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1. INTRODUCTION 

Deprit and Deprit-Bartholome [5] computed the normal form for the 
Hamiltonian of the planar restricted three body problem at the Lagrange 
equilateral triangle equilibrium point up to terms of order 4. This nor- 
malization was carried out for all mass ratios p smaller than Routh’s 
critical mass ratio p1 = i( 1 - J&/9) except for two values p2 and Pi. At p2 
and ,u~ the ratio of the linearized frequencies is 1: 2 and 1 : 3, respectively, 
and so low order resonance terms appear. This normalization was carried 
out in order to apply the KAM theory to prove the stability of this 
equilibrium point. From the coefficients of the normal form they computed 
a quantity D, (defined below) which when non-zero establishes the stability 
of the equilibrium point. They found that D, # 0 for 0 -CP < p,, ,u # p2, 
p,and p(,. The value ,u, does not correspond to resonance but is simply a 
point where the quantity D4 changes sign. In this paper we shall establish 
the full stability of the Lagrange equilibrium point in the planar restricted 
three body problem even in the case when ,U = P,. We do this by computing 
by machine the normal form up to terms of order 6 and then applying a 
theorem of Arnold [3] which establishes the stability of the equilibrium 
even in degenerate cases. 

Russman [lo] announced a theorem which implies that the equilibrium 
is isoenergetic stable when p = p,. By “isoenergetic stable” he means that 
the system is stabie only on the energy surface defined by the energy at the 
equilibrium itself. Unfortunately there is not even an indication of the 
proof. 

Arnold announced his theorem in a Doklady note with only a sketch of 
a proof. The sketch indicates that his proof requires completely redoing all 
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the estimates ordinarily needed to prove the theorem from scratch. Because 
of this we present an argument in Section 2 which reduces Arnold’s 
generalization to a simple application of the invariant curve theorem. 

In Section 3 we present the full normal form up to terms of order 6 and 
show that a second quantity D, # 0 at pL,. This computation was done by a 
computer package developed by the second author. First the value of ,u, 
was computed where the coefficients were carried as floating point numbers 
as is quite common in the celestial mechanics literature. It is more precise 
and pleasing to know D, as a function of ,U and then to evaluate it at the 
critical value ,u~ in order to establish the stability criteria. Therefore the 
computation was carried out using rational numbers as coefficients. Since 
this introduces a multitude of new terms and far greater complexity a full 
discussion of the method is given in Section 4. 

2. ARNOLD'S THEOREM 

Consider a Hamiltonian H in the canonical coordinates x,, s2, J,, y2 of 
the form 

where 

H=H,+H,+ ... +H,,,+H* (11 

(i) H is real analytic in a neighborhood of the origin in R4; 

(ii) HZk, 1 6 k 6 n, is a homogeneous polynomial of degree k in Ii, 
I,, where 

(iii) H* has a series expansion which starts with terms at least of 
order 2n + 1; 

(iv) H,=o,I, - co2 12; wi positive constants; 

(v) H, = 4(Ac - 2BI, I2 + CG); A, B, C constants. 

There are several implicit assumptions in stating that H is of the above 
form. Since H is at least quadratic in or,..., yz the origin is assumed to be 
the equilibrium point in question. Since H2 = co1 I, - o,Zz is the 
Hamiltonian of two harmonic oscillators with frequencies oi and 02, the 
linearization at the origin of the system of equations whose Hamiltonian is 
His two harmonic oscillators. Since H2 is not sign definite a simple appeal 
to Liapunov’s stability theorem cannot be made. Since Hz,..., Hzn depend 
only on I, and Z, the Hamiltonian is assumed to be in Birkhoffs normal 
form up to terms of degree 2n. This usually requires some non-resonance 
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assumptions on the frequencies o1 and w2, but for our purposes it suffices 
to assume that H is in this form. Arnold’s theorem [3] is: 

THEOREM. The origin is stable for the system whose Hamiltonian is (1) 
provided for some k, 2 d kdn, DZk = HZk(tuZ, ol) #O or equivalently 
provided Hz does not divide HZk. 

ProoJ: Assume now that D, = D, = ... = Dznp2 = 0 but Dzn #O. Under 
this assumption there exist homogeneous polynomials Flk, k = 2,..., n - 2, 
of degree k such that HZk = H2 FZk _ *. So the Hamiltonian (1.1) becomes 

H=H,(l+F,+ ... +F,,-,)+H2,t+H*. (1) 

Introduce canonical action angle variables (I,, I>, #I, &) by 
Ii= 4(x: + yf), tii = arctan( yj/xi). Since we wish to consider a small 
neighborhood of the origin scale the variables by Ii= s2Ji, where E is a 
small positive parameter. This is a canonical change of variables with mul- 
tiplier EC*. Let F= 1 +c2F, + ... +&2n-4F2n-4 so that 

H=H,F+E 2n- 2H2n + O(E~“- ‘). (2) 

Fix a bounded neighborhood of the origin, say 1 Ji 1 < 4, and call it N so 
that the remainder term is uniformly O(E~“-~). We shall restrict our atten- 
tion to this neighborhood henceforth without explicit mention. Let h be a 
new parameter which is to lie in the bounded interval [ - 1, 11. Since 
F= 1 + O(E’) we can rewrite (2) as 

where 

H--E 2n--lh=KF (3) 

K= H, + E’~-*H~~ + O(E’“-I). (4) 

Since F= 1 + O(E’), for sufficiently small E the function F is positive (on N) 
so the level set L where H = E’“- ’ h is the same as the level set where K = 0. 
Let z = (JI, J2, bl, d2), V be the gradient operator with respect to z and J 
be the usual -4 x 4 skew symmetric matrix of Hamiltonian mechanics. In 
this notation the equations of motion are 

i = JVH = (JVK) F + K( JVF). (5) 

On the level set L where K=O this equation becomes 

i = (JVK) F. (6) 
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For sufficiently small E the function F is positive so reparameterize by 
~!r = F dr and the equation (6) becomes 

z’=JVK, d. (71 

Thus, we have shown that in the neighborhood N, for small E, the flow 
defined by H on the level set where H = ?- ‘h is a reparameterization of 
the flow defined by K on the level set K= 0. Thus it suffices to consider the 
flow defined by K on the set K= 0. To that end, the equations of motion 
defined by K are 

J; = 0($-y 

aff2, &=02-E’“-‘- aJ + 0(E2’*-lj. 
2 

Now following the computations in [S] we compute the Poincare map for 
the section defined by &E 0 mod 271 in the level set K= 0. 

From the last equation in (8) the time T required for $Z to increase by 
27f is given by 

T=~(l+~!&)+O(F2X1). 
2 

(9) 

Now integrate the second to last equation in (8) from time r = 0 to time 
t=T.Let~$,att=Obe&and~#~,attime~=Tbe$so 

In the above, the partials of H,, are evaluated at (J,, J2). From the 
relation K= 0 one calculates that J2 = (w,/cJJ~) JI + O(E’). Substitute this 
into (10) to eliminate J7 and use Euler’s theorem on homogeneous 
polynomials to get 

~=~o+a+E2”~2~~~-l++(E2’~-l) (11) 

where 3 = -2n(o l/wz) and fl= - 2n(rziw; + I) H7,z(~l, w L ). By assumption 
D2,, = HZ,!(coZ, ol ) # 0 and so fi # 0. With the equation J, + J, + O(E’” ~ ’ ). 
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equation (11) defines an area preserving map of an annular region, say 
+ < J, d 3 for E sufficiently small. There is an invariant curve for this map 
given by J, =p($), where 1 <p(d)<2 for all 4 [9]. Thus there is an so>0 
such that if ) E 1 < cc, all solutions of (8) which start on K = 0 with initial 
condition J, less than 1 must have J, less than 2 for all t. This is true for 
all h E [ - 1, l] due to the uniformity in the error estimate. Since on K= 0 
we know that J, = ((uL/wz) J, + O(E’), a bound on J, implies a bound on 
J2. Thus there are constants ci and c2 such that if J,(s), J,(T) satisfy 
equations (8), start on K= 0, and 1 Ji(0) 1 < ci then 1 J,(z)/ < c2 for all r and 
all hE C-1, 11. 

Going back to the original variables (I,, Z2, dI, &) and the original H 
this means that for all E sufficiently small, all solutions of the equations 
defined by the Hamiltonian (1) which start on H= ~‘~-rLh and satisfy 
I Zj(O jl < E?C, must satisfy I Z,(t)1 d s2c2 for all t. Since 12 is arbitrary in 
[ - 1, 11 the sets where I Z,i d s2cl (or s2c2) and H = E’~- ‘h represent full 
neighborhoods of the origin and clearly they can be made arbitrary small 
by taking E small. Thus the origin is stable and the theorem has been 
proved. 

3. APPLICATION TO THE RESTRICTED THREE BODY PROBLEM 

The preceding theorem will now be applied to the planar restricted 
problem of three bodies. Deprit and Deprit-Bartholome [S] have used 
Arnold’s theorem to show that the Lagrangian equilibrium point L, is 
stable for mass ratios p smaller than Routh’s critical mass ratio 
pi = f( 1 - V’&/9) except for three values ,LL~, pj and /I~. They have com- 
puted D, to be 

D,= - 
36 - 5410~‘o’ + 644~~~0~ 

8( l -4&;)?(4 - 25oi,;)’ (12) 

At the mass ratios ,LL, and p3 the ratio of the frequencies o, to o2 is 1: 2 
and 1: 3, respectively. In this case the normal form of the Hamiltonian con- 
tains more lower order terms and is different from the form required for 
Arnold’s theorem. Markeev [7] and also Alfriend [l, 21 have shown that 
L, is unstable when the mass ratio is equal to p2 or p3. 

In the interval (0, p,), ,u~ is the one value where the discriminant D, of 
Arnold’s theorem is zero. Our theorem applies to this case. We will show 
that D, # 0 and thus L, is also stable for this value of ,u. 

The planar restricted problem of three bodies is defined by the 
Hamiltonian function 

H=A(pz+p2j+e-p -Q p -l-P P ~__ 

2 ‘ 2 71 1 2 
PI P2 
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where p, is the distance of the particle at (Q 1, Q,) to the primary body of 
mass 1 -n at (-p, 0) and pz is its distance to the other body of mass p at 

(1 -P, 0). 
The substitution 

translates the origin of the coordinate system to the equilibrium point L, 
and the transformed Hamiltonian reads 

For convenience we have set 

i’ = 1 - 2/f. 

as it simplifies the expansion of the last two terms in (13). Since 

and 

P=l+Q,+$Qz+Q;+Q: 

/+-Q,+t’3Qz+Q:+02 -2 

the expansion of p; I can be obtained from the one for p; ’ by setting 
Q, -+ -Qr . Moreover the expansion of the last two terms in (13) as series 
in Q, and Q2 can be obtained from the one for P;’ by multiplying with 1 
those terms which have an odd exponent for Q 1. 

The terms of second order in the expansion of (13) are 

(14) 

The first step requires a linear transformation which brings these second 
order terms into their normal form. From the corresponding system of 
linear differential equations one obtains the characteristic equation 

/I” + 1’ + fg( 1 -)J) = 0 

Its roots are distinct and purely imaginary for p < ,ul. The four eigenvalues 
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are +iwl, f io,. The real numbers w1 and w2 are determined unam- 
bigously by 

O<o,<fJi<w,<1 

w:+u;= 1 

u;u;=+g(l -y2). 

The resulting symplectic transformation to new coordinates q,, q2 and 
their conjugate momenta pi, p2 was given by Brealcwell and Pringle [4]. It 
can also be found in Deprit and Deprit-Bartholome [.5]. We will repeat it 
here in the form in which we have implemented it by machine. The trans- 
formation is given by 

where the 4 x 4 matrix A is 

i -8 0 -8 0 

A=$ 

-3x/h 1; 3Nf5Y 12 2 

-1-40; -l-4w; 3J& 3&Y 

3J& 3JG 9-40; -9+40$ 

and 
1;=9+4w: 

1;=9+4w: 

/&+u;. 

The normal form for (14) is then 

H, = +(p: + ofq:) - $(p; + o:q:). 

The normalization of higher order terms is performed more easily with 
complex coordinates. We therefore introduce another symplectic transfor- 
mation to complex position coordinates .x1, x2 and their conjugate 
momenta yl, y, by 

kl, i 
qj=wiX’+2kl,YP 

j= 1, 2. 

pj=ikljx,+$$y, 
J’ 

J 
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This transformation differs from the one usually employed at this stage. 
Normally factors of & and 6 CO, are used to give the transformation a 
more symmetric appearance. For us this is unimportant and would actually 
cause more work if we had to keep track of fractional exponents. The fac- 
tor klj is included in the transformation to simplify the computer program- 
ming. The combined transformation is then 

with 

0 0 co1 0 

The second order terms (14) read then 

Since Ij = ixj yj, j = 1, 2 establishes the relationship to the action variables 
we have the proper form for the second order terms. 

After the Hamiltonian function H of (13) has been developed as a sum of 
homogeneous polynomials in the new set of variables (xi, x2, yl, y2) it will 
be normalized by Deprit’s [6] method of Lie transformation. For this we 
need a notation which is slightly different from the one used above. We will 
write the Hamiltonian now as 

H= 1 2 Hm,o m=O . 
(171 

where the H,,, are the homogeneous polynomials of degree m + 2. In par- 
ticular Ho,, is given by (16). The Hamiltonian function (17) will be trans- 
formed into 

H*= c ;Ho,n (18) n=O . 
with the help of a generating function 

w=,Toi wj+ 1. (151 
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The transformation is accomplished with the help of a doubly indexed 
array H,,,, and is defined by 

Hm,n=Hm+~n-I+ f 
k=O 

The Lie derivative L,H turns out to be the Poisson bracket, that is, 

2 afraw aHaw L,H= I-----, 
j= 1 dXj ayj aJTj aitj 

(20) 

(21) 

For n = 0 the functions H,,z,n are those of (17) and for m = 0 they are those 
of (18). 

The functions Wj which generate the transformation near the origin are 
selected one by one such that Hoj is in normal form. One finds that 

HoJ= K+ L@o,o, j = 1, 2,..., 

where K contains only known terms, that is it depends only on W, with 
S<j. 

A typical term in K is Ax”;~x;~ JJ~I @. If the exponents are such that 

lal-Dll+ I~z-P2I f0 

then the term can be eliminated from Hoj by selecting a term of the same 
form in W, whose coefficient C is determined by 

- iA 

c=(%-B1) w1-(@-2-B2)02’ 

If Ia,-fip,I+Icc2-fi2(=0 then the term in Kbelongs to Hoj. 
Figure 1 gives an outline of a computer program that implements the 

above procedure. It assumes that a package of computer programs for the 
formal manipulation of power series in several variables with complex coef- 
ficients is available. 

A subroutine that is required is ADDTERM. It adds a monomial whose 
coefficient and exponents are given by the second and third parameter to 
the series given by the first parameter. In our package this routine is the 
most basic one, as others can be built up from it. For example the 
procedure SUB is constructed such that it takes the individual terms of the 
second series and subtracts them one by one from the series designated by 
the first parameter. The procedure LIE-DERIVATIVE works in a similar 
way with the following modification. Before the individual products 
generated by the Poisson bracket are added they are multiplied by a scalar. 
In Fig. 1 this scalar is BINOM. 
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LIE-TRIANGLE: Procedurel H,MAXROW 1 ; 

/* on entry: original Hamiltonian function in array HiO:MAXROWl 
on exit: normalized Hamiltonian through order MAXROW in H(*l *I 

Declare ( H(*), F((MAXROW+l)*(MAXROW+2)/P), W(MAXROII), TEMP ) Series, 
( BINOM. I, J, K, L, MO, Ml, MAXROW. ROW 1 Integer , 
( ADDTERM, COPY, PURGE, SUB, LIE-DERIVATIVE 1 Entry External ; 

IND = 0 ; 
Do ROW = 1 To MAXROW ; 

IND = IND + 1 ; 
TEMP = HiROW) ; 
Call COPY( F(IND),TEMP ) ; 

Do I = 1 To ROW ; 
Ml, BINOM = 1 ; 
MO = ROW - I ; 
3 = IND ; 
Do K = ROW To MaxI 2,I 1 By -1 ; 

J=J-K; 
L=L+l; 
Call LIE-DERIVATIVE( TEMP,BINOM,W[L),F(Jl 1 ; 
BINOM = ( BINOM * MO 1 / Ml ; 
Ml = Ml + 1 ; 
MO = MO - 1 ; 
End ; 

IND = IND l 1 ; 
If I c ROW Then Call COPY{ F(INDl,TEMP I ; 
End ; 

F(IND),W(ROW) = Null ; 
for all terms in TEMP Do ; 

Nl = exponent of xl - exponent of yl ; 
N2 = exponent of x2 - exponent of y2 ; 

If Nl = 0 & N2 = 0 Then Do ; 
Call ADDTERM( F(IND),coefficient,exponents I ; 
coefficient = 0 ; 
End ; 

Else Do ; 
temporary-coeff = (O-11) * coefficient / ( Wl*Nl - W2*N2 ) ; 
Call ADDTERMC W(ROW),temporary-coeff.exponents ) ; 
End ; 

End ; 

Do I = IND - ROW + 1 To IND By -1 ; 
Call SUB( F(I),TEMP ) ; 
End ; 

Call PURGE( TEMP ) ; 
Call COPY( H(ROW),F(IND) 1 ; 
End ; 

End ; 

FIG. 1. Outline of a program for normahzing a Wamikonian function. 

How to reference the individual coefficients and exponents of a series has 
not been made precise in Fig. 1. To correct it we would have to describe in 
some details how series can be represented inside the computer, but this 
would lead us too far afield. 

The variables Wl and LK! correspond to the frequencies wr and w2. We 
did not declare them on purpose. For now let us say that W, and wz 
receive their numerical values in the main program and that the statement 
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that uses them is an arithmetic expression. This statement which 
corresponds to (22) has to be replaced when the computations are done 
with o1 and o2 as formal variables because then we will divide a rational 
number by a linear polynomial in o1 and w2. 

As a final remark to our outline in Fig. 1 note that the indexj of the one 
dimensional array Fj is related to the two indices of the H,,,n from our 
earlier discussion by j= (m + n)*(m + n + 1)/2 + n. The functions Fj are 
built up row by row as seen from the diagram 

row=0 F, 

1 F, +Fl 
1 1 

2 F3 -+ F4 + F, 

1 1 1 

The functions in the first column F,, F,, Fj,..., are those of the given 
Hamiltonian. The functions on the diagonal Fo, F2, F5,..., are those of the 
transformed Hamiltonian. 

POLYPAK is our package of computer programs for the manipulation 
of power series by machine. It is written and maintained for the latest 
release of the optimizing PL/I compiler of IBM. 

When the computations are performed with complex floating point 
arithmetic it suffices to have four exponents for the set of variables 
bl, x2, yl, ~9. From (12) we first determine the critical value 
,u,-0.010913667677. With it we find the other numerical quantities 
required for the linear transformation (15). After the transformation is 
available we construct the series for p:. A standard subroutine of 
POLYPAK provides pi-‘. From there we get the expansion of (13) in the 
form of (16). We then call the subroutine LIE-TRIANGLE to get the nor- 
mal form for the Hamiltonian function. After the substitution ix, y, = o2 
and i.x2 y2 = co1 we find 

D, = 2.3E- 13 + i * 9.8E- 15 

D, = - 66.6 + i * 1.7E- 11. 

Due to roundoff errors D, is not exactly zero. For the same reason both 
quantities have a small imaginary part. Within the accuracy of the machine 
such errors have to be allowed for. Since the real part of D, is so much 
larger then the terms in error we can say that for all practical purposes we 
have demonstrated that D, # 0 and that L, is stable at the critical value pE. 
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4. COMPUTATIONS IN RATIONAL ARITHMETIC 

Although the computations in floating point arithmetic have determined 
the stability of L, at ,utc it would have been more satisfying if we had 
obtained an expression for D6 in a form similar to (12) By substituting the 
special values for o, and w2 into it we also could decide the question of 
stability. 

For this reason we have repeated the normalization with o, and w2 kept 
as formal vacables. In addition we need a variable for y and another one to 
represent ,~‘3 as this time the computations will be carried out in rational 
arithmetic. Furthermore k, 1, and I, appear in denominators of the linear 
transformation (15). As they can not be expressed as polynomials in w, 
and o2 we introduce additional variables for them. 
. More variables are needed still. Additional denominators arise from (22). 
Since we will stop after finding H,., and do not compute W, we will 
encounter only denominators in (22) with a1 + a2 + /I, + /I1 < 6. They are 

A closer inspection reveals that the last four sets are not needed. 
Although terms with these denominators occur in W, they contribute 
nothing to the normal form at the next order. As an. illustration consider 
the denominator or + 40, in IV,. It can only occur in combination with 
x1 J$ or y1 x;. Terms in U;; contribute to those at order 6 only via LfiJ3 Hi.,. 
Considering the form of the Lie derivative (21) it becomes clear that 
neither x1 J$ nor J’~ ~2 in IV3 can generate a normalized term x;~x;‘J{L$ at 
order 6 whose exponents satisfy x1 = pl, a2 = p2, and c(i + E? = 3. The same 
argument applies to the other denominators. 

It is easiest to suppress the computation of these terms completely by 
considering and keeping only those terms whose exponents satisfy 

Iu*-BII + IF-B21 c.5. 

This is permissible because the other terms which are affected by this con- 
dition belong to H, -jj, j= 0, 1 or 2. But they too can not influence a nor- 
malized term at order 6 as their contribution would come from L cv, H, ~ jj 
for j=O, I or 2. 

Since k2 = 0: - 0: serves already as a common denominator for the first 
pair in (23) we introduce four additional variables to represent the next 
four pairs of denominators. We thus have a total of 15 variables. We list 
them in the order in which we used them in our program: 



234 MEYER AND SCHMIDT 

It would have been possible to use one common denominator for all 
terms at a given order. In this case the numerators would be polynomials 
in the first eight variables. When we tried this approach the rational coef- 
ficients of the individual terms in the numerator became too large and 
caused an overflow. 

The other extreme is to work only with partial fractions. In this 
approach the multitude of different terms becomes a problem, as any series 
in POLYPAK can have at most 32767 individual terms. 

Our approach tries to strike a balance between these two extremes. By 
selecting seven variables that stand for certain factors in the denominators 
we will get more terms than necessary but their rational coefficients will be 
small enough for our program to handle them. 

The variables which we have introduced are not independent of each 
other. We will use this to simplify an intermediate result after all of its 
terms have been found. The following are straight forward substitutions: 

J’ 3 =3,?/2=l--~~+~o~,o:=l--w:. 

They are used so that the exponents of fi, y and co1 take only one of two 
values, i.e., 0 or 1 for ,,/5 and 1’. Unfortunately the symmetry between o1 
and w2 is destroyed by these substitutions. Our strategy is to find a com- 
mon denominator for similar terms and to express the resulting numerator 
as a polynomial in coZ, so that we can cancel any common factors. In this 
method we do not work with one denominator for all terms and therefore 
we were able to keep the size of the coefficients within the capabilities of 
our program. 

Figure 2 lists the normalized terms of order 6, as they have been com- 
puted by our program. It will be noted that we print real coefficients only. 
Actually the entire series has to be multiplied by 0. It turns out that in 
rational arithmetic all coefficients were either purely real or imaginary. It 
was therefore more efficient to do the computations in real arithmetic and 
to remember during the programming which series had to be multiplied 
with the imaginary unit. 

From the terms of H,,, we compute D, as required by our theorem. After 
some simplifications we find 

D, = (-310514 + 13384491485 - 489918305/1728a2 

+7787081027/6912~3-2052731645/1296~4-1629138643/324aS 

+1879982900/81~6+368284375/81a7)/(co, *cu~++cu~):)~ 

*(4-250)~ *(9- 1005)) 

where we have set o=o:o~. 
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xl x2 y1 y2 ~‘3 Y m2 w1 El I2 k dl d2 d3 d4 
o 3 o 3 0 0 1 2 0 O-10 0 -6 0 -2) 143221 3456 
0 3 0 3 0 0 3 2 0 O-10 0 -6 0 -2) -1066457 2304 
0 3 0 3 0 0 5 2 0 O-10 0 -6 0 -2) 3731501 1296 
0 3 0 3 0 0 7 2 0 O-10 0 -6 0 -2) -175911331 15552 
0 3 0 3 0 0 9 2 0 O-10 0 -6 0 -2) 31632533 1296 
o 3 0 3 0 0 11 2 0 O-10 0 -6 0 -2) -94509943 3888 
0 3 0 3 0 0 13 2 0 O-10 0 -6 0 -2) 4754909 324 
o 3 o 3 0 0 15 2 0 O-10 0 -6 0 -2) -5465455 972 
0 3 0 3 0 0 -1 2 0 O-10 0 -6 0 -2) -345 256 
1 2 1 2 0 0 0 1 0 O-10 -6 -6 0 -2) -232 1 
1 2 1 2 0 0 2 1 0 O-10 -6 -6 0 -2) 219977 12 
1 2 1 2 0 0 4 1 0 O-10 -6 -6 0 -2) -118471111 432 
1 2 1 2 0 0 6 1 0 O-10 -6 -6 0 -2) 569189051 288 
1 2 1 2 0 0 8 1 0 O-10 -6 -6 0 -2! -5218265975 576 
1 2 1 2 0 0 10 1 0 O-10 -6 -6 0 -2) 24057030707 864 
1 2 1 2 0 0 12 1 0 O-10 -6 -6 0 -2) -95635690781 1728 
1 2 1 2 0 0 14 1 0 O-10 -6 -6 0 -2) 59880904757 864 
1 2 1 2 0 0 16 1 0 O-10 -6 -6 0 -2) -23491461175 432 
1 2 1 2 0 0 18 1 0 O-10 -6 -6 0 -2) 5897023325 216 
1 2 1 2 0 0 20 1 0 O-10 -6 -6 0 -2) -248914625 27 
1 2 1 2 0 0 22 1 0 O-10 -6 -6 0 -2) 1838125 1 
2 12 10 0 1 0 0 o-10-6-6-2 0) -32393 4 
2 1 2 1 0 0 3 0 0 O-10 -6 -6 -2 0) 12149575 72 
2 1 2 1 0 0 5 0 0 O-10 -6 -6 -2 0) -2566329143 1728 
2 1 2 1 0 0 7 0 0 O-10 -6 -6 -2 0) 129817827 16 
2 1 2 1 0 0 9 0 0 O-10 -6 -6 -2 0) -4282808585 144 
2 1 2 1 0 0 11 0 0 O-10 -6 -6 -2 0) 62178206461 864 
2 1 2 1 0 0 13 0 0 O-10 -6 -6 -2 0) -196481798617 1728 
2 1 2 1 0 0 15 0 0 O-10 -6 -6 -2 0) 101442924757 864 
2 1 2 1 0 0 17 0 0 O-10 -6 -6 -2 0) -34457978675 432 
2 1 2 1 0 0 19 0 0 O-10 -6 -6 -2 0) 7820778325 216 
2 1 2 1 0 0 21 0 0 O-10 -6 -6 -2 0) -297008500 27 
2 1 2 1 0 0 23 0 0 O-10 -6 -6 -2 0) 1838125 1 
3 0 3 0 0 0 2 -1 0 O-10 -6 0 -2 0) 1191 4 
3 0 3 0 0 0 4 -1 0 O-10 -6 0 -2 0) 6142159 1728 
3 0 3 0 0 0 6 -1 0 O-10 -6 0 -2 0) -1834402891 62208 
3 0 3 0 0 0 8 -1 0 O-10 -6 0 -2 0) 166569919 1944 
3 0 3 0 0 0 10 -1 0 O-10 -6 0 -2 0) -2081618411 15552 
3 0 3 0 0 0 12 -1 0 O-10 -6 0 -2 0) 498186911 3888 
3 0 3 0 0 0 14 -1 0 O-10 -6 0 -2 0) -307228547 3888 
3 0 3 0 0 0 16 -1 0 O-10 -6 0 -2 0) 29458913 972 
3 0 3 0 0 0 18 -1 0 O-10 -6 0 -2 0) -5465455 972 

FIG. 2. Coeffkients for normalized Hamiltonian 
d,= (co? -4w3’,“, d, = (9~0: - a~:)~‘~, d4 = (co: - 90;)‘,~. 

at order 6. d, = (~w~-cI$‘~~ 

When we substitute in (24) the special values for wr and w2 we obtain 
the same answer as the one given by the computations in floating point 
arithmetic, that is D 6z - 66.6. This provides the necessary check on the 
correctness of our formula for D6. 

Another check on the correctness of our program is that at order 4 it 
reproduces the formula (12) for D,. Due to the large amount of 
calculations that is required to arrive at this formula only a few 
verifications of (12) have been performed but nothing about it has been 
published. As our computations by machine can be seen as an independent 
check for the work of Deprit and Deprit-Bartholome in [S] we would like 
to take this opportunity to affirm the correctness of their work. 
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5. FINAL REMARKS 

All computations were performed on the Amdahl V7 of the University of 
Cincinnati. The machine was running under the operating system MVS of 
IBM. The computations in floating point arithmetic took 3 seconds of 
CPU time whereas the computations in rational arithmetic required 
17 minutes and 30 seconds. 

The use of rational numbers is only in a small part responsible for the 
large diference in the computing times. The main reason is that we need 
15 variables instead of only 4 in the first case and that the coefficients of the 
various powers of position and momenta variables have become rational 
functions in the additional 11 variables and are not simple floating point 
numbers anymore. A significant amount of time was spent in checking and 
removing common factors in these rational fuctions. 

It might be of interest to redo these calculations in a general purpose 
system like MACSYMA or REDUCE. They allow for arbitrary length 
rational numbers and all factoring could be postponed until the end. On 
the other hand the large number of terms that have to be computed may 
overwhelm these systems. 

More information on POLYPAK and a copy of the program can be 
obtained from the second author upon request. 
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