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The geometry of the global phase space of the collinear three-body problem with
negative energy is presented in this paper. A set of transformations is introduced to
create fictitious boundaries to make the phase space compact. At first, the binary
collisions are not regularized. Then one of the binary collisions {the collision
between m, and m, ) is regularized and we analyze the phase structure of this “half
regularized” system. Finally, the second binary collision (the collision between m,
and m, ) is regularized and we analyze how the phase structure is transformed by
this regularization. The whole analysis provides a vivid picture of the phase flow of
the collinear three-body problem. #1995 Academic Press. Inc

Consider the dynamics of three particles moving on a line where the
interactions among particles obey the Newtonian gravitational law. This
collinear three-body problem is a two degree of freedom problem with total
energy as an integral. Thus fixing energy reduces the problem to a three
dimensional manifold. Since we are interested in triple collisions we will
restrict our study to the case where the energy is negative. The flow 15’
relatively simple if the binary collisions are not regularized. Every solution
will end in a collision, either binary or triple. The solutions of triple colli-
sion separate the phase space into regions of different binary collisions.

Things become interesting after the binary collisions are regularized. The
analyze of this problem uses symbolic dynamics because of the presence of
heteroclinic phenomenon. The first example of a unbounded solutions in
finite time [1] and of a super-hyperbolic motion [2] were given based on
the study of this problem.

The discussion in this paper follows the line of [3] and [4] where we
developed a method to study the phase structure of gravitational models.
We are mostly concerned with the global geometry of the phase structure
not just particular solutions with special properties. The symbolic systems
created by others [2] will come out as a natural by-product. Even for
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relatively simple systems such as the collinear three-body problem without
regularized binary collisions, questions about the phase structure are
usually interesting and non-trivial. For example, we may ask how the solu-
tions of triple collision separate the phase space into regions, what is the
geometry of these regions, and how they fit together in phase space.

We will divide our analysis three steps. At first we do not regularize the
binary collisions. A set of transformations is introduced to create fictitious
boundaries to make the phase space compact. Then we regularize one of
the binary collisions (the collision between m, and m;)} and analyze the
phase structure of this “half regularized” system. Finally, we regularize
the second binary collision (the collision between m, and m1,) to see how
the phase structure is transferred by this regularization. The method
developed in this paper is general and can be used to study other
gravitational systems with two degrees of freedom.

I. THE CoMPACT PHASE SPACE BEFORE REGULARIZING BINARY COLLISIONS

Three particles, m,, m,, m5, are on a line with coordinates x,, x,, x;
respectively with x; < x, < x,. The system has potential function
M m,  M,M, W My

v + + ,

T2 ¥23 Fia

where ri, =X, — X, Fi3=X;—X|, F'y3 =X3—X,.
The equations of motion are

dg/di=M 'p.  dp/dt=VU(q),

where g=(x,, x,, x1)", M =diag(m,, m,, m;). We can fix the center of
mass at the origin and set total linear momentum to zero, i.¢.

mixy+myx,+myx;=0
p1+p2+pa=0.
The system admits the integral of energy
p"™M " 'p2—Ulq)=h.

We will only consider the case of h <0, since we are interested in triple
collisions.

In order to compactify phase space we use the series of coordinate
changes introduced in [5]. Let

u'=2Uq), F=u"g, G=u'"p, dt/dr = u*?,



286 MEYER AND WANG

so (u, F, G, 1) satisfy
dujdr = —2(M G, VU(F)) u
dFjdt=M~'G+2(M 'G,VUF)) F (1.1)
dG/dt =VU(F)—(M~'G,VU(F)) G
and the constraints
G'™M'G=1+2uh (1.2)
12-UF)=0 (L.3)
as well as the integral of momentums
m Fi+myF,+mFy=0, G, +G,+G5=0. (14)

There are seven equations and four constraints, so the problem can
be reduced to three dimensions. The first step is to get rid of (1.4) by
introducing

Y\.=F,—-F,, Z,=G,/m,— G /m,
Y,=F;—F,, Z,=G3/my—Gy/m,

(1.5)

so that
G =—mmZ,+(my+my) Z)/(m +m,+m;y)
Go=my(m Z, —myZ,)/(m, +m, +mjy) (1.6)
Gy=my(m Z, +(m +my) Z,)/(m; +m,+m;)

and

P=(M"'G,VUF)
= —(mm,Z,/Yi+mymiZ,/Yi+mmZ, +Z,)/(Y,+ Y,)?). (1.7)

The differential equations for the new variables are

du/dr = —2Pu
dY,jdt=Z,+2PY,
dY,/dt = Z,+2PY,
dZ, [dr = —(m,+my)/Y3+my/Y3—my/(Y, + Y3)* = PZ,
dZ,/dt= —(my+my) /Y24 m /Y, —m (Y, + Y,)?— PZ,
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and the constraints are
T(Z,,Z,)+2ulh|=1 (1.8)
12-U(Y,, Y,)=0. (1.9)

P is defined by (1.7) and T(Z,, Z,) is defined by T=G'M 'G and (1.6).
T 1s a positive definite quadratic form in Z, and Z,.
We will eliminate (1.9) by introducing

Y, =rsin0, Y,=rcos 0, Zy=u'?

The angle # measures the ratio of the distance between m, and m, to the
distance between m, and m,. For any real solution of this system, we sce
that fe(0, z/2) and Z,>0. By (1.9)

r=2%(0)/(sin 8 cos #(sin @ + cos 0}),
Y(0)=m,m, cos O(sin 8 + cos §) + m,m, sin B(sin 6 4 cos )
+m,piycos @sin @,
sO
P= —[Z,m m,cos?Bsin 6+ cos 8)? + Z,mym, sin? 8(sin 0 + cos 0)>

+(Z, + Z,) m,m, cos” O sin? 01/4¥48). {1.10)

The equations for (6, Z,, Z,, Z,) are
dB/dr = sin @ cos 8(sin € + cos O)(Z, cos 8 — Z, sin )/2¥(8)
dZ,/dt=[ —(m, + m,) cos® O(sin 6 + cos 0)°
+m; sin? O(sin & + cos #)?

—m, cos? @sin’ 01/4¥3(0)— PZ,

dZ, /v =[m, cos? O(sin 0+ cos B)? D
—(m; 4 m,) sin? f(sin € + cos 0)?
—m, cos> fsin ]/4¥3(0) — PZ,
dZ./dt= —-PZ,
These variables satisfy the constraint
NZ,,Zy)+2|h Z5=1. (1.12)

Now the domain of these equations has been extended to §=0, /2 and
Z,=0.
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Now we will look at the flow on the boundary. Topologically, (1.12)
defines a two-dimensional disk D? in (Z,, Z,, Z,) space with the circle S'
where Z,=0 as its boundary (recall that T is positive definite.) So the
extended phase space is the cylinder D? x I, where I=[0, n/2]. Refer to
Figure 1.

Equation (1.11) defines non-trivial flows on the boundaries of this
cylinder. Now we will study the flow on these boundaries. When =0, the
equations for (Z,, Z,, Z;) are

dZ,/dt = (—(m,+my)/m m,+ Z3)jdm,m,

dZ,/dt =(1/my+ Z,Z,)/4m,m,

dZ.jdv=27,Z-/4msm,
with

T(Z,,Z,)+2\h Zi=1

This last constraint implies Z2 < (m, +m,)/m m, and hence dZ,/dt>0. It
is now easily to see that there are two critical points and that Figure 2
gives for the phase portrait for this boundary. For the case of # =n/2, the
picture is similar.

The rest of the boundary corresponds to Z, =0 (recall that when Z, =0,
Ulg)= =, so it 1s the collision manifold). By setting Z, =0 in equations
(1.11)~(1.13), we have:

dB/dt = sin 0 cos O(sin 0 + cos O)(Z, cos 8 — Z, sin 6)/2P(1)),
dZ,/dt=[ —(m, +m,) cos? ((sin 0} + cos 0)?
+m1, sin® O(sin 6 + cos 0)?
—m, cos? ) sin® 0]/4¥*(0) - PZ,,
dZ, j/dr = [m, cos? O(sin 6 + cos 0)?
—{(m, + m, ) sin? O(sin 0 4 cos #)?
—m, cos?® @ sin? 01/49%0) - PZ,,

FiGg. 1. The phase space.
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P, Py

P, P,

6=0 8e=n/2

F16. 2. The boundary of the degenerate configuration.

as well as
nz, z,)=1

It 1s not necessary for us to do a detailed analysis of the phase portrait
on the collision manifold, since the flow here is equivalent to the flow that
was obtained in McGehee [6]. The only difference is that, instead of
regularizing, we introduced sub-collision manifold for binary collisions.

Refer to the Figure 3 for the entire picture on the boundary of the phase
space. The well-known flow on the McGehee manifold is illustrated in
Figure 6. The lines /, and /, corresponds to binary collisions. To obtain our
Figure 3 from McGehee’s Figure 6 (i) cut the manifold alone the lines /,
and /, to obtain four lines (ii) collapse each of these four lines to a point
to obtain the points P,.P,, P,, P, (this gives the cylinder side of
Figure 6) (iii) now add the two disks depicted in Figure 2 to ends of the
cyhnder.

In Figure 3, Py, P,, P,, P,, E,, E_ are rest points. P, P, are sinks and
P,, P, are sources. All the solutions of binary collision of m, and m, tend to P,
and all the solutions of binary ejection of these two start from P,. Similarly, P,
represents the collision of m, and m,, and P,, the ejection of them.

E, and E; are hyperbolic fixed points corresponds to the Euler collinear
central configuration. E, has a two-dimensional stable manifold inside of

EC
roA =~
PR S )
|M 2 P:l ° <T\‘P
I - p by
» \(, ) Ve
E

Fi6. 3. The flow on the boundary of the phase space.
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the phase space and one-dimensional unstable manifold on the collision
boundary. Similarly, E, has two-dimensional unstable manifold inside and
one dimensional stable manifold on the boundary. Physically, all the real
solutions of triple collision form the stable mantfold of E_ and that of triple
gjection form the unstable manifold of E;.

As we mentioned before, solutions inside of phase space will start from
one of the ejection points and end in one of the collision points. The triple
collision solutions form a two dimensional embedded manifold inside phase
space. This manifold divides the three-dimensional phase space into regions
of solutions of different binary collisions.

Now consider the flow inside the phase space. The phase space is a
cylinder (see Figure 3). Think that the boundary #=0 is the base and the
collision manifold is the side of the cylinder.

Refer to Figure 4. Take a sufficiently small sphere (two dimensional
surface) centered at P, and denote the intersection of this sphere with the
boundary ¢=0 by 1 and that of the sphere with the collision manifold
by 1'. Call the portion of the sphere, which is in the phase space, S. We see
that S is an quarter-sphere with 1 and 1’ as its boundary. Denote the
interior of S by $* (=S\(1u1").

Since P, is an source, we can chose the sphere such that it is transversal
to the vector field so all the vectors are pointing outward on S. Let W’(P)
and W"(P) denote the stable and unstable manifold respectively of a
hyperbolic fixed point P and

A=SAWNP,), W=SAaW¥P,), C=5nW%E,).

We see that (4 U WU C)n §* = S5*. The solutions starting from 4 will end
in a binary collision of m, and m, and those starting from W will end in
a binary collision of m, and m,. Likewise, the solutions starting from C
will end in a triple collision,

LemMa 1.1. (a) For any pe A (or W), there is a neighborhood U( p) of
pin S such that U{p)<= 4 (or W).

(b) C consists of one-dimensional curves in S*.

F16. 4. The surface around P,.
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Proof. Part (a) is true since P, and P, are sources. Part {b) is true since
W E,)is a two-dimensional embedded manifold inside of the phase space
transversal to the surface S. |

Given an open arc in S* we will chose a parameterization by giving a
map c¢(t): (—oc, +0)— S* The choice of parametrization is arbitrary.
Define the x-limit and w-limit set of an arc given parametrically by «(1):
(—oc, +oc)—> S* by

a={peS: there exist 1, — — oc, such that ¢(z,) — p}
and

o ={peS: there exists 7, —~ -+ o0, such that ¢(z,) — p}.

We also say «(¢) connects x and w and that « and w are limit points of c.

Take a path connected branch B of C in $* B is not a circle inside of
S* since it is the intersection of a two dimensional stable manifold and a
transverse cross section, Similarly, B has no limit point inside of S$* or on
the boundary 1. Therefore, only 1, the intersection of S with the collision-
boundary, contains the limit points of B.

Refer to Figure S. There are two special points @,, ¢, on 1', namely
Q, e WE;) and Q,e WY E_.). The segments aQ,, Q,b of 1" are in 4
and the segment @, @, is in W, see Figure 3 also. So Q,, @, are the only
candidates for the limit point of B. Because the w(a«)-limit set has to be
connected in S, the limit set has to be either Q, or Q,.

We call a branch B of C a regular branch if B connects Q, and Q,;
otherwise, we call it a loop.

LEMMA 1.2. There is one and only one regular branch. It is also the only
branch of C, which has Q, as its limit set.

P, and P, are sinks so the sets of the points tending to them are open
and therefore 4 and W are open in S. 4 and W must be separated by C.

F1G. 5. The phase structure of the unregularized system.
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Since segment Q, @, 1s in W and the segment «Q, is in A one component
of C must connect @, and @, (a regular branch exist).

WH(E,) is an embedded two-dimensional submanifold and @,€ W*'(E,).
Two branches of C having Q, as limit sets would contradict the local
structure of W*(E,) at E, given by the stable manifold theorem.

The loop structure around @, might be quite complicated, since it
depends on the intersections of W*(E;) and W*(E.) which is a global
feature. We will discuss it in detail in the next section, but a complete
answer seems out of the question at present. This completes our discussion
of the non-regularized system.

II. REGULARIZATION OF ONE BINARY AND CHARACTER NUMBER

According to McGehee [ 6], the triple collision manifold for the collinear
three-body problem is shown in Figure 6.

The lines /,, I, correspond to the binary collisions of m,, m, and m,, m;,
respectively. £, and E; are as before. On this two-dimensional surface, two
branches of W*(E_) are denoted as §* and . In this picture, §* goes to
1, first, and 7~ to /,, then they will go back and forth between /, and /, and
finally end up going up one of the arms. Assume §* goes to the left arm
and §~ the right arm. Also denote the number of times $* hits /, by u.
u=l

Consider the phase portrait in Figure 3. By regularizing the binary colli-
sion of m,, m,, we replace the right-half of the phase space by the right-
half of the McGehee’s manifold—interiors included. Therefore, the phase
space looks like Figure 7.

Now the final evolution i1s changed for some trajectories in this half-
regularized system. In fact, four kinds of final evolutions are possible for
the solutions in the interior of the phase space:

' < .
P Y
f// 7:c<\\
¥ / \

FiG. 6. The flow on the McGehee manifold.
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Fi6. 7. The half-regularized phase space.

(a) It will tend to with binary collision between m, and m,.
{b) It will tend to a triple collision.

(c) The particule m,; will approach infinity with non-zero velocity
(the hyperbolic solution).

(d) The particle m, will approach infinity with zero velocity (the
parabolic solution).

We call a point p hyperbolic (or parabolic) if p is on a hyperbolic
solution (or parabolic solution), otherwise we call the solution an elliptic
solution and the corresponding points elliptic points. The following lemma
is proved in [7].

LemMma 2.1, (a) The set of hyperbolic points is open.

(b) The set of parabolic solutions is the stable manifold of a periodic
orbit at infinity and this manifold is real analytic. Furthermore, for any
parabolic point p, and any neighbourhood U( p), there are two points p, and
Pa. in U(p) such that p, is hyperbolic and p, is elliptic.

For any point p inside of the phase space, let
O(1, p) = the solution at time 7 which starts from p at 7 =0;
O(p)={0(1,p): 0 <1< 0};
H={p: pis a hyperbolic point}; 2.1
P={p: pisa parabolic point};
E={p: pis an elliptic point}.
Let N(p)=number of the binary collisions of m,, n; in the set O(p).
Call N(p) the character number of p. N(p)= o if p is hyperbolic or

parabolic point. Otherwise, N( p) is finite and the solution tends to either
a binary collision of m,, m, or triple collision.
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Refer to Figures 7 and 8. As before, take a sphere around P, to obtain
the surface S, its interior S* and the two boundary curves 1 and 1. On 1’,
the points a, b, Q,, Q,, are as before, but define the point Q, as the inter-
section of ¥+ with 1. For peaQ, v Q,b, N(p)=0; for pe 0, Q0,, N(p)=1;
and for pe @, Q.. N(p)= . Also let

S*nH=2%,, S*nP=2,, S*nE=2X,. (2.2)
Intuitively, X', separate 2';; and 2 in S™*.

LEMMA 22, (a) X, consists of one-dimensional curves in S.

(b) For any Be X, a path connected branch of X, containing B is
either a regular branch connecting Q,, Q- or a loop taking both of its limit
sets as Q, or Q.

(¢} Zp, locally separates S*; on one side N(p)= oc and on the other
side N(p) < oc

Proof. (a) and (c) are direct consequences of Lemma 2.1. The argument
for (b) is similar to the corresponding argument given in the first
section. |

Let Z=S*n W*'E,).

LEMMA 23. (a) ZX consists of one-dimensional curves in S*.

(b) Given pe X, there is a neighborhood U(p) of p in S*, such that
N(p)S Ny N(p)+1 for any qe U(p). Furthermore, there are ¢, q,€
U( p), such that N(q,)=N(p) and N(g,)=N(p)+ 1.

(c) For any path connected component B of X in S*, B is either a
regular branch connecting two of the points Q,, Q,, Q5 or a loop around Q,

F1G. 8. The geometric structure on S.
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or Q. Furthermore, there is only one branch which is ends at Q,. It connects

Q, and Q,.

Proof. Parts (a) and (c) follow from an argument similar the argument
given in the first section.

peZ is a point on the stable manifold of E, so the flow will take any
neighborhood of p arbitrarily close to the unstable manifold of E, by the
A-lemma. Some points of the neighborhood will follow $* and experience
an additional binary collision before approaching the sink P, and some
will follow 7~ and be attracted straight to the sink P,. For those points ¢
that follow $* we have N(g)= N(p)+ | and those that follow $~ we have
N(g)=N(p). See Figure 7. ||

According to Lemmas 2.2 and 2.3, 2'u X, divides §* into mutually dis-
joint regions with different character number N. This will give a very rich
geometric structure on S* which is our primary object to study.

We will call a path connected component of S*\(ZuX,) a unit. If a
unit has a regular branch for one boundary we call it a strip, otherwise, we
call it a ring. We note that a strip will have two and only two regular
branches in its boundary. The boundary of a ring will contain an outer-
loop and, may be, a bunch of inner-loops as shown in Figure 9. If an ring
has no inner loop, we call it a simple ring.

ProrosITION 2.1, (a) N(p) is constant on a unit. (b} For any integer
k=0, there exists a strip in S, such that the character number of this strip
is k.

Proof. Since the character nummber can change only on the points of
Zu X, part (a) is clear. Part (b) follows from part (a) of Lemma 2.3. |

From now on, we will use a triplet (k,, k,, k3 ) to represent a unit, where
k, < k, are the possible character numbers on the boundary of the unit and
k, is the character number of interior of the unit.

ourter loop
Q, Q, Q

INNER LOOPS J

STRIP: SHADOWED RING: SHADOWED

Fi1G. 9. Picture of units on §.

505:119:2-4
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PrOPOSITION 2.2. (a). Units on S* satisfies the restriction:
ky<ky<k,<k, +1

That is, any unit on S* has one of the following three representations:
(k, k+ 1, k+ 1), (k, k, k); (k, k+ 1, k)-~-see Figure 9.

(b) For any given integer k =0, there is a strip in form of (k,k+1,
k +1). Furthermore, the regular branches of its boundary have different
character number.

Proof. Part (a): k, <k, follows by definition of a triplet, k, <k, and
k, <k, +1 follow from Lemma 2.3. Part (b): The character number must
increase from 0 to infinity, and Lemma 2.3(b) shows that the increment is
at most one when crossing a boundary, so every integer must be obtained.
Furthermore, the strip described in (b) is the only choice which will
increment the character number globally. Therefore it must occur at least
once for any k20. |}

Ideally only the kind of strips described in (b) occur, in which case the
character number of the strips will increase monotonically. In next section,
we will study this case in detail, and show that, if this really happens,
2 will have no loops and the loop structure of 2 will be simple.

Now turn to the rings. First note that all loops form a partially ordered
set by inclusion, i.e., if B, and B, are loops then we say B, < B, if B, is in
the interior of B,. So, for a given ring B, we always have B, < B, where
B, is any inner-loop of B and B, is the outer-loop of B.

Take a strip U and a loop B, on S. We say that B, is confined by U
either B| is on the boundary of U or B, < B,, where B, is on the boundary
of U.

PROPOSITION 2.3. Consider a strip with expression (k,, k., k+). If a
parabolic loop B< X, is confined by the given strip, then:

(a) There exist infinite sequence {B,} < X
B >B,> .->B,>B,, > --->B

(b) For any integer k >k, there is a ring with expression (k, k41,
k +1). This ring has a member of the sequence in (a), say B,, as its outer-
loop and B, | as part of its inner loop. Furthermore, the character number
of B, is k and that of B, is k+ 1.

The proof is similar to the proof of Proposition 2.2.
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Now turn to the geometry of W7 (E_ ) W*(E;) since the structure on
S* depends heavily on this intersection. The rest of this section is devoted
to a discussion of this dependency. Since we are interested in the geometric
picture, we will give a “geometric description” rather than a “formal defini-
tion and proof presentation”. This will make the discussion easier to under-
stand. However, one can add technical details to make the discussion
formal and complete.

Assume c(t):(—o0,0)—>S* i1s a given branch B of 2 and
lim, . c(t)=Q. Since W°E_) is a real analytic manifold, B will be
smooth at Q. Denote by ¢* ={c(t): t>M}, ¢~ ={c(t): 1 < —~M}, where
M >0 is a large constant. We call ¢* and ¢~ the taifs of the branch B. In
general, we will denote a tail of B as T(B) (or simply T). If Tis ¢* and
Q is the o-limit of ¢(¢), we will say that T is at @. Similarly, we also say
Tisat @Qif Tis ¢~ and Q 1s the a-limit. Note that we can take M
arbitrarily large for the given B.

Refer to Figure 10. For two given tails 7, and 7, at Q,, take a sphere
U, centered at Q,, so U, nS*is a simple curve L. As in the picture, ,, «,
are the end points of L. We can make the radius of U, so small that L
intersect 7, and T,. Take p,e LT, p,eLnT,. Wesay T, < T, if p, is
closer to 2, on L than p,. One sees that this definition gives a well-defined
order between all the tails at Q, since they are smooth at @, and are
mutually disjoint.

We can do the same at E; and define an order among all the orbit on
W*(S*). Refer to Figure 10, we see /| </, where /,,/,e W"(E;}.

Refer to Figure 11. T'is a tail at @,. Remember Q, is on y ~, one of the
branches of the stable manifold of E,. T will first follow y*, then it will
follow one of the orbits of the /; on W*(E,). Finally, its image is the
segment 7' in this picture.

A similar description can be given for the tails at Q,. Since Q4 is on y*,
the other branch of W*(E;), a tail T at @, will first follow y*, reach the
other side of W*(E;), then follow one of the orbit /, on W*(E,).

LONW"(E))

FiG. 10. The order on S and W*(E)).
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|2 AN
the image of ¥ T \ I the image of T /
~_ \_/,& v
/
Fic. 11. The flow of tails under the flow.

ProposITION 2.4. (a) Assume T,, T, are tails at Q, (or Q4), T\ < T,
and that T, follows Iy, T, follows ly,, where l7,, 1 € W*“(E,) then I <lI;..

(b)  For any given tail T, Iy € W*(E;) n W'(E,).

(c) For two tails T and T~ of a loop B at Q, (or Q4), I+ and |-
are different.

Proof. The claim of part (a) is topological and can be checked in small
neighborhood of E;. So it is enough to check it for the linearized system
at E; which is readily done.

If (c) were not true the local structure of W*E. ) at E. would be
destroyed. For (b), /€ W*(E;) by definition. /> must end up at E_ since all
the points on 7"’ do so and they have the same finite character number. If
{; ends up with P, a neighborhood of /,, which will include points on 7",
will do the same. This is a contradiction. If /- ends up with parabolic or
hyperbolic final evolution, we will have infinitely large character number
nearby /,, which will contradict to the fact that the character number on
T is finite. [

Proposition 2.4(a) will be crucial for “reading off” the geometric struc-
ture from the intersection graph, which we are going to give next.

Refer to the part of W*(E,) in Figure 10. To avoid tedious technique
details, we will assume that L n WH“E;)n W'(E,) is a discrete set. It will
become clear when the discussion is finished that the whole argument can
be modified when the intersection is more complicated.

Let H be the e-neighborhood of L inside of the phase space where ¢ is
sufficiently small—see the curve L around E; in Figure 10. The local
unstable manifold of E; will divide H into two parts: H* and H ~. We call
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H * the positive side and H ~ the negative side of L. For any orbit / on
W*(E;), | intersect L once and only once.

Now refer to Figure 12. Take a curve L' in W*(E,) near E_, such that
it intersects all of the solutions in W?*E_ ) transversely. If pe
L~ WH*E;)n W*(E,), then there is a p’e L' with p and p’ are on the same
orbit.

Starting from p’, go on the curve L' until another solution /e W*(E,) n
W E,) is found. Let pi=I/nL" and the segment p’p; on L be B'. By
pulling B’ backward under the flow, we will obtain another curve B, inside
of the phase space, which connects p and p,, where p, =/~ L. Note that
the interior of B, does not intersect W*(E;).

There are three possible for By:

{1) The tails of B, at p and p, are both in H*.
(2) The tails of B, at p and p, are both in H ~.
(3)

The tail of By at pisin H* (or H ™) and that of p, is in H~
(or H*).

ProposiTiON 2.5. Following the flow backward, (1) gives a loop at Q,,
(2) gives a loop at Q and (3) gives a regular branch connecting Q| and Q.
on S*.

Proof. Following the flow backward, we see that a tail of By in H*
follows y* backward. This will give a tail at @,. Similarly, a tail of B, in
H ~ follows y—, and gives a tail at Q.

The flow is reversible. So we again have the four possible final evolutions
listed at the beginning of this section when we follow the flow backward.
We need to show that all the points on B, will end up with P,. Note that
on B,, we have no points of triple ejection. So the only other option is a
point p on B, such that the particle », came from infinity for the solution

s Bo
E //\\/

/ g : P

FiG. 12. The intersection of W*(E,) and W'(E, ).
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passing through p. Count the number of binary collision between m, and
m; this solution experienced before p. It must be infinite. Now for nearby
tails of B, this number must be finite. So it changes at some point of B,.
But such a point must be on W*(E;), which is impossible. |

Now start from p), and go on L’ in the given direction. We will meet
another point p5 of W} (E)n Wi(E). We can do the same pulling back
operation for the new segment p'p, as for the B’ above. Keep going, we
will result a fully extended curve 4 winding around L inside of the phase
space.

Refer to Figure 13 where we depict L as a line segment and the curves L
and A lying in the same plane. Although L and A are, in general, curves in
three dimensional space, we can use this representation since the “sides” of
L are well-defined. The way the curve A (represents W*¥(E_)) winds around
the segment L (represents W*(E;)) charachterizes W*“(E;) n W'(E,). We
will call this picture the intersection graph. Of course the intersection graph
might be very complicated. Unfortunately, there is no way, except numerical
experiments, to determine the real graph for the collinear three-body system.
Once the graph is determined, we can “read off” the geometric structure on
S* according to Proposition 2.4(a) and Proposition 2.5.

The i1deal graph is shown in Figure 14(a), where A4 spirals around L to
create regular branches only. In this case there are no loops on S*, and we
will see in next section that the only possible strip in this case have the
expression {k, k + 1, k+1). This gives a nice structure with the character
number increase monotonically on the strips as shown in Figure 14(b).

As in Figure 15(a), intersections like a, b will give loops at Q, and Q;
alternatively. A non-transversal intersection like d will give two loops at Q,
or Q;. Figure 15(b) shows what happens on S* due to the intersections
shown in Figure 15(a).

Figure 16(a) illustrates a more complicated situation. Again Figure 16(b)
shows what happens on S* due to the intersections shown in Figure 16(a).
Again with the help of Propositions 2.4(a) and 2.5, we can look at the

Fic. 13. The intersection graph.
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(a) )

F16. 14. The ideal intersection graph.

(a) (o)

FiG. 15. Intersections that give loops.

(a) )

FiG. 16. Intersections give strip and loop structure.
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intersection graph and transfer the information to the picture on S*.
A complicated intersection graph reflects complicated intersections of
WH*(E;) and W*(E,), therefore a complicated structure on S*.

ITII. INTERACTION AND FINAL EvVOLUTION

First we will look at the geometric structure at P, (the collision point of
m, and m,) and the image of $* under the flow. Refer to Figure 17.
Mimicking the construction of S at P,, we can take a quarter sphere § at
P,. As in this picture, §* is the interior of S, 7 and 7 are the boundaries
of §* on the collision manifold and the boundary 8 =0 respectively (refer
back to Figure 6). 7%, § are two branches of W*(£,) and 7 is one of the
branch of W*(E;) on the collision boundary. We define

O,=7*nly  Qy=7-nl;  Q,=7nT.

Following the flow backward, we also have four possible final evolu-
tions: binary ejection of m, and m,; triple ejection; m, coming in from
infinity with positive velocity (hyperbolic catch); m, coming on from
infinity with zero velocity (parabolic catch). We can define, A P E
analogous to H, P, E as defined in (2.1), (2.2) in Section (II), and we can
define

S*nA=Z%,; §*nP=5%, S*nE=Z, S*nW4E)=%,
Also, we have the corresponding definition of the character number N( p)
for a given point pe S*, but this time N( p) counts the number of collisions
of m, and m, for 1 <0.

All the discussions and the results in Section II can be carried over to
this new situation. So we conclude a similar geometric structure on S'*.

Fic. 17. The surface § around P,.
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One sees that we can also use the same terminology as in section (II) to
describe this structure. In fact, since the system is reversible, we have:

PROPOSITION 3.1. The geometric structure on S* is exactly the same as
that on S*.

If the character number for an unit U on S* is finite, U will have an
image on S* under the flow; denote it by F(U). We see that F(U) has to
be an unit on S* Similarly, if we follow the flow backward, the image of
an unit U on §*, which has a finite character number, will be another unit
on S*. Of course, for a unit of hyperbolic points on S*, we can not find
its image on S*. But in this case, we can find an identical unit on S*,
which is an unit of hyperbolic catching.

For more details of the map F, we need further study the structure of the
units on S. Recall that a regular curve is a simple curve connecting @, and
-, and a loop is a simple curve with both of its ends on either Q, or Q,.
We will call a curve C a basic curve if C is either a regular curve or a loop
on S.

Take a unit U on S, and a basic curve C from the interior of U. C will
divide U as well as the boundary of U into two parts. Next lemma claims
that for a unit U with expression (k, k+ 1, k+ 1), the boundary of U
consists of two consecutive parts: one with character number & and the
other with character number k£ + .

LeEMMA 3.1. For a unit U with expression (k,k+1, k+ 1), there is a
basic curve C, which divide its boundary into two consecutive parts, such that
the character number of one part is k and that of the other part is k + 1.

We postpone the proof of this lemma for a while.
For a unit with expression (k, kK + 1, k + 1), there are three possibilities:

{a) U 1s a strip. One of the regular branches of the boundary has
character number k. The other regular branch has character number & + 1.
We will call such a strip a regular strip.

(by U is a strip. Both of the regular branches of the boundary have
the same charachter number (either k& or £+ 1). We will call such a strip
a strange strip.

(c} Uis a ring.

DerFINITION 3.1. For a unit U on S with expression (k,k+1, k+1),
take a simple curve / inside of U: .

(a) [1s called a horizontal-path if 1 is a basic curve, and / divides the
boundary into two consecutive parts as described in Lemma 3.1.
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(b) [is called a vertical-path if [ connects two points p,, p, on the
boundary of U, where p, and p, have different character numbers.

For a unit with expression (k, kK + 1, k) or (k, k, k), the definition of
these two terms are easier:

DerFmNITION 3.2. For a unit U on § with the representation (k, & + 1, k)
or (k, k, k), take a curve / inside of U:

{a) [lis a horizontal-path if | is a basic curve.
(b) [1is a vertical-path if | connects two points on different branches

of the boundary U.

Figure 18 shows typical cases of horizontal and vertical path.

DerFiNiTION 3.3. Take a strip U and a curve / inside of U. We call / a
vertical-curve if | connects two points on the different regular branches of
the boundary of U.

Note that we have similar definitions for units on S*. We now have:

PROPOSITION 3.2.  Assume that U is a unit with expression (k,k+ 1,

k+1):

(ay If Uis a regular strip, F(U) will be a regular strip on S* with the
same expression.

(b) If Uis a strange strip, F(U) will be a strange strip on S* with the
same expression.

(¢) IfUisaring at Q,, F(U) will be a strip on S* with the expression
(k+1, k+ 1, k+1).

(d) If Uis aring at Q., F(U) will be a strip on S* with expression
(k, K+ 1, k).

(e) The image of a vertical-path is a regular-curve on S* and the
image of a horizontal-path is a vertical-curve on S*.

FiG. 18. The horizontal and vertical path.
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Also, we have similar results for units with expression (k, k¥ + 1, k) and
(k, k, k):

ProposITION 3.3, (a) If U is a strip with expression (k, k, k), F{(U) will
be a ring at Q, with expression (k —1, k, k).

(b) If U is a strip with expression (k, k+ 1, k), FLU) will be a strip
at Q, with expression (k, k +1, k+1).

(c) F maps regular-curve to vertical-path and vertical-curve to
horizontal-path.

ProposiTioN 3.4. (a) If Uis a ring at Q, with expression (k, k +1, k),
F(U) will be a ring at Q, with expression (k +1, k+1, k+1).

(b) If Uis a ring at Q, with expression (k, k, k), F(U) will be a ring
at Q, with the expression (k, k, k).

(¢) If Uis aring at Q3 with expression (k, k+ 1, k), F(U) will be a
ring at Q, with expression (k, k + 1, k).

(d) If Uis aring at Q4 with expression (k, k, k.), F{(U) will be a ring
at Q, with expression (k—1, k, k —1).

(e) The image of a vertical-path is a horizontal-path, and that of a
horizontal-path is a vertical-path.

Proposition 3.2-3.4 provide a detailed correspondence between the units
on S and S*. Furthermore, the last statement from each of these proposi-
tions described certain “hyperbolic behavior” of the flow-defined map.
Although no metric is involved on S and S*, we can still recognize the
“hyperbolicity” topologically: each horizontal-path is “compressed” and each
vertical-path is “stretched” by the flow defined map F. Refer to Figure 19, where
a regular strip with expression (k, k + 1, k + 1) is presented. B, represents all the
boundary branches with character number k + 1, and B, represents that with
character number k. From S to S'*, the horizontal-paths are “compressed” and

FiG. 19. The action on a unit.
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the vertical-paths are “stretched”. As an extreme case, two points, Q and
Q', are “stretched” to become two lines. Meanwhile, two lines, B, and B,
are compressed to two points, O and @' respectively.

One see that this “hyperbolic” behavior of the mapping F from S to S*
implies, potentially, complicated dynamic phenomenon. It corresponds to
the first step to construct a horseshoe. To complete the construction, one
need to overlap the image on S$* back on the original units. This is
exactly what the regularization of binary collision of m, and m, will
accomplish. Now turn to the proof of all these claims we have made in
this section:

Proofs of Lemma 3.1 and Proposition 3.2-34. We have many claims in
Proposition 3.2-3.4, but fortunaltely the argument are similar for most of
the cases involved. In fact, we are going to provide a basic geometric
picture behind all of the claims as well as their proofs.

The overall picture is Figure 17, where all the rest points and the connec-
tions among them are depicted. Take a loop [ with two tails T, < T, at Q,.
Remember that /is on W*(E_). We see that, following the flow, / will go
with y* first. When it “reaches” E;, the tails of the loop will split. 7, will
go with /;;, and T, with /,,. Now the situation is as in Figure 12, where
B, is the image of the loop /, p=I!;,nL, p=1i;. N L

Stay with Figure 12. Following the flow, the loop B, will become p'p}
and finally converge to E_.. Meanwhile, the arc pp, on L will become a
curve connecting p' and p| nearby E.. This arc will keep going to meet S*
where it will become boundaries for units on S*.

As a example, we take a ring at Q, on S. To simplify the discussion, we
assume that the number of its inner loops is finite. Take the curve L again
as in Figure 12. As described above, every boundary loop will go along y*
in Figure 17 first, then split on W*(E;) according to Proposition 2.4(c).
Together with Proposition 2.4(a), we will have Figure 20 for what is
between £; and E, . The straight line stands for L and all the arcs stand for
the image of boundary loops. Also, by Proposition 2.4(b), all of the dots

FiG. 20. The image of a ring under the flow.
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on L are in W*E,)~ W*E,), and the shaded area is the interior of the
ring.

The boundary of the shaded area consists of all the arcs and a set of
intervals of L. One see that, with the flow, all the arcs will converge to E_,
and all these intervals of L on the boundary will go forward to form the
new boundary of a unit on S*, which is the image of our original ring
on §.

Now let us have a closer look at these intervals of L on the boundary.
Denote such an interval as [ ¢, d], where ¢, d are end points. Again we can
associate a triplet (k,, k., k;) to [¢,d]. k, <k, stands for the character
number of ¢ and d, and k, for the character number of the interior of
[c.d]. We will still have restrictions k, <k, <k,<k,+1. So the only
feasible triplets are (k, k. k), (k. k+ 1, k), (k, k+ 1, k+1).

For the case of (k, k, k), both ends of the interval will go along 7~ in
Figure 17 after reaching E,. So its image will be a loop at J, on S*. It is
not the case for the case of (k, k+ 1, k). After reaching E_, the interior
points close to ¢ and d on [ ¢, d] have experienced only k binary collisions
between m, and m;. Following ¥~ never contributes another binary colli-
sion of m, and m, to the solution. So both of the ends will go along 7.
This will give a loop at {, on S* Similarly, an interval with triplet
{k, k+ 1, k+ 1) will give a regular curve on S*.

Here comes the argument for Lemma 3.1: Since a unit on S* has either
two (strip) or none (ring) regular branches on its boundary, we will have,
correspondingly, two or none such intervals we just described with triplet
(k, k+1, k+1). For a unit on S with expression (k, k+1, k+1), the
otherwise case of this lemma will give more than two such intervals, so will
induce contradiction.

One can see the motivation for the definitions of horizontal and vertical
path. In the case of a unit (k, K+ 1, k+ 1), a horizontal-path is a curve,
such that following the flow as in the situation of Figure 20, it becomes a
curve connecting the two intervals on L with triplet (k, k+ 1, K+ 1). It 1s
easy to see that its image will be a vertical-curve on S*.

With all these pictures in mind, more detailed correspondences between
S and S* could be obtained. They are all listed in Proposition 3.2-34. |

Now we will regularize the binary collision of m, and m,. Recall the
McGehee’s manifold in Figure 6. We will consider the case of u = 1 at first.

By regularizing the binary collision of m, and m,, we introduce a map from
S* to S*. Denote this map by R. R corresponds to the second step in the
construction of a standard horseshoe map—-the overlap of $* on S*.

Refer to Figure 21. According to the flow on McGehee’s manifold, we
will have P,, P, on [’ P, is on the arc Q,Q, and P, is on Q,b. Where

PI:R(QJ)s P3=R(Q3)-
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Fi. 21. The action of R.

Now take strips (k, ¥+ 1, k+ 1) on S* for all the positive integers & and
denote it by U,. F(U,) will be a strip on §* with expression (k, k + I,
k + 1) by Proposition 3.5(a). Under the map R, F(U, ) becomes a strip V¥,
which overlaps all the U/s on S* as shown in Figure 22.

This structure implies a symbolic system with all of the positive integers
as its alphabet set in the usual manner. In fact this picture will also give
periodic solutions and much more.

Note that we only considered a part of the strips and their image in this
picture. The actual structure on S* might also include strips with the
expression (k, k+ 1, k) and (k, k, k) as well as the possible rings. So the
overlap introduced by R will cause a situation which will be far more com-
plicated than the typical horseshoe map. Analytically, one can even give the
first order estimation of the map R. (By introduce S* and S* identically,
and treat the regularization as an elastic bounce). But this won’t help to
improve our understanding of the map R°F because we can do very little
to determine the details of the geometric structure on S* analytically.

One does not always get the typical horseshoe illustrated in Figure 22 for
the collinear three-body problem. For most of the combinations of masses,

F16. 22. Horseshoe map in the case of p=1.
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4> 1.In this case, R(Q, ) and R(J,) will land on the arc Q,b. So the over-
lap in Figure 22(a) does not happen. However, we can track the image of
0, and J, under the iteration of R°F as many times as we want, and read
the images directly from McGehee’s manifold. We see that, referring to
Figure 6, finally (R°F)* (J,) will be in the arc Q, Q, and (R°F)* () will
be in the arc Q,b.

It is unfortunate that when we iterate R°F, we have no control on the
image of the rest of the strip F(U,). It would be very nice if all of the
(R°F) (U, ) were elliptic points. Where 0 <i< u. The horseshoe illustrated
in Figure 22 would happen for the map (R°F)*. But it does not seem to be
the case.

Although the whole picture on S* might be very complicated and very
hard to handle for the case of x4 > 1, the existence of a symbolic system in
this problem is not as hard to establish-—we do not even need much of the
discussions in Sections I and III. A detailed argument will be presented
elsewhere.

REFERENCES

1. J. N. MateeEr anp R. McGeseg, “Solution for Collinear Four Body Problem which
Becomes Unbounded in Finite Time,” Lecture Notes in Physics, Vol 3, pp. 573-597.
Springer-Verlag, New York, 1975,

. D. Saart AND Z. H. X1a, Oscillatory and super-hyperbolic solutions in Newtonian system,
J. Differential Equations 82 (1988), 342-355.

3. K. R. MEYER AND Q. D. WaANG, The global phase structure of the restricted isosceles three-
body problem with positive energy, Trans. Amer. Math. Soc., to appear.

4. K. R. MEYER AND Q. D. WanG, The global phase structure of the three-dimensional
isosceles three-body problem with zero energy, in “Hamiltonian Dynamical Systems:
Theory, History, and Aplications” (S. Dumas, K. R. Meyer, and D. S. Schmidt. Eds.), IMA

Proceedings Series, Springer-Verlag, New York. to appear.

5. Q. D. Wana, The global solution of the N-body problem, Celestial Mech. 50 (1991). 73- 88.

6. R. McGesEk, Triple collision in the collinear three-body problem, Invent. Math. 27 (1974),
191-127.

7. R. McGEHEE, A stable manifold theorem for degenerate fixed points with applications to
celestial mechanics, J. Differential Equations 14 (1973), 70-88.

(5]



