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This paper uses the method of symplectic scaling to derive Hill’s lunar equations 
from the equations of the three-body problem. This derivation gives a precise 
asymptotic statement about the reiation between Hill’s equations and the three-body 
problem. It is shown that any non-degenerate periodic solution of Hill’s equation 
whose period is not a multiple of 272 can be continued into the full three-body 
problem. 

1. INTR~DuC~ON 

One of Hill’s major contributions to celestial mechanics was his refor- 
mulation of the main problem of lunar theory; that is, he gave a new 
de~nition for the equations of the first approximation for the motion of the 
moon 121. Since his equations of the first approximation contained more 
terms, the perturbations were smaller and hence he was able to obtain series 
representations for the position of the moon which converge more rapidly 
than the previously obtained series. Indeed for many years lunar ephemerides 
were computed from the series developed by Brown who used the main 
problem as defined by Hill. Even today most of the searchers for more 
accurate series solutions for the motion of the moon use Hill’s definition of 
the main problem. 

Previous to Hill, the main problem consisted of two Kepler 
problems--one describing the motion of the earth and moon about their 
center of mass and the other describing the motion of the sun and the center 
of mass of the earth-moon system. The coupling terms between the two 
Kepler probiems are neglected at the first approximation. Delaunay used this 
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definition of the main problem for his solution of the lunar problem, but after 
20 years of computation was unable to meet the observational accuracy of 
his time. 

In Hill’s definition of the main problem the sun and the center of mass of 
the earth-moon system still satisfy a Kepler equation but the motion of the 
moon is described by a different system of equations known as Hill’s lunar 
equations. Using heuristic arguments about the relative size of various 
physical constants, he concluded that certain other terms were sufficiently 
large that they should be incorporated into the main problem. This heuristic 
grouping of terms does not lead to a precise description of the relationship 
between the equations of the first approximation and the full problem. Even 
crude error estimates are difficult to obtain. 

In a popular description of Hill’s lunar equations one is asked to consider 
the motion of an infinitesimal body (the moon) which is attracted to a body 
(the earth) fixed at the origin. The infinitesimal body moves in a rotating 
coordinate system which rotates so that the positive x-axis points to an 
infinite body (the sun) which is infinitely far away. The ratio of the two 
infinite quantities is taken so that the gravitational attraction of the sun on 
the moon is finite. Although picturesque, this definition does not obviate the 
connection between Hill’s lunar equations and the full three-body problem. 

In this paper we shall use the method of symplectic scaling of the 
Hamiltonian in order to give a precise derivation of the main problem of 
lunar theory. Under one set of assumptions we shall derive the main problem 
as used by Delaynay and under another, the main problem as given by Hill. 
The derivations are precise asymptotic statements about the limiting 
behavior of the three-body problem and so can be used to give precise 
estimates on the deviation of the solutions of the first approximation and the 
full solutions. (The estimates are not sharp in the practical sense.) These 
derivations give a mathematically sound justification for the choice of Hill’s 
definition of the main problem. We would like to suggest that the method of 
symplectic scaling is the proper method for defining the main problem for 
any mechanical problem. This method was used in [3] to define the main 
problem for three other problems in celestial mechanics. 

As an illustration of how this precise asymptotic formula can be used we 
prove a theorem about the continuation of periodic solutions from Hill’s 
lunar equations to the full three-body problem. We prove that any non- 
degenerate periodic solutions of Hill’s lunar equations whose period is not a 
multiple of 2~ can be continued into the full three-body problem. A similar 
theorem holds for symmetric periodic solutions. 
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2. DEFINING THE MAIN PROBLEM 

In this section we shall show how to introduce scaled symplectic coor- 
dinates into the problem of three bodies in such a way that Hill’s equations 
are the equations of the first approximation. We shall explore other scaled 
variables and see why they lead to poor approximations. 

Consider a frame which rotates with constant angular frequency equal to 
one with reference to a fixed Newtonian frame and let x0, xi, x2 ; y,, y, , y, 
be the position and momentum vectors relative to the rotating frame of three 
particles of masses M,,, m, , m2. If the particles are attracted to one another 
by Newton’s law of gravity then the Hamiltonian defining the equations of 
motion of the three particles is 

where J= (-y i). In our informal discussions we shall refer to the particles 
of mass mo, m, and m2 as the earth, moon and sun, respectively. Since we 
wish to eliminate the motion of the center of mass and also scale the distance 
between the earth and moon we choose to represent the equations in Jacobi 
coordinates. That is, we perform the following symplectic change of coor- 
dinates on (1 ), 

uo=(mo+m,+m,)-l{moxo+m,x,+m,x,}, 

UI =x, -x0, (2) 

u2 =x2 - (m, + m,)-l{moxo + m,x,}, 

uo = Yo + Yl+ Yz, 

v1 = (m, + m,)-‘Imoh - mdoly (3) 

v2 = MO + ml + m2)-‘l(mo + ml)y2 - m2(yo + y,)h 

to obtain 

where 

Mh=m,+m,+m,, M: = (m. + ml)-’ mom,, 

MS = (m, + m, + m,)-‘(m, f m,) m2, (5) 

v; = (m, + m,)-’ m,, ~~=(rn~+rn,)-~rn~. 
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Since H is independent of u,, (the center of mass), its conjugate variable u,, 
(total linear momentum) is an integral. Thus there is no loss in generality in 
taking U, = v,, = 0. Thus we shall proceed with the Hamiltonian defined in 
(4) with the summation extending from i = 1 to 2. 

With the Hamiltonian in (4) as our starting point we shall proceed to 
make various assumptions on the size of various quantities until we are led 
to a definition of the equation of the first approximation for lunar theory. 
Each of these assumptions lead to a natural scaling of the variables. The first 
assumption is that the earth and moon have approximately the same mass 
but their masses are small relative to the mass of the sun. To that effect we 
let 

m, = ~‘~p~, m, = czyp,, m, =rl12, (6) 

where E is a small positive parameter and y is a positive integer to be chosen 
later. Since the masses of m,, and m, are of order szy, so will be their 
momenta provided their velocities are of order 1. Although it is not 
altogether necessary, it will make the discussion clearer if we scale the 
momenta first in order to take this observation into account. In order to limit 
the proliferation of symbols the arrow notation common to scaling problems 
will be used; however, these actually represent changes of coorldinates. Thus 
we make the substitutions u1 -+ E~~u,, v2 + E~~u, in (4). With this symplectic 
change of variables with multiplier s2 y the Hamiltonian becomes 

H = H, + H, + O(c23, 

H, = VI “2; 
2 

-- 

1 

H, = 
v2 

‘;; 

2 

-- 

2 

where 

M, = (PO +ruJIPoP1~ 442=Clo+rU1, 

~0=010+Pu,)-‘P09 VI = (PO +,u1)-‘c11. 
03) 

Note that the O(s23 depends only on (1~~ 11 and IIv211. 
The next assumption is that the distance between the earth and moon 

(IlUlll = II% - xoll) is small relative to the distance between the sun and the 
center of mass of the earth-moon system (I[z+~/). We effect this assumption 
by making the change of variables u1 + E’“u,, where a is a positive integer 
to be chosen later. This is not a symplectic change of variables, but this will 



HILL’S LUNAR EQUATIONS 267 

be corrected with further changes of variables given below. This change of 
variables makes H, in (7) independent of U, to the lowest order. Specifically 

H, = H, + O(E~~), 

H, = v2 ‘;;I 
2 

-- uT~v _ p2kl + k) 
2 2 

2 lIu2II . 

Note that the term of order .s2a is zero due to the particular form of the 
constants v,, and v,. H, is the Hamiltonian of the Kepler problem, where a 
fixed body of mass ,u2 is located at the origin and another body of mass 
puo + p, moves in a rotating frame and is attracted to the fixed body of 
Newton’s law of gravity. One can think of the fixed body as the sun and the 
other body as the union of the earth and moon. 

The third and final assumption that we shall make is that the center of 
mass of the earth-moon system moves on a nearly circular orbit about the 
sun. Thus we need to prepare H, before effecting this assumption by a 
change of coordinates. Since H, is the Hamiltonian of a Kepler problem in 
rotating coordinates, one of the circular orbits becomes a circle of critical 
points for H,. Specifically, H, has a critical point u2 = a, v2 = -M,Ja for 
any constant vector a satisfying 11 a 11 3 = ,u2. Introduce coordinates, 

and a constant vector 

so that H, is a function of Z and VH,(Z,) = 0. By Taylor’s theorem 

HdZ) = H&-J + t<Z - UT W - Z,> + O(llZ - &II 3>, (10) 

where S is the Hessian of H, evaluated at Z,. Since constants are lost in the 
formation of the equations of motion we shall ignore the constant H3(ZO) in 
our further discussions. Thus since we seek solutions which are nearly 
circular, we seek solutions where Z is close to Z,. Thus we make the change 
of variables Z -Z, + &*U, where /3 is again a positive integer to be chosen. 

So far, starting with (7) we have proposed the following changes of 
variables u, + sZnul and Z - Z, + sbU. In order to have a symplectic change 
of variables (of multiplier e24) we must make the further change v, + 
E2(4-o)v 

(7): ” 
Thus we propose the following symplectic change of variables in 
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2a 
Ul-+E Ul, 

v, -+ E2(~-%,, (11) 

Z-Z,-,&QJ. 

Moreover we have introduced three positive integers a, /3 and y as measures 
of the order of magnitude of three physical quantities. One of the variables a, 
/3 or y could be fixed, but since we seek integer solutions it is best not to 
choose one of them too early. 

First consider the main problem as defined by Delaunay. In this case the 
earth-moon system is a Kepler problem and so we must choose the scaling 
so that the kinetic energy and potential energy in H, are of the same order of 
magnitude. This leads to the restriction that 2/I = a + y. Also the difference 
between H, and H, which is of order s4* must be of higher order than either 
of the energy terms in H,. This leads to the inequality 2a > p. 

Since the equality 2/I = a + y and the inequality 2a > /I do not lead to a 
unique, solution we choose a small solution in integers, say, a = 2, /3 = 3, 
y = 4. With this choice the Hamiltonian becomes 

HZ&-~ I 
11~1112 POPI --lJu,JJ + +J’SU-u:sv, 2M, ! I +0(&z). (12) 

Other choices of a, /3 and y consistent with the two contraints lead to 
qualitatively similar scaled Hamiltonians. That is, the terms UTSU and 
uTJu, are always of order zero and the terms /I v 1 11 2 and l/l] U, I( are of order 
e24-40, which has a negative exponent. In order to better understand this 
transformed Hamiltonian let us make one further change of variables. Define 
a new time by r = E -2t and thus a new Hamiltonian by K = e2H so that the 
problem defined in the new time is defined by 

K= 11%112 POP, + E2 1 --- 

2M, Il~1ll I 
1 UTSU- u;Jv, 

I 
+ O(c4). (13) 

From the general theory of ordinary differential equations neglecting a 
term of order a4 in the worst possible case leads to an error of the form 
O(e”)e”’ = O(e4)eLrezt, where L is a constant. Thus neglecting the higher 
order terms is only valid for very short times. Since any choice of a, /3 and y 
consistent with the constraints leads to the same qualitative form for the 
Hamiltonian tere is no way to overcome this difficulty. Clearly we must drop 
the inequality 2a > p and incorporate more terms into the main problem. 

Let us proceed to define the main problem as suggested by Hill. Since we 
still wish to have the two energy terms in H, of the same order of magnitude 
we still impose the restriction 2/3 = a + y. The essential problem in the 
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previous attempt was the fact that H, was not a good enough approximation 
of H,. Following Hill, we expand the two troublesome terms in H, in a 
Legendre series as follows, 

&PO +d + 1 
ll%II f b, i’kp,(cos 0)~ ‘I”2” k=2 

(14) 

where p=I~uIII/IIuzll, bk=p,,u2vi +P,P~(-v,)~, 8 is the angle between U, 
and u2, and P, is the kth Legendre polynomial. Thus (7) becomes 

H = H, + If, - j$ kz2 bkpkPk(Cos 0) + o(E23* 

Hill said that the first term in the series should be of the same order of 
magnitude as the terms in H, and this leads to the condition 2a = ,8. The 
smallest positive integer solution of 2a = p and 2/l = a + y is a = 1, /I = 2, 
y = 3. With this choice of scale factors the Hamiltonian becomes 

Now from the general theory of differential equations, neglecting the O(s2) 
terms leads to an error of order e2 on a bounded time interval. Thus defining 
the main problem as the Hamiltonian in (16) without the O(E’) terms is a far 
better choice. 

In order to reduce the number of constants in (16) we shall make one 
further scaling of the variables. We shall introduce new variables r and q to 
eliminate the subscripts and use the fact that P&c) = {(l - 3x2). Also we 
choose a = (,@, 0) so that the abscissa points at the sun. Make the 
symplectic change of coordinates 

241 = (cl, + iu,y3 t-9 

v, = ($0 +Py3 Ml% 

u= (/do +,uy3 M:‘v 
(17) 
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so that (16) becomes 

Jr VTSVf 0(&q* (18) 

Our choice of scaled variables has eliminated all parameters in Hill’s 
equations. Note that we have fixed the time scale by requiring that the period 
of the sun’s motion be 2n. 

3. C~NTINUATI~N 0~ PJ~RIODZ SOLUTIONS 

Hill proposed to construct a lunar theory by first finding a periodic 
solution of the system defined by the Hamiltonian 

(19) 

and then continue this solution into the full problem. (The equations detined 
by (19) are known as Hill’s lunar equations.) We shall justify this procedure 
by proving: 

THEOREM. Any non-degenerate periodic solution of Hill’s lunar equations 
whose period is not a multiple of 2a can be continued into the fill three body 
problem. 

More precisely, let r = #@(t), tf = am be a r. periodic solution of Hill’s 
lunar equations with characteristic multipliers 1, 1, /3, /I-‘. Assume that this 
solution is non-degenerate; i.e., /3 # 1, and r0 # n2n for any integer n. Then 
there exist smooth functions #(t, .s) = &(t) + O(e*), y(t, e) = y(t) + O&s’), 
r(s) = r0 -t- O(E*) and V(s) = O(e*) defined for all t and small E such that < = 
#(t, E), q = I&, E), V= V(E) is a Z(E) periodic solution of the system whose 
Hamiltoni~ is (18) (i.e., the three-body problem). Moreover the charac- 
teristic multipliers of this periodic solution are 1, 1, 1, 1, exp(fir, + O(E*)), 
p + O(G), p-1 + O(E2). 

We have carefully set up the equations so that the proof of this theorem is 
almost exactly the same as the proof of the analogous theorem for the 
restricted N-body problem given in 131. (See in particular Sections 1I.C and 
I1I.A). Thus we shall only outline the proof of the above theorem here. 

The system defined by (7) admits the total angular momentum integral 

J= u;Jv, + u,TJv,. (21) 
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As before let 2 = (u2, v2) and let c be the row vector which is the gradient of 
ucJvz with respect to Z evaluated at Z,. Since Z, # 0 it follows that c # 0. 
The scaling which reduces (7) to (14) reduces (21) to 

= &Z{CV + 0(&2)}. (22) 

The further scaling to obtain (18) only changes the constant vector c. Thus 
to lowest order in E the angular momentum vector only depends on the z+, v2 
or I’ coordinates. That is most of the angular momentum is in the sun and 
earth-moon system. Thus to lowest order the elimination of the angular 
momentum integral and its conjugate variable affects only the u2, v2 coor- 
dinates. Introduce polar coordinates in the u2 plane and extend them to 
obtain a symplectic coordinate system on the u2, v2 space. Call these coor- 
dinates r, 8, R, 0. To lowest order in E, 0 is the total angular momentum 
and so when we fix angular momentum and ignore its conjugate variable we 
effectively eliminate 0 and 8. Fixing angular momentum and ignoring its 
conjugate variable reduces (18) to 

(see [3, Sect. II.C]). Thus to zeroth order in E the Hamiltonian of the three- 
body problem decouples into the sum of the Hamiltonian for Hill’s lunar 
problem and the Hamiltonian of a harmonic oscillator. 

When E = 0 the equations of motion defined by (23) are decoupled and 
one easily sees that < = do(t), q = v,(t), R = r = 0 is a t0 periodic solution 
with characteristic multiplier 1, 1, /?, p-i, eiro, eeiro. Since we assume that 7. 

is not a multiple of 27r, this periodic solution has precisely two characteristic 
multipliers equal to one and so is non-degenerate. Thus the standard theorem 
of perturbation analysis [ 1 ] says that this solution can be continued as a 
periodic solution of the full problem when E # 0. This completes the outline 
of the proof. 

We also note that Hill’s lunar equations are symmetric with respect to the 
<, axis in the same manner as the restricted three-body problem is symmetric 
with respect to the line of masses. A symmetric periodic solution is one that 
crosses the line of symmetry orthogonally at two distinct times. In [3, 
Sect. II.D] the concept of non-degenerate symmetric periodic solution is 
defined and it should be noted that a periodic solution might be degenerate 
(/3 = 1) but still be a non-degenerate symmetric periodic solution. Following 
the arguments in [3, Sect. IV.A] we can also prove: 
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THEOREM. Any non-degenerate symmetric periodic solutions of Hill’s 
lunar equations whose period is not a multiple of 2~ can be continued into 
the full three-body problem. 
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