivative of .. But to prove this,
we need the following lemma.

Lemma 2.7. Assume ( y, t) # W s
(x, t)(r) and n>0. Then there exists an

'(n)>0 such that the following are true:

(1) If |z&y|<' and f n(z, t) # [ f n( y, t)+C s
f n(x, t)], then (z, t) #

Cs
( y, t)(n&1, ') and

2. If (z, t) # W s
(x, t)(r) and |z&y |<', then (z, t) # C s

( y, t)(n&1, ').

Lemma 2.8. The local stable manifold is C1 and is tangent to E s
(x, t) at

(x, t).

Lemma 2.9.

W s
(x, t)(r)= ,

�

n=0

f &n(Bf n(x, t)(r))

=[( y, t) # B(x, t)(r): f n( y, t) # Bf n( p)(r) and

| f n( y, t)&f n(x, t)|�:n | y&x| for n=0, 1, 2...]

and the local stable manifold W s
(x, t)(r) continuously depends on (x, t).

Lemma 2.10. .(x, t)(u) and D. (x, t)(u) continuously depend on (x, t).

This finishes the outline of the proof of the Local Stable Manifold
Theorem. K

The Local Unstable Manifold Theorem can be stated and proved in a
similar way. It will not be repeated here.
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Lemma 2.11 (Shadowing Lemma). Let 4 be a closed hyperbolic
invariant set of f : M_T � M_T. Then there are a neighborhood U of 4
and a neighborhood W of f having the following properties:

(1) For any ;>0 there is an :>0 such that every :-pseudo-orbit
[(xi , ti)] of g has a ;-shadowing orbit [gi (x$0 , t0)], where [(xi , ti)]/U and
g # W.

(2) There is a ;0>0 such that if 0<;<;0 , then the ;-shadowing
orbit [gi (x0 $, t0)] is uniquely determined by the :-pseudo-orbit [(xi , ti)].

(3) If 4 is an isolated invariant set of f, then for any g # W, g has a
closed isolated hyperbolic invariant set 2 in U and the shadowing orbit
[gi (x$0 , t0)] is in 2.

Proof. First we can continuously extend the splitting E s
(x, t)_E u

(x, t) from
4 to a neighborhood G of 4. Suppose U is a neighborhood of 4 such that
U� /G, where U� is the closure of U. For ;>0, we choose r, =>0 small
enough such that r<;, *&6=>1, ++5=<1, and B(x, t)(r)/G for any
(x, t) # U� . Notice that for fixed (x, t) # 4, Df (x, t) is of the form

\Ass(x, t)
0

0
Auu(x, t)+ . (1)

We can choose r>0 small enough so that for all ( y, t) # B(x, t)(r),

Df ( y, t)=\Ass( y, t)
Aus( y, t)

Asu( y, t)
Auu( y, t)+ (2)

satisfying

&Ass( y, t)&<+, m(&Auu( y, t)&)>*,

&Asu( y, t)&<=, &Aus( y, t)&<=, (3)

&Ass( y, t)&Ass(x, t)&<=, &Auu( y, t)&Auu(x, t)&<=.

Because Df (x, t) continuously depends on (x, t) and we have extended
the splitting continuously to G#U� , the above property still holds for
(x, t) # U� if U is small enough. Notice that U� is compact, we can choose an
r>0 small enough so that for all (x, t) # U� and all ( y, t) # B(x, t)(r), Df ( y, t)
is of the form (2) with (3) holding.

Because we are using C1, 0 topology, if g is close to f, then Dg is close
to Df. So we can choose a neighborhood W of f such that for all (x, t) # U� ,
g # W and for all ( y, t) # B(x, t)(r), Dg( y, t) is of the form (2) with (3)
holding.
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Because U� is compact, we can choose W and :>0 small enough such that
g(B(x, t)(r))/Bp(C0r), whenever d(g(x, t), p)<:, (x, t) # U, p # M_[V(t)],
and g # W, where C0 is the constant in the proof of the Stable Manifold
Theorem. We will also choose r>0 small enough so that we can identify
B(x, t)(C0 r) as a neighborhood of (x, t) in M_[t]. Notice that *&6=>1
and ++=<1. For any (x, t) # U� , we can choose :>0 small enough so that
if _: Bu

(x, t)((*&6=)r) � Bs
(x, t)((++=) r) satisfies &D_&<(++=)(*&=)&1,

then B( y, t)(r) & graph(_) is an unstable disk at ( y, t) whenever d(x, y)<:.
Since P(x, t) in the definition of hyperbolic set continuously depends on
(x, t), this property can be extended to a neighborhood of (x, t). That is,
for any (x, t) # U� , there is a neighborhood N of (x, t) and an :>0 such that
if _: Bu

( y, {)((*&6=)r) � Bs
( y, {)((++=) r) satisfies &D_&<(++=)(*&=)&1,

then B(z, {)(r) & graph(_) is an unstable disk at (z, {), whenever d( y, z)<:
and ( y, {) # N. Since U� is compact, there is an :>0 such that if
_: Bu

(x, t)((*&6=) r) � Bs
(x, t)((++=) r) satisfies &D_&<(++=)(*&=)&1, then

B( y, t)(r) & graph(_) is an unstable disk at ( y, t), whenever d(x, y)<: and
x # U� . In the same way, for $>0 with (1+$)<*&=, we can choose :>0
small enough so that if (x, t) # U� and d(x, y)<:, then diam([I&P( y, t)]
(graph(/)))<(1+$)2r, where /: Bu

(x, t)(r) � Bs
(x, t)(r) is an unstable disk at

(x, t). We choose :, $, and W small enough so all conditions above are
satisfied. Now we need the following lemmas.

Lemma 2.12. Suppose [(xi , ti )] is an :-pseudo-orbit in U� of g and
D0(x0 , t0) is an unstable disk of g # W at (x0 , t0). Then the following are
true:

(1) D1(x1 , t1)=g(D0(x0 , t0)) & B(x1 , t 1)(r) is an unstable disk at (x1 , t1)
and diam[[I&P(x0 , t0)](g&1(D1(x1 , t1)) & D0(x0 , t0))]�2r(1+$)(*&=)&1

(2) Dn(xn , tn)=g(Dn&1(xn&1, tn&1)) & B(xn , tn)(r) is an unstable disk at
(xn , tn) and diam[[I&P(x0 , t0)](�n

i=0 g&i(Di (xi , ti ))]�2r(1+$)n (*&=)&n

for n=0, 1, 2... .

Lemma 2.13. ��
n=0 g&n(B(xn , t n)(r)) is a stable disk at (x0 , t0) and

�0
n=&� g&n(B(x n , tn)(r)) is an unstable disk at (x0 , t0).

The proofs of these two lemmas are similar to the proofs of Lemma 2.2
and 2.5 in the proof of Stable Manifold Theorem, so they will be omitted
here.

Now let's continue the proof of the Shadowing Lemma. By Lemma 2.13,
��

n=&� g(B(x n, tn)(r)) contains one and only one point because the stable
disk and unstable disk intersect at one and only one point. We denote
it by (x$0 , t0). Since (x$0 , t0) # g&n(B(x n, tn)(r)), gn(x$0 , t0)) # B(x n, t n)(r) for
n=0, \1, \2... . Notice that r<;. Hence [gn(x$0 , t0), n=0, \1, \2...] is
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an orbit that ;-shadows the :-pseudo-orbit [(xn , tn), n=0, \1, \2...].
This finishes the proof of part (1).

To prove part (2), we choose ;0 as r. It is obvious that for any ;,
0<;<;0 , the orbit which ;-shadows the :-pseudo-orbit is uniquely deter-
mined by the :-pseudo-orbit because the stable and the unstable disks
intersect at one and only one point.

Now we prove part (3). Since 4 is an isolated invariant set of f, there is
an isolated neighborhood G$ of 4 such that ��

n=&� f n(G$)=4. Without
loss of generality, we assume that the above U and r are small enough that
B(x, t)(r)/G$ for all (x, t) # U. Since ��

n=&� f n(G$)=4, there is an integer
m such that �m

n=&m f n(G$)/U. Therefore if W is small, �m
n=&m gn(G$)/U

for any g # W. If we denote ��
n=&� gn(G$)=2, then 2/U and G$ is an

isolated neighborhood of 2. Because 2 is the largest invariant set in G$ and
the orbit which ;-shadows the :-pseudo-orbit is in G$, it is in 2. If W is
small, g has a hyperbolic structure on 2 for all g # W. This finishes the
proof of the Shadowing Lemma. K

This is a stronger version of the Shadowing Lemma than the one found
in [10], but some say the one given above was known to Lamont
Cranston and Margo Lane.

Corollary 2.1. Suppose 4 is a closed hyperbolic invariant set of f.
There are a neighborhood U of 4, a neighborhood W of f, and an :>0 such
that if g # W and [ gn(x, t)], [gn( y, t)]/U are :-shadowed by each other,
then x=y.

3. LOCAL STABILITY OF ALMOST PERIODIC SETS

Suppose A is a closed invariant set of f. A is called a base-like set if the
projection map, p: A � T, p(x, t)=t, is a homeomorphism. A point (x, t) is
called a base-like point if the closure of its orbit is a base-like set. A point
(x, t) is called a periodic-like point if (x, t) is a base-like point of f k for
some k, that is, if the closure of the orbit of f k through (x, t) is a base-like
set. The smallest such k>0 is called the period of the periodic-like point.
The closure of the orbit through a periodic-like point is called a periodic-
like set. Periodic-like sets will play the same role as periodic points did in
the classical theory.

Suppose f and g: M_T � M_T are two skew dynamical systems. We
say the two systems are topologically skew-conjugate if there is a homeo-
morphism

H(x, t): M_T � M_T, H(x, t)=(h(x, t), t),

76 MEYER AND ZHANG



File: 505J 318912 . By:CV . Date:07:11:96 . Time:10:07 LOP8M. V8.0. Page 01:01
Codes: 2590 Signs: 1842 . Length: 45 pic 0 pts, 190 mm

such that H b f=g b H. In this case we also say H skew-conjugates f and g.
Under skew-conjugacy, the base-like point is invariant. In the following, we
will call skew-conjugacy just conjugacy. We have the following obvious
result.

Lemma 3.1. Suppose f and g are toplogically conjugate and H conjugates
f and g. If (x, t) is a base-like ( periodic-like) point of f, then H(x, t) is a
base-like ( periodic-like) point of g.

If (x, t) is a base-like point of f, then the closure of the orbit of f through
(x, t), denoted by A, is homeomorphic to T. The restriction of f to A is in
fact topologically conjugate to V on T, where V is the map in the definition
of f. Furthermore the projection map p conjugates f | A and V.

In skew dynamical systems, the smallest closed invariant sets seem to be
the base-like sets since [Vk(t), k # Z] is dense in T. A natural question is
whether a hyperbolic base-like set is stable. The following two theorems
answer the question positively.

Theorem 3.1. Suppose A is a hyperbolic base-like set of f. Then there are
a neighborhood U of A and a neighborhood W of f such that for every g # W,
there is one and only one hyperbolic base-like set S of g in U and f | A is
topologically conjugate to g | S.

Proof. Since A is a closed hyperbolic invariant set, there is an r>0
such that

,
�

n=0

f &n(Bf n(x, t)(r))

is the local stable manifold of f at (x, t) for any (x, t) # A by the Stable
Manifold Theorem. Similarly,

,
0

n=&�

f &n(Bf n(x, t)(r))

is the local unstable manifold of f at (x, t) for any (x, t) # A. Therefore,

,
�

n=&�

f &n(Bf n(x, t)(r))

contains one and only one point. Here Bf n(x, t)(r) is the ball neighborhood
of f n(x, t) with radius r in the tangent space Tf n(x, t) M_T, which we iden-
tify with a neighborhood of f n(x, t) in M_[Vn(t)], and the point is the
intersection of the local stable and unstable manifolds of f at (x, t) , which
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is (x, t) itself. Let D=�(x, t) # A B(x, t)(r). D is a closed neighborhood of A.
For any fixed t,

{ ,
�

n=&�

f n(D� )= , [M_[t]]= ,
�

n=&�

f &n(Bf n(x, t)(r))=[(x, t)],

where (x, t) is the only point in A whose second coordinate is t. Thus
��

n=&� f n(D� )=A: so D is an isolated neighborhood of A. By the
Shadowing Lemma, there are a neighborhood W of f and a neighborhood
U of A such that for any g # W, g has a closed hyperbolic invariant S con-
tained in U. Suppose ;0 is the positive number in the Shadowing Lemma.
That is for any 0<;<;0 , there is an :>0 such that any :-pseudo-orbit
of g in U can be uniquely ; shadowed by an orbit in S, where g # W.

Without loss of generality, we suppose W is contained in the :-neighbor-
hood of f. Then

[gk( y, t), k # Z]

is an :-pseudo-orbit of f in U for all ( y, t) in S. By the Shadowing Lemma,
there is one and only one point (x, t) in A such that [ f k(x, t), k # Z]
;-shadows [gk( y, t), k # Z]. On the other hand, for any (x, t) # A, there is
one and only one point ( y, t) # S such that [gk( y, t), k # Z] ;-shadows
[ f k(x, t), k # Z]. For any t # T, there is one and only one point (x, t) in A
whose second coordinate is t. Now for this t, there is one and only one
point ( y, t) in S with the second coordinate t. If there are two points ( y, t)
and (z, t) in S for this t, then both [gk( y, t), k # Z] and [gk(z, t), k # Z]
are ;-shadowed by [ f k(x, t), k # Z]. This implies that [gk( y, t), k # Z] and
[gk(z, t), k # Z] ;-shadow [ f k(x, t), k # Z], contradicting the uniqueness
of shadowing. Thus the map

H: S � A, H( y, t)=(x, t)

is one-to-one and onto, and it is continuous by the Shadowing Lemma.
Therefore, H is a homeomorphism from S to A. Notice that for any
( y, t) # S, g( y, t) and f b H( y, t) have the same second coordinates: so

H b g( y, t)=f b H( y, t),

and H b g=f b H. Hence f | A and g | S are topologically conjugate. K

The theorem above guarantees that under small perturbations the hyper-
bolic base-like set is stable. In fact, under small perturbations the local
structure near a hyperbolic base-like set is stable. The following is a
Hartman�Grobman type theorem.
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Theorem 3.2. Suppose

f : Rn_T � Rn_T, f (x, t)=(9 (x, t), V(t))

is a homeomorphism with a continuous partial derivative with respect to x,
and let f (0, t)=(0, V(t)), and P=[0]_T be a hyperbolic base-like set.
Then there are neighborhoods U and D of P such that f | U and (Df, V) | D
are topologically conjugate.

We omit the proof since the proof in Palis and Melo [13] carries over
with little change.

Suppose (x, t) is a point in M_T. For fixed t, f (x, t) is a diffeo-
morphism from M_[t] onto M_[V(t)]. In particular, Df (x, t) maps
T(x, t) M_T onto Tf (x, t)M_T and both T(x, t)M_T and Tf (x, t) M_T are
isomorphic to Rn. We have commented already that there is an r>0 such
that we can identify a neighborhood of any point ( y, t) in M_[t] with
B( y, t)(r), a ball with radius r and center ( y, t) in the tangent space of M_T
at ( y, t); so for fixed t, locally we can think that both f and Df map a small
neighborhood in B(x, t)(r) into Bf ( y, t)(r). If A is a hyperbolic base-like set
of f, then A has a closed neighborhood �(x, t) # A B(x, t)(r) in M_T. Thus
both f and Df map one neighborhood of A in �(x, t) # A B(x, t)(r) to another
neighborhood of A in �(x, t) # A B(x, t)(r). Because we are going to consider
only the local property, we can think both f and Df map T(x, t)M_T to
Tf (x, t)M_T for fixed t, or as maps from �(x, t) # A T(x, t)M_T to
�(x, t) # A T(x, t)M_T. However, the maps f and Df on � (x, t) # A T(x, t)M_T
behave exactly like the f and Df on �(0, t) # A Rn_[(0, t)] in the preceding
theorem, so we have the following corollary.

Corollary 3.1. Suppose A is a hyperbolic base-like set of f. Then there
are two neighborhoods U and D of A such that the dynamical systems f | U
and (d f, V ) | D are topologically conjugate.

Combining this corollary with the stability theorem for base-like set, we
have the following corollary.

Corollary 3.2. Suppose A is a hyperbolic base-like set of f. Then there
are a neighborhood U of A and a neighborhood W of f such that for any
g # W, g has a hyperbolic base-like set S in U. Furthermore there is a neigh-
borhood U$ of S such that ( f, U ) and (g, U$) are topologically conjugate.

4. 0-STABILITY OF SKEW SYSTEMS

We have shown that the local structure near a base-like set is stable.
Now we are going to study the global stability of the nonwandering set 0.
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Theorem 4.1. Suppose A is a closed isolated hyperbolic invariant set of
f and U is an isolated neighborhood of A. Then there is a neighborhood W
of f such that for every g # W, g has a closed isolated hyperbolic invariant set
S in U and f | A is topologically conjugate to g | S.

Proof. The proof is straightforward. The existence of W and S is a
direct consequence of the Shadowing Lemma. Using the Shadowing
Lemma, we construct the homeomorphism H between A and S so that,
H(x, t)=( y, t), where (x, t) # A and ( y, t) # S. Observe that two corre-
sponding points have the same second coordinate. Using this fact and the
uniqueness of shadowing, we can prove that H conjugates f | A and
g | S. K

Theorem 4.2. An Anosov skew system is structurally stable.

Meyer [8] has a complete proof, Frank's proof [4] can be generalized
to this case, and the above theorem can also be used to give a proof.

Lemma 4.1 (Lambda Lemma). Suppose that A and S are two hyperbolic
periodic base-like sets and let (x, t) # A, ( y, t) # S. Assume the dimension of
the local unstable manifold of (x, t) is larger than zero and less than the
dimension of the manifold M. If the stable and unstable manifolds W s

(x, t) and
Wu

( y, t) have a transverse intersection, then for any =>0, there is an N and
a cell D in W u

f n( y, t) which is =&C 1 close to W s
f n (x, t)(r) if n�N.

Again the proof of this lemma will be omitted�see [21].
Assume A and S are two hyperbolic periodic-like sets. We say that A

and S are equivalent, denoted AtS, if there are (x, t) # A and ( y, t) # S
such that W s

(x, t) and W u
( y, t) have a transverse intersection and W u

(x, t) and
Ws

( y, t) have a transverse intersection. The set of all hyperbolic periodic-like
points is denoted by 3. Suppose (x, t), ( y, {) # 3. Then there are periodic-
like sets A and S such that (x, t) # A and ( y, {) # S, and we say
(x, t)t( y, {) if AtS.

The following lemma gives a very nice picture of how equivalent hyper-
bolic periodic-like sets are related.

Lemma 4.2. Suppose A and S are two hyperbolic base-like sets with
AtS. Then for any t # T, W s

(x, t) and W u
( y, t) have a transverse intersection

and W u
(x, t) and W s

( y, t) have a transverse intersection whenever (x, t) # A
and ( y, t) # S. Similarly if A and S are two hyperbolic periodic-like sets and
AtS, then for any (x, t) # A, there is a point ( y, t) # S such that W s

(x, t) and
Wu

( y, t) have a transverse intersection and W u
(x, t) and W s

( y, t) have a transverse
intersection.
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Proof. Since A and S are base-like sets, there are continuous functions
a(t), s(t): T � M such that A=[(a(t), t), t # T] and S=[(s(t), t), t # T].
To prove W s

(x, t) and W u
( y, t) have a transverse intersection for all (x, t) # A

and ( y, t) # S, we need only to prove W s
(a(t), t) and W u

(s(t), t) have a trans-
verse intersection for all t # T. Because AtS, there is a { # T such that
Ws

(a({), {) and W u
(s({), {) have a transverse intersection (z, {), where W s

(a({), {)

and W u
(s({), {) are stable and unstable manifolds at (a({), {) # A and

(s({), {) # S respectively. Suppose W s
(x, t)(r) is the local stable manifold at

(x, t). Then

W s
(x, t)(r)=[(u, .(x, t)(u), u # Bs

(x, t)(r)]

and .(x, t)(u) and D. (x, t)(u) continuously depend on (x, t) by the Local
Stable Manifold Theorem. Let W s

(x, t) be the stable manifold at (x, t). Then

Ws
(x, t)= .

�

n=0

f &n(W s
f n(x, t)(r)),

and

Ws
(a({), {)= .

�

n=0

f &n(W s
f n(a({), {)(r)).

Because W s
(a({), {) and W u

(s({), {) have a transverse intersection (z, {), there is
a positive integer N such that

(z, {) # .
N

n=0

f &n(W s
f n (a({), {) (r))=f &N(W s

f N(a({), {) (r)).

Here we also require that (z, {) belongs to the interior of f &N(W s
f N(a({), {)(r)).

By choosing a larger N if necessary, we also require that (z, {) belongs
to the interior of the set f N(W u

f &N(s({), {)(r)). Since .(x, t)(u) and D.(x, t)(u)
continuously depend on (x, t) and f N(x, t) continuously depends (x, t),
Ws

f N(x, t)(r) and its tangent spaces continuously depend on (x, t). Notice
that f &N is a diffeomorphism from M_[V N(t)] onto M_[t] and f &N

and Df &N continuously depend on (x, t). f &N(W s
f N(x, t)(r)) and its tangent

spaces continuously depend on (x, t). In a similar manner, f N(W u
f &N( y, t)(r))

and its tangent spaces continuously depend on ( y, t). Because a(t) and
s(t) are continuous, there is a neighborhood U of { in T such that
f &N(W s

f N(a(t), t)(r)) and f N(W u
f &N(s(t), t)(r)) have a transverse intersection for

all t # U. Thus W s
(a(t), t) and W u

(s(t), t) have a transverse intersection for all
t # U. Because any orbit of V is dense in T,

[Vn(U), n=0, \1, \2, ...]
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is a cover of T. On the other hand, for any fixed t, f (x, t) is a dif-
feomorphism from M_[t] onto M_[V(t)], thus if W s

(x, t) and W u
( y, t)

have a transverse intersection, W s
f (x, t) and W u

f ( y, t) also have a transverse
intersection. Similarly if W s

(x, t) and W u
( y, t) have a transverse intersection,

then W s
f &1 (x, t) and W u

f &1( y, t) have a transverse intersection too, and by
repeating this procedure, we can see that if W s

(x, t) and W u
( y, t) have a trans-

verse intersection, W s
f n(x, t) and W u

f n( y, t) have a transverse intersection for
any integer n. Notice that for any t # U, W s

(a(t), t) and W u
(s(t), t) have a

transverse intersection and

[Vn(U), n=0, \1, \2, ...]

is a cover of T. W s
(a(t), t) and W u

(s(t), t) have a transverse intersection for all
t # T. So W s

(x, t) and W u
( y, t) have a transverse intersection whenever

(x, t) # A and ( y, t) # S. In the same way we can prove W u
(x, t) and W s

( y, t)

have a transverse intersection whenever (x, t) # A and ( y, t) # S.
If A and S are two periodic-like sets with period m and n respectively,

then A contains m branches A1 , ..., Am and S contains n branches S1 , ..., Sn .
Each of the branches is a base-like set of f mn. If AtS, then there are
(x, {) # Ai and ( y, {) # Sj such that W s

(x, {) and W u
( y, {) have a transverse

intersection and W u
(x, {) and W s

( y, {) have a transverse intersection. Using the
lemma above, we know that for any t # T, W s

(z, t) and W u
(w, t) have a trans-

verse intersection and W u
(z, t) and W s

(w, t) have a transverse intersection
where (z, t) is the only one point in Ai with the second coordinate t and
(w, t) is the only one point in Sj with the second coordinate t. Suppose
(x, t) # A. Then (x, t) # Al for some 1�l�m, and there is a k, 0�k<n
such that f k(x, t) # Al . Therefore there is a point ( y, {) # S, V k(t)={, such
that W s

f k(x, t) and W u
( y, {) have a transverse intersection and W u

f k(x, t) and
Ws

( y, {) have a transverse intersection. Thus W s
(x, t) and W u

f &k( y, {) have a
transverse intersection and W u

(x, t) and W s
f &k( y, {) have a transverse intersec-

tion. However, f &k( y, {) # S. This finishes the proof of the lemma. K

Theorem 4.3. The relation t is an equivalence relation on 3.

Proof. Suppose (x1 , t1), (x2 , t2), (x3 , t3) # 3 and (x1 , t1)t(x2 , t2),
(x2 , t2)t(x3 , t3). Then there are periodic-like sets A, S, and L such that
(x1 , t1) # A, (x2 , t2) # S and (x3 , t3) # L. To prove the relation t is an
equivalence relation on 3, we only need to prove AtL under the assump-
tion that AtS and StC. Because A, S, and L is a periodic-like set, there
is K such that each branch of A, S and L are base-like sets of f K. Without
loss of generality, we suppose that A, S, and L are all base-like sets of f.

Assume (x, {) # A, ( y, {) # S and (z, {) # L. By the lemma above, W u
(x, {)

and W s
( y, {) have a transverse intersection (v, {) and W u

( y, {) and W s
(z, {) have

a transverse intersection (w, {). Suppose r and = are two small positive
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numbers. Using the Lambda Lemma, there is an N such that if n�N, there
exists a cell neighborhood Dn of (v, {) in W u

(x, {) such that f n(Dn) is =�3&C1

close to W u
f n( y, {) (r), where W u

f n( y, {) (r) is the local stable manifold at
f n( y, {). In particular, f N(DN) is =�3&C1 close to W u

f N ( y, {)(r), where
Wu

f N( y, {) (r) is the local stable manifold at f N( y, {). We know that

Wu
f N(x, {)= .

�

n=0

f n(W u
f &n( f N(x, {))(r))

and it is not difficult to see that f N(DN)/W u
f N(x, {) . Therefore, there is a

positive integer m such that f N(DN) is contained in the interior of
�m

n=0 f n(W u
f &n( f N(x, {)) (r)). However,

.
m

n=0

f n(W u
f &n( f N(x, {))(r))= f m(W u

f &m( f N(x, {)) (r)).

Since A, S, and L are base-like sets, there are continuous functions a(t),
s(t) and l(t) such that

A=[(a(t), t), t # T], S=[(S(t), t), t # T], and L=[(l(t), t), t # T].

Notice that

f &m( f N(x, {))=(a(V&m(VN({))), V&m(VN({))).

In the proof of last lemma, we proved that for fixed m, f m(W u
f &m(x$, t)(r))

and its tangent spaces continuously depend on (x$, t). Using this conclu-
sion at (a(VN({)), VN({)), we see that a(t) is continuous. There is a
neighborhood U1 of VN({) in T such that if t # U1 , f m(W u

f &m(a(t), t)(r)) is
(=�3)&C1 close to f m(W u

f &m( f N(x, {))(r)). Likewise, s(t) is continuous and
.(x$, t)(u) and D.(x$, t)(u) continuously depend on (x$, t), where

[(.(x$, t)(u), u), u # Bu
(x$, t)(r)]=W u

(x$, t)(r).

There is a neighborhood U2 of VN({) in T such that if t # U2 , W u
(s(t), t)(r)

is (=�3)&C1 close to

Wu
(b(V N({)), V N({))(r).

We denote U1 & U2 by U. Therefore, there is a cell in f m(W u
f &m(a(t), t) (r))

which is =&C1 close to W u
(s(t), t)(r) for all t # U.

On another hand, W u
( y, {) and W s

(z, {) have a transverse intersection (w, {).
Using the Lambda Lemma again, there is an N$ such that if n�N$, there
is a cell neighborhood D&n of (w, {) in W s

(z, {) such that f &n(D&n) is
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C1=&close to W s
f &n( y, {)(r), where W s

f &n( y, {)(r) is the local stable manifold
at f &n( y, {). Because

[V&k({), k=0, 1, 2, ...]

is dense in T, there is a k�N$ such that V &k({) # U. Since k�N$,
f &k(D&k) is =&C1 close to W s

f &k( y, {)(r). If we denote V&k({) by t, then
t # U. Thus there is a cell in W u

(a(t), t)(r) which is =&C1 close to W u
(s(t), t)(r),

and W u
(a(t), t)(r) and f &k(D&k) have a transverse intersection. Notice that

f &k(D&k)/W s
f &k(z, {) ,

and W s
f &k(z, {) and W u

(a(t), t) have a transverse intersection. By the lemma
above, for any t # T, W s

(l(t), t) and W u
(a(t), t) have a transverse intersection.

Similarly we can prove that for any t # T, W u
(l(t), t) and W s

(a(t), t) have a
transverse intersection. Therefore AtL. K

We denote the closure of the set of all the periodic-like points by 3� .

Lemma 4.3. If 3� is hyperbolic, then there are only finitely many equiv-
alence classes 41 , ..., 4n such that 3=�n

i=1 4i .

Proof. Note that the equivalence relation t partitions 3. Fix { # T and
consider the set 3 & [M_[{]]. We have an equivalence relation on this
set, inherited from the relation above. Because 3� is hyperbolic, there is an
=>0 such that if (x, {), ( y, {) # 3 & [M_[{]] and d[(x, {), ( y, {)]<=,
then W s

(x, {)(r) and W u
( y, {)(r) intersect transversely and W u

(x, {)(r) and
Ws

( y, {)(r) intersect transversely. Thus there are only finitely many equiv-
alent classes in 3 & [M_[{]]. If we denote them by 61 , ..., 6n , then

4i=[(x, t) # 3, A & 6i{,, where A is the periodic-like

set containing (x, t)].

Therefore, 41 , ..., 4n are all of the equivalence classes of 3. K

From this proof, we see that for any fixed { # T,

3 , [M_[{]]= .
n

i=1

6i

and d(6i , 6j)>=, i{ j.
Definition: Suppose A1 , A2 , ..., Am are sets. If there is an =>0 such that

d(Ai , Aj)�= for i{j, then we say that A1 , A2 , ..., Am have the separated
property and if 41 , ...4n have the separated property, then we say 3 has the
separated property.
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If 3 has the separated property, then 3� can be divided into n closed dis-
joint invariant sets, namely, the closures of 41 , ..., *n . The closure of 4i will
still be denoted by 4i . Note that 3� =�n

i=1 4i .

Lemma 4.4. If 3� is hyperbolic and 3 has the separated property, then 3�
can be divided into finitely many closed disjoint invariant sets 41 , ..., 4n such
that each 4i is topologically transitive.

We use the usual definition of the limit set L( f ) and nonwandering set
0( f ). They are closed invariant sets. Suppose 3 is the set of periodic-like
points. It is not difficult to see that 3/L( f )/0( f ).

Suppose 3 is dense in 0( f ). Then 3� =0( f ). According to the lemma
above, 0( f ) can be divided into finitely many topologically transitive sets
in which the periodic-like points are dense. If 0( f ) has the no-cycle
property, then we have a filtration��see [21].

Definition: If 0( f ) is a hyperbolic closed invariant set and 3 is dense in
0( f ), then we say that 0( f ) satisfies axiom A.

Theorem 4.4. Assume 3 has the separated property and 0( f ) satisfies
axiom A. If 0( f ) has the no-cycle property, then f is 0-stable.

Proof. [Sketch] Notice that here, the ``hyperbolic'' means something
different than it does for regular dynamical systems. Since 0( f ) satisfies
axiom A, 3� =0( f ), and by the separated property of 3,

3� =0( f )=41 _ } } } _ 4n .

However, 0( f ) has the no-cycle property. Without loss of generality, we
can assume that the ordering by indices is a filtration ordering. Thus there
is a filtration

8=M0 /M1 / } } } Mn=M_T

such that

4i= ,
�

j=&�

f j (Mi&Mi&1).

Thus, each 4i is a closed isolated invariant sets. We have proved the
stability of hyperbolic isolated closed invariant sets. Thus there is a
neighborhood W of f such that each 4i topologically conjugates to a closed
invariant set 2i of g for any g # W. Because periodic-like points are
invariant under conjugacy and periodic-like points are dense in each 4i ,
�n

i=1 2i /0(g). If W is small, this filtration is also a filtration adapted to
g. Using this we can prove �n

i=1 2i #0(g). This gives the conjugacy of f
and g. Therefore, f is 0-stable. K
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