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This paper proves the existence of six new classes of periodic solutions to the N- 
body problem by small parameter methods. Three different methods of introducing 
a small parameter are considered and an appropriate method of scaling the 
Hamiltonian is given for each method. The small parameter is either one of the 
masses, the distance between a pair of particles or the reciprocal of the distances 
between one particle and the center of mass of the remaining particles. For each 
case symmetric and non-symmetric periodic solutions are established. For every 
relative equilibrium solution of the (N - I)-body problem each of the six results 
gives periodic solutions of the N-body problem. Under additional mild non- 
resonance conditions the results are roughly as follows. Any non-degenerate 
periodic solutions of the restricted N-body problem can be continued into the full 
N-body problem. There exist periodic solutions of the N-body problem, where 
N - 2 particles and the center of mass of the remaining pair move approximately 
on a solution of relative equilibrium and the pair move approximately on a small 
circular orbit of the two-body problems around their center of mass. There exist 
periodic solutions of the N-body problem, where one small particle and the center 
of mass of the remaining N - 1 particles move approximately on a large circular 
orbit of the two body problems and the remaining N- 1 bodies move approx- 
imately on a solution of relative equilibrium about their center of mass. There are 
three similar results on the existence of symmetric periodic solutions. 

I. INTRODUCTION 

The special properties and intrinsic complexities of the N-body problem 
have captured the attention of many mathematicians over the centuries. 
Since no general solution is known, investigators have sought and found 
many special classes of solutions such as periodic and escape solutions. This 
paper is devoted to codifying and extending a large body of the results on the 
existence of periodic solutions of the N-body problem by small parameter 
methods. 

The simplest periodic solutions of the N-body problem are those where the 
particles move uniformly along concentric circular orbits in a fixed plane. In 
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an appropriately chosen rotating coordinate system these solutions appear at 
rest and so they are called relative equilibria solutions. The geometric 
placement of these particles in this coordinate system is called a central 
configuration. Even though this is the simplest class of solutions it is 
manifold and seemingly unclassifiable. Usually central configurations are 
classified up to similarity transformations and this conversion will be used in 
this general discussion. For the two-body problem there is only one central 
configuration and for the three-body problem there are the equilateral 
triangle configurations of Lagrange and the collinear configurations of Euler 
(see Siegel and Moser [29] or Wintner [33] for a thorough discussion). For 
N > 3 only special configurations are known and a complete classification 
seems very difficult. Moulton [22] and Smale [30] have shown that there are 
precisely N!/2 collinear central configurations of the N-body problem and 
many other special cases are known. Palmore [25] has obtained a sharp 
lower estimate for the number of central configurations as a function of N. 

The next simplest class of periodic solutions and the class we address are 
obtained by small parameter methods. This class consists of periodic 
solutions of the (N + 1)-body problem, where N particles (or centers of 
masses of clusters of particles) move approximately on a relative equilibrium 
solution and the remaining particle moves approximately on a solution of 
Kepler’s problem or a restricted problem. The results obtained here contain 
the central results of Arenstorf [2,3, 51, Barrar [6], Conley [9], Crandall 
[lo], Moulton [20, 211, Perron (261 and Siegel [28]. Specific references to 
these earlier works will be given at the appropriate points in the text. 

The unifying theme exploited here is a scaling technique to introduce a 
small parameter and an appropriate definition of non-degenerate relative 
equilibrium. The small parameter may be a mass, a distance between two 
particles or the reciprocal of the distance from one particle to the center of 
mass of the remaining particles. The central configuration may or may not 
be symmetric and so six cases are considered. However, in each case a small 
parameter is introduced and the Hamiltonian scaled so that to a certain 
order the Hamiltonian of the (N + I)-body problem decouples into the sum 
of two terms each of which is the Hamiltonian of a simpler problem. In each 
case one of the terms is the Hamiltonian of the linearization of the N-body 
problem about a relative equilibrium. The nature of the other term depends 
on the manner in which the small parameter is introduced-if the small 
parameter is one of the masses then the other term is the Hamiltonian of the 
restricted (N + I)-body problem and if the small parameter is a distance or a 
reciprocal of a distance then the other term is the Hamiltonian of the Kepler 
problem in rotating coordinates. An approximate periodic solution is 
obtained by taking the relative equilibrium solution and a periodic solution 
of either the Kepler or the restricted problem. We then show that under mild 
non-resonance conditions these periodic solutions persist when the higher- 
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order coupling terms are reintroduced. The proof relies on an appeal to either 
the standard implicit function theorem or the implicit function theorem of 
Arenstorf [ 21. 

This paper is divided into four chapters with this introduction being the 
first. The contents of the remaining chapters and their sections are as 
follows: 

II. Background 

A. Equations of Motion and Relative Equilibria. The Hamiltonian of 
the N-body problem in fixed and rotating coordinates are given. 
Relative equilibrium solution and characteristic exponent of a 
relative equilibrium are defined. Some properties of the relative 
equilibria of the three-body problem are summarized. 

B. Reduction of Dimension. The dimension of the system is reduced 
by fixing the center of mass, linear and angular momentum and 
identifying configurations which differ by a rotation. This defines 
the reduced space. The relation between the characteristic exponents 
on the full and reduced space is derived. Non-degenerate relative 
equilibrium is defined. 

C. Jacobi Coordinates. An inductive definition of Jacobi coordinates 
is given and the Hamiltonian of the N-body problem and angular 
momentum are given in these coordinates. The calculation of the 
characteristic exponents of the relative equilibrium of the two-body 
problem is present in this section. 

D. Symmetry Conditions. Some basic properties of systems which 
admit a discrete symmetry are given. A criteria for the existence of 
symmetric periodic solution is given in intrinsic form. 

E. Non-Degenerate Relative Equilibria. This paper introduces a new 
definition of non-degenerate relative equilibria and this section 
proves that the new and traditional definitions are equivalent. 

III. Non-symmetric Periodic Orbits 

A. Small Mass. In this section it is shown that under mild non- 
resonance assumptions there are periodic solutions of the (N + I)- 
body problem where one particle of small mass moves approx- 
imately on a periodic solution of the restricted problem and the 
other N particles move approximately on a relative equilibrium 
solution. 

B. Bifurcation of a Primary. In this section it is shown that under 
mild non-resonance conditions there are solutions of the (N + 1) 
body problem where N - 1 particles and the center of mass of the 
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C. 

other pair move approximately on a relative equilibrium solution 
and the pair move approximately on a small circular solution of the 
two-body problem about their center of mass. 

Orbits at Infinity. In this section it is shown that under mild non- 
resonance conditions there are periodic solutions of the (N + 1). 
body problem where one particle of small mass and the center of 
mass of the remaining particles move approximately on a large 
circular solution of the two-body problem and the other N particles 
move approximately on a relative equilibrium solution. 

IV. Symmetric Periodic Orbits 

If the relative equilibria admits a line of symmetry additional 
symmetric periodic solutions can be shown to exist. The three 
sections of this chapter have the same title as those of the previous 
chapter and treat the same cases with additional symmetry 
assumptions. 

The numbering of formulas and equations will begin anew in each section 
and a reference to an unqualified number will refer to the current section. 
However, “Eq. II.A.3” will refer to Eq. (3) in Section A of Chapter II. 
Vectors will be considered as column vectors but written as row vectors in 
the text. 

The first major result of this paper is in .Section II1.A and the reader may 
skip Sections II.C,D and E to obtain this result. Sections 1I.A and B are 
needed for all subsequent sections, Section 1I.C for III.B,C, and IV.B,C; 
Section 1II.A (resp. III.B,C) for 1V.A (resp. IV.B,C). 

II. BACKGROUND 

A. Equations of Motion and Relative Equilibria 

In this paper only the planar N-body problem will be treated. Let 
q, ,..., qN E R2 be the position vectors of N particles in a Newtonian frame of 
reference. Let the particles have masses m ,,..., m,,, and moments p, ,..., pN, 
respectively. The Hamiltonian of the N-body problem is 

where 

H=H,=K+ V, (1) 

K = (- (IIpil12/2mi) 
i=l 
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is the total kinetic energy and 

(3) 

is the potential energy of the system. The equations of motion are 

cji=g=pi/mi, 
I 
c 
dH _ TTI mimj(qj - 4i) di _ 

@i jr1 IlSj - 4il13 

(4) 

qi = 
\” I mj(qj - qi) 

ITI llqj-qil13 ’ 

where i = 1 ,..., N. Here and below the prime on the summation sign indicates 
that the term where i =j is excluded. 

Since the general solution of these equations is unknown for N > 2, 
investigators have sought special solutions. One special solution class has the 
N particles moving on concentric circles with uniform velocity. If the center 
of the circles (and hence the center of mass of this system) is at the origin 
these solutions must be of the form 

qT = exp(-oJf) ai9 

pT = -mid exp(-wJf) Ui. i = I,..., N, 
(6) 

where a , ,..., a,,. are constant vectors, w is a positive number (the frequency), 
J= (“, A ) and exp(-wJf) = (E;;,“: ;iFU;‘). In order for qT and pT of (6) 
to satisfy Eqs. (4) or (5) the vectors a, and the number w must satisfy the 
system of non-linear algebraic equations 

w*ai + 
+I mjbj - ai) = o 

,TI llej-Qil13 ’ 
i = l,..., N. (7) 

If a, ,..., u,,, satisfy (7) then the geometric configuration of N particles of 
masses m, ,..., mN at positions a, ,.... aA,, respectively, is called a central 
configuration. If a similarity transformation which fixes the origin is applied 
to a solution set a ,,..., uN of (7) then one obtains another solution a’, ,.... a;. 
with possibly a different w. Thus central configurations are usually classified 
up to a similarity transformation. There is clearly only one central 
configuration if N = 2 (take a, = (m2, 0) and a2 = (m, (0)). For the three- 
body problem there are only the equilateral triangle solutions of Lagrange 
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and the collinear configurations of Euler (see Siegel and Moser 1291). 
Moulton [22] and Smale [30] have shown that there are precisely N!/2 
collinear central configurations of the N-body problem but a complete 
classification is still unknown. 

If coordinates which rotate with the constant frequency o are used these 
solutions will appear at rest. To accomplish this let qi = exp(-u.Jr) ICY and 
pi = exp(-wJr) J’~ so that the Hamiltonian becomes 

.v 
H= \‘ ((I.,!#/2rni - wxfJyi} - L mimj 

,771 l<r<j<N Il”i-xjll 
(8) 

and the equations of motion are 

ii = uJxi + yi/mi, 

jli = UJJi + 
<., mimj(xj -xi) 
J~L 1IXj -xi113 ’ 

i = I,..., N 
(9) 

(see Siegel and Moser [29]). The condition under which XT = a, and 4’7 = 
m,wJa, be constant solutions of (9) is again that o and a,,..., a,$, satisfy (7). 
Henceforth we shall always assume that o = 1 since this can be accom- 
plished by a change in the time scale. 

Let 

where 0, is the k x k zero matrix and I, is the k x k identity matrix (so 
J= 5,). Let Z = (x, ,..., x1 ,,,. v, ,..., u,,,) and Z* = (a, ,..., a,\,, -m, Ju, ,..., 
-m,vJa,.) and so Eqs. (9) become 

i = Jlh OH(Z) (10) 

and since Z* is a relative equilibrium VH(Z*) = 0. By Taylor’s thee- 
rem H(Z) = H(Z*) + i(Z - Z*)r S(Z - Z*) + O((l Z - Z* 113), where S = 
(8If/aZ’)(Z*) is the Hessian of H at Z *. The linearization of Eqs. (9) or 
(10) about Z* is 

i = J2,v SZ (11) 

which is a Hamiltonian system with Hamiltonian fZ*SZ. The characteristic 
values of JZ,,,S will be called the characteristic exponents of the relative 
equilibrium and its characteristic polynomial will be called the characteristic 
polynomial of the relative equilibrium. Since the characteristic polynomial of 
a Hamiltonian matrix is even the characteristic exponents occur in pairs 
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1, -1 of the same multiplicity and the characteristic exponent 0 is of even 
multiplicity. 

In general, it is quite difficult to calculate these characteristic exponents, 
however for N = 2 or 3 they are known. For N = 2 there is only one central 
configuration and it is easy to calculate that the characteristic polynomial is 

;12(12 + 1)3 (121 

(see Section KC for this calculation). For N = 3 the computation of the 
characteristic polynomial is carried out in Siegel and Moser [29] and 
Wintner [33]. The characteristic polynomial for the Lagrange equilateral 
triangle configuration is 

A*@* + 1)3@4 + A2 + jr), (13) 

where 

y _ ‘4’ hm2 + m2m3 + m3ml). 
(4 + m2 + m3)’ (14) 

Again 0, fi are characteristic exponents. The other four exponents are pure 
imaginary when I’< 4 and complex when 1’ > t. A similar polynomial is 
known for the collinear configuration of Euler and besides 0, +i there are 
one pair of pure imaginary and one pair of real characteristic exponents. 

B. Reduction of Dimension 

The Hamiltonian of the N-body problem (1I.A. 1) is invariant under the 
symplectic extension of the group of Euclidean motions of the plane and this 
fact introduces certain degeneracies which must be accounted for in a pertur- 
bation analysis. A Euclidean motion of the plane is of the form q --) Aq + 6, 
where A is a rotation matrix and b is a constant vector and the symplectic 
extension of this transformation requires that p + Ap. It is easy to check that 
HN is invariant under the action (q ,,..., qN,pl ,..., pN) + (Aq, + b ,..., Aq,,, + b, 
AP i,..., Ap,). This transformation carries a periodic orbit into a periodic 
orbit and so it follows that the periodic orbits of the N-body problem are not 
isolated even in an energy level. A theorem of the author’s [ 181 says that in 
this problem the algebraic multiplicity of the characteristic multiplier +1 of a 
periodic solution must be at least 8. Unless these degeneracies are eliminated 
the standard methods of perturbation theory cannot be applied. 

By a classical theorem this symmetry implies that the equations of motion 
II.A.4 admit 

L =p, + *.. +p,v, (1) 
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linear momentum, and 

I= q:.@, + ... + q.p&, (2) 

angular momentum, as integrals. Thus part, but not all, of the degeneracies 
can be eliminated by holding these integrals fixed; that is, consider the 
equation as defined on the invariant submanifold B c R2” X R2”. where L 
and I are some fixed constants. Since B is of the odd dimension, 4N - 3, it 
cannot be a symplectic submanifold. A periodic solution of the N-body 
problem restricted to B would have the characteristic multiplier +l of 
multiplicity at least 5. For simplicity assume that B is the submanifold of 
F?‘“’ x R2”, where L = 0 and I = 1. In this case B is carried into itself by the 
symplectic extension of the Euclidean group given above and so the periodic 
orbits are not isolated in B. However, if one identifies a point in B with all 
its images under this action one obtains a quotient space D = B/- which is, 
in general, of dimension 4N - 6. The action is free and proper and so D is a 
manifold and by a theorem of [ 181 it is a symplectic manifold! In fact D 
inherits its symplectic structure in a natural way from the symplectic 
structure of IR’” x IR’” and the Hamiltonian H of II.A.l and the flow defined 
by H are all well defined on D. In general, a periodic solution of the N-body 
problem would have the characteristic multiplier $1 of multiplicity 2 on D. 
Thus D is the natural space to study these equations. A relative equilibrium 
solution would reduce to a point on D. Thus a natural space to study the N- 
body is on D which is the space obtained from R2” x R2” by setting L = 0, 
J= I and identifying points which differ by a Euclidean motion. The details 
and generalization of these results are found in the author’s paper [ 181. This 
paper also shows that some periodic solutions of the three-body problem 
have the characteristic multiplier +l of precisely multiplicity 2. 

In order to ease the computations we shall proceed on a slightly modified 
reduction which is more closely related to the classical reduction as is given, 
for example, in Siegel and Moser [29]. First we start with the equations in 
the rotating coordinates of the previous section. Now the equations are no 
longer invariant under translations, but the center of mass of the system, 

C = (m,x, + -.. + m,x,)/M, M= m, + ... + m,v, (3) 

and the total linear momentum, 

satisfy the linear equation 

(4) 

(5) 
c=JC+L/M, 

L=JL. 
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Thus L = C = 0 defines an invariant hyperplane B, c R’” of dimension 
4N - 4. The restriction of Eqs. LA.9 to B, will be called the first reduced 
system. A relative equilibrium of the type discussed in the previous section 
must lie in B,. System (5) is linear and its characteristic polynomial is 
(1’ + 1)‘. Thus the characteristic polynomial of a relative equilibrium of the 
first reduced system is obtained from the characteristic polynomial of the full 
system by dividing out the factor (AZ + 1)‘. 

Now we claim that B, is a symplectic subspace of R4”’ and so the first 
reduced system is Hamiltonian. Consider the vectors 

a, = (O,..., 0; m, , O,..., m,v, 0)‘, 

a2 = (O,..., 0; 0, m, ,..., 0, mN)T, 

p, = (- l/M)( 1. 0 ‘..., 1, 0; 0 ,..., o)r, 

p* = (-l/M)(O, l,..., 0. 1; 0 ,.... O)T, 

where M = JJ m, and the semicolon separates the first n components from 
the last n components. Then 

B,=(zEP”“:a:JZ=a:JZ=P~~Z=PrJz=O) 

and 

The span of aI, (x2, /I,,pZ is a symplectic subspace of R4,” and B, is its J- 
complement; thus B, is a symplectic subspace. 

The Hamiltonian (II.A.9) is invariant under rotations, i.e., the symplectic 
mapping xi -+ Axi, yi +Ayi leaves it fixed for all rotations A. Clearly B, is 
invaariant under the same action and so the Hamiltonian of the first reduced 
system is invariant under this action. Thus the results of the author [ 181 
apply to this system. In particular the first reduced system admits total 
angular momentum 

as an integral. The gradient of I restricted to B, is zero only at the origin and 
so B; = I-‘(c) c B, is a regularly embedded submanifold for all c # 0. The 
action leaves I and B; invariant and is free and proper. Thus the quotient 
space D obtained from B; by identifying the orbits of this action to a point is 
a smooth manifold. By [ 181, D is a symplectic manifold and the first 
reduced system naturally projects to D. This system will be called the (full) 
reduced system and is the system which will be discussed below. 
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The local version of this second reduction is discussed in Whittaker [34. 
pp. 313-141. Let 2: be a relative equilibrium of the first reduced system, 
then by the classical theorem given by Whittaker there exist symplectic coor- 
dinates ~1, ,..., iv4N--4 such that I= w, and the Hamiltonian H is independent 
of W2&, . Thus the equations of motion are 

where the partials of H are evaluated at (no, ,..., bvzN- 2, ., u’~,% ,,..., w~,,-~). 
Locally the equations for the full reduced system are obtained by setting 

~1, = Z,(Z,*) in (7) and ignoring the equations for u’, and wZN-, . It is easy to 
see from (7) that this has the effect of removing a factor of 1’ from the 
characteristic polynomial of the first reduced system. 

In summary: The reduced system is a Hamiltonian system of 2N - 3 
degrees of freedom on a symplectic manifold D. The manifold D is obtained 
from the original phase space R w by setting the center of mass and linear 
momentum equal to zero, fixing angular momentum #O and identifJ?ing 
configurations which doper by a rotation. To a relative equilibrium Zt of 
Section 1I.A there is a corresponding relative equilibrium Zf of the reduced 
system. if the characteristic polynomial of the original relative equilibrium is 
p(A) then the characteristic polynomial of the relative equilibrium of the 
reduced system is p(A)/A2(A2 + 1)‘. 

Similarly let us consider a periodic solution 4(t) of period r of the full N- 
body problem which lies in the first reduced space. By considering (5) and 
(7) as has been done for equilibrium, this periodic solution has characteristic 
multipliers e”, eiT, 1, y4 ,..., I’~, e-i*, e-iT, 1, y;‘,..., y;’ and the characteristic 
multipliers of the projection of this periodic solution on the reduced space 
are y4,..., ylv, Y;‘,..., Y.;‘. 

The reduced space is the natural space to study relative equilibria and 
periodic solutions, in general, since all the symmetry has been eliminated. 
Thus we say that a relative equilibrium is non-degenerate if zero is not a 
characteristic exponent of the relative equilibrium on the reduced space. 
Thus the relative equilibrium is non-degenerate if zero is a characteristic 
exponent of multiplicity precisely 2. We shall say that a periodic solution of 
the N-body problem is non-degenerate if +I is a characteristic exponent of 
multiplicity precisely 2 on the reduced space. 

C. Jacobi Coordinates 

Jacobi coordinates are ideal for several of the problems considered in this 
paper for several reasons. First one coordinate locates the center of mass of 
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the system; thus it can be set to zero and ignored in subsequent 
considerations. Second, another coordinate is the vector from one particle to 
another and so can be easily scaled in the problem where two of the particles 
are close. Third, another coordinate is the vector to one particle from the 
center of mass of the other particles and so can be easily scaled in the 
problem where one particle is far from the others. Last, the Hamiltonian and 
angular momentum are relatively simple in these coordinates. 

Because of the nature of the problems considered in this paper it is 
necessary to discuss the N- and (N + I)-body problems simultaneously. For 
later applications it is convenient to consider the (N + 1).body problem here 
and index the masses, position vectors and momentum vectors from 0 to N. 
Let x0, x ,r... 1 XN,YO’ . . . . yN be the rotating coordinates used in the previous 
sections. We follow a suggestion of Andre Deprit and use an inductive 
definition of Jacobi coordinates. 

Set g, = x0 and p,, = m,. Define a sequence of point transformations by 

Uk=Xk-gk-,r 

Tk: gk = (l/pk)(mk-xk + pk- L gk- I>, (1) 

iUk=mk+pk-I 

for k = l,..., N. Thus ,uk is the total mass and g, is the center of mass of the 
particles with index 0, l,..., k. The vector uk is the position of the kth particle 
relative to the center of mass of the previous particles. Consider Tk as a 
change of coordinates from gk-,, u ,,..., uk-,,xk7..., x, to gk, ui ,..., uk, 
xk+, ,..., xhr or simply from g,- ,, xk to g,, uk. The inverse of T, is 

T,-‘: 
xk = @k-,/Elk) uk + gk, 

gk- I = (+k/pk) ‘k + gk. 

In order to make the linear symplectic extension of T, (the Mathieu 
transformation) define G, = y, and 

and 

Qk: 

uk= @k-hkbk- (mk/pk) Gk-l, 

G,=j-‘k+Gk-1 
(3) 

Q; ': 
Yk = vk + @k/pk) Gk, 

G,- , = -vk + @k- ,/gk) Gk. 

If we denote the coefficient matrix in (1) by A then the coefficient matrices 
in (2), (3) and (4) are A-‘, AT-’ and Ar, respectively, and so the pair Tk, Qk 
is a symplectic change of coordinates. 
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An easy calculation yields 

g;- , JG, _, + xk’ JJ~~ = g:JG, + u: Jtl, (5) 

and 

II G,-, ll*P~k-, + II ~4*/2 mk = I/G,?/%, + IIL'k/12/2Mk, (6) 

Since each transformation T,, Qk is symplectic for k = l...., N the 
composition is symplectic and so the change of variables from x~,...,x,~, 
1’0 ,..*, ~‘.v to g,., u, ,... 7 u>,., G,v, u, ,..., u>, is symplectic. A simple induction on 
(5) and (6) shows that kinetic energy is 

K = f- (1 yi1)*/2mi = )I G,l(2/2p,v + 2 )I r1#2M~ 
,rQ i= I 

and total angular momentum I is 

i=O i=l 

(7) 

Also g, is the center of mass of the system and G, is total linear momentum. 
This induction definition does not lend itself to simple formulas for the U’S 

and 0’s in terms of the x’s and y’s but we require only a few special 
properties of this representation. First note from (1) that 

24, =x,-x0. (9) 

We claim that 

k 

xO = gk - " cm,/&> uI for 
1% 

k = l,..., N. (10) 

Equation (10) is true when k = 1 since (2) gives go = (-ml/~,) U, + g, and 
go = x0. Assume (10) for k - 1. So x0 = g,- , - C:::(rn,/,~,) ul, but by (2) 
again g,-, = (-mk/r(lk) uk + g, and these two formulas yield (10). 

Lastly, we claim that 
j-l 

xj-xi=uj+ \’ cYji[U, 
i=1 

for O,<i<j<N, (11) 

where ajir are constants. We prove (11) by induction on N. For N = 1 this is 
just (9). Now assume (11) for N - 1. We need only consider j = N and so 

XN - xi = (XN - x0) - (Xi - x0). (12) 
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BY (lo), -yo = g,-, - E:,‘(~,/P,, u1 and by (I), xN = uN + g,- , . Since i < 1 
the induction hypothesis yields xi - x0 = ui t ci;! ujo,u,. Substituting these 
last three relations into ( 12) yields ( 13). 

Let dji = xi - xi = uj + pi; t aji,u,. The Hamiltonian (II.A.8) becomes 

- g;JG, - 2 u:Jui 
i=l 

- \’ - mimj 

O(Ej<M lldijll ’ 
(13) 

By (1 1 ), the last term in (13) (the potential energy) is independent of g, and 
so the equations for g, and G, are 

(14). 

These are the same equations as II.B.4 since L = G,V and C = G,v. Thus the 
Hamiltonian of the N-body problem on the first reduced space is obtained 
from (13) by setting g,V = G, = 0. That is, 

H = c (11 ui1(/2Mi - u;Jvi) - \’ 
mimj 

- 
i= 1 o<lz<,v lIdjill ’ 

(15) 

Let us calculate the characteristic equation for the relative equilibrium for 
the two-body problem so N = 1 in (15). In this case 

H=Ila,(1/2M,--u:Jc,-\‘~ 
- lld,oll ’ 

(16) 

where M, = m,m,/(m, t m,) and d,, = u,. Introduce the canonical polar 
coordinates by 

u, =rcosB. 

u2 = r sin 8, 

so that (16) becomes 

c, = R cos B - (O/r) sin 8. 

v2 = R sin 0 - (O/r) cos 0 

H = (R2 + @‘/r2)/(2M,) - 0 - m,m,/r. 

17) 

18) 
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where M, = m,m,/(m, + m,). H is independent of 0 and so 0, angular 
momentum, is an integral. The equations of motion are 

B=$l, 0 = 0, 

R i=- 0’ morn1 
(19) 

M’ 
j=---* 

Mr’ r2 

These equations have an equilibrium point when 19 is arbitrary and R = 0, 
0 = m,m,(m, + m,)-‘13, r = (m, + m,)‘13. As indicated in the previous 
section the equations on the reduced space are obtained by holding 0 fixed 
and ignoring 0 so the equations become 

(20) 

The linearization of these equations about the equilibrium point R = 0. r = 
(m, + m1)‘/3 is 

i = RIM, I? = --MR. (21) 

The characteristic polynomial for the equations on the reduced space is 
therefore 1’ + 1 and 12(L2 + I)’ on the full space. 

D. Discrete Symmetries 

Some central configurations admit a discrete symmetry which can be 
exploited in a perturbation analysis to establish the existence of additional 
periodic solutions. For example the collinear configuration is symmetric in 
the line of masses and the equilateral triangle configuration of the three-body 
problem with equal masses is symmetric in the three medians of the triangle. 
This section is not needed until Chapter IV. 

Consider a central configuration of the N-body problem with masses 
m, ,..., mN and position vectors (in rotating coordinates) a, ,..., a, which 
admits a line of symmetry. Choose a coordinate system U, o for the 
corresponding restricted (N + 1)body problem (cf. Section II1.A or [ 171) so 
that the u,-axis is the line of symmetry. Then the Hamiltonian 

HR = 1) u II’/2 - uTJv - + 
mj 

,Yl Ilaj-ull 

of this restricted (N + 1)-body problem is invariant under the substitution 

Ul-+ u,, v, -+ -v,, 
(2) 

u2-+ -u2, L’2 + u2 1 

505 :39: 1~2 
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where u = (u,, u2), etc. In this case an easy and classical argument 
establishes that if a solution crosses the line of symmetry orthogonally at 
times 0 and T (#to) then this solution is ZT-periodic and the orbit of this 
solution is symmetric with respect to the line of symmetry. Consider the 
class of solutions which cross the line of symmetry at time 0; specifically let 
u = #(t, a, p), L’ = ~(t, a, p) be the solution of the restricted problem which 
satisfies 

Then this solution with a = a,,, ,8 = &, is 2T,-periodic if (T,, a,,,&,) satisfy 
the equations 

#,V,, aoqPo) = 0, vy,(To, ao,Bo) = 0. (4) 

Such a symmetric periodic solution will be called non-degenerate if the 
Jacobian 

(5) 

has rank 2. The implicit function theorem applied to Eqs. (4) implies that a 
non-degenerate symmetric periodic solution persists under small symmetric 
perturbations of the Hamiltonian. 

Now consider the N-body problem in rotating coordinates introduced in 
Section 1I.A. The Hamiltonian is invariant under the substitution 

xjl+xj[Y Yjl + -YjlY 

xj2 -+ -xjz, Yj2 --) Yj2 - 
(6) 

In order to treat the full N-body problem on the reduced space the 
classical results and ideas given above must be generalized slightly. The 
notation and elementary facts of symplectic geometry used below can be 
found in [ 11 and [ 181. Let P be a symplectic manifold of dimension 2d with 
symplectic two form R, f: P + P an anti-symplectic involution (i.e., f 0 f = 
identity and Df(R) = -Q), and K: P + R, a Hamiltonian which is invariant 
under f (i.e., K of = K). In our example P = R4 with the usual symplectic 
structure, f is given by (2) and K = HR in (1) for the restricted problem and 
P = il?4N with the usual symplectic structure, f is given by (6) and K = H in 
II.A.8 for the N-body problem. 

For the restricted problem an initial condition p = (u,, L’,,) is an 
orthogonal crossing of the line of symmetry if and only if f(p) =p. In 
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general, we shall say that p E P is a symmetric initial condition if p E Q = 
(9 E P:f(q) = q} and we will call Q the symmetry manifold. 

LEMMA 1. Q is a Lagrangian submanifold of P. For any p E Q there 
exist symplectic coordinates ([, v) at p such that p corresponds to [ = v = 0, 
locally Q corresponds to v = 0, and such that the Jacobian matrix off in 
these coordinates is diag(i,, --I,). 

ProoJ Let p E Q and choose any symplectic coordinate system at p. Let 
F be the Jacobian matrix off at p in these coordinates so that FTJ,F = -J 
and F2 = I. Since F2 = I the only eigenvalues of F are f 1 and F is 
diagonalizable. Let Fu = a and F/l = /? so a’J,p = arJ,FP = (-Fa-‘)’ Jdp = 
-arJ,P or a’J,/? = 0. Thus the eigenspace corresponding to the eigenvalue 
+ 1 (and for -1) is isotropic. Since the tangent space at p is the direct sum of 
the two eigenspaces these spaces must be of maximal dimension and thus are 
Lagrangian. 

By the preliminary results of [ 151 there exist symplectic coordinates z at p 
such that z(p) = 0 and in these coordinates 

Let f(z) = Fz + Q(z), where @(O) = D@(O) = 0, and define a change of 
coordinates (not necessarily symplectic) by w = g(z) = z + fF@(z). Since 
f2 = identity. F@(z) = -@(Fz + Q(z)) and this implies g of =fo g, where $ 
is the linear map w + Fw. Thus in w coordinates f is the linear reflection 
w + Fw and so locally the fixed set off is a d-dimensional manifold. Since 
the eigenspace corresponding to +l is the tangent space to Q at p, Q is a 
Lagrangian submanifold. The further statement on the existence of 
symplectic coordinates ([, v) such that Q is locally v = 0 follows from the 
general theorems of [32]. 

LEMMA 2. if y(t) is a solution of dK# such that y(O) E Q and y(T) E Q 
for T > 0 then y(t) is 2T-periodic and the orbit of y is invariant underJ: 

Proof Since K is f invariant and f is anti-symplectic dK(f (x))#= 
-Of(x) dK(x)# for all x E P. Let d(t) = f (y(2T - t)) so 

S(t) = -Of (y(2T- yt)) j(2T- t) 

= -Of (y(2T - t)) dK(y(2T - t))” 

= dK(f (y(2T- t)))“= dK(G(t))#. 

Thus 6(t) = f (y(2T- t)) and y(t) are both solutions of dK” and are equal 
when t = T, therefore, by the uniqueness theorem for ordinary differential 
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equations f(r(2T- t)) = y(t). Thus j+(O)) = y(O) = y(2T) which implies y is 
2 T-periodic. 

LEMMA 3. Let p E Q be a critical point of K and ([, v) the symplectic 
coordinates of Lemma 1. Then 

WC, v) = K(0, 0) + j(L-‘AC + urBu} + a(ll# + ~~u~~~), 

where A and B are d x d symmetric matrices. 

ProoJ Let S be the Hessian of K at p. Since K is f invariant F’SF = S, 
where F is the Jacobian matrix off at p. From the proof of Lemma 1. F in 
these coordinates is 

and so 

Let Z(t, p) be the solution of dK* such that Z(O,p) =p, p,, such that 
y(t) = Z(t,pJ, where y(t) is the solution of Lemma 2 and q. = y(T). Thus 
Z: (T, pO) + q0 and DE: T,IR X TpeP+ TJP). The solution y(t) will be 
called a non-degenerate symmetric periodic solution if TqOP = (T,,Q) + 
(DE(T,lR X T,,Q)). This condition is the same as the condition for 
transversal intersection of Q and 5: R x Q + P at qo, For the restricted 
problem the two concepts of non-degeneracy are the same. General transver- 
sality theory [16] or a simple application of the implicit function theorem 
implies that a non-degenerate symmetric periodic solution persists under 
small symmetric perturbations of the Hamiltonian. 

E. Non-degenerate Relative Equilibrium 

In Section 1I.B the relative equilibrium was assumed to be non-degenerate 
in the sense that zero is not a characteristic exponent of the relative 
equilibrium on the reduced space. Other researchers use a different definition 
of non-degenerate which will be shown to be equivalent to the definition used 
here. Therefore the results of Palmore [23,24] establish that almost all 
relative equilibria are non-degenerate and in particular the collinear relative 
equilibria in the N-body problem are non-degenerate. This section can be 
skipped completely upon first reading. 

First investigate the meaning of non-degenerate in the sense of this paper. 
Let 

xi = ai. yi = miJai (1) 
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be a relative equilibrium, i.e., a constant solution of II.A.8 with UJ = 1. Let 
x = (x, )..., x&J, y= (4 , ,..., y.,,.), K = diag(J ,..., J), A = (a, ,..., a,) and S = 
-(a’V/aX*)(A). Note that K commutes with S and M. The linearization of 
II.A.8 about the relative equilibrium X = A, Y = MKA is 

?=K~fM-ly, 

I’=KY+SX. 
(2) 

The relative equilibrium is degenerate in the sense of this paper if and only if 
there exist vectors U = (u, ,.... u,,), V = (u, ,..., Us,,) and a real number a such 
that 

(i) ~m,ui=~71i=0, 

(ii) UTMA + ArKV= 0. 

(iii) (U, V) is not parallel to (KA, MA), 

(iv) KU + M-IV= aKA, 

SU+KV=aMA. 

(3) 

Condition (3i) asserts that (U, V) lie in the first reduced space. Condition 
(3ii) asserts that (U, v) are tangent to the angular momentum manifold at 
the relative equilibrium. Condition (3iii) asserts that (U, V) is not the zero 
vector in the full reduced space since (KA, MA) is tangent to the orbit of the 
rotation action at the relative equilibrium. Condition (3iv) asserts that the 
vector (U, v) is mapped onto the tangent to the rotation action and hence 
onto the zero vector in the quotient space. 

Other researchers [23-25, 301 interpret Eqs. II.A.7 as the necessary and 
sufficient conditions for A to be a critical point of V restricted to the 
manifold XMX= 1, where W* is the Lagrange multiplier. The solution A 
must have its center of mass at the origin and so C miai = 0. The function V 
is invariant under the rotation action X + dceX and so it is well defined on 
the quotient space obtained by identifying X and eKeX. Thus the other 
researchers define a manifold fi obtained from R*” by restricting X to 
satisfy r miXi = 0, FMX = 1 and identifying X and dc*X. The function V 
is naturally projected to a smooth function p on fi. Also a relative 
equilibrium A projects to a critical point A of p on i6?. The other definition 
of a non-degenerate relative equilibrium is that the Hessian of P at A is non- 
singular. A necessary and sufficient condition for a relative equilibrium to be 
non-degenerate in this sense is the existence of a vector W = (w, ,..., w,) and 
a real number /3 such that 
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6) \‘ m,wi=O, 

(ii) WTMA = 0, 

(iii) W is not parallel to KA, 

(iv) (S + M)W=PMA. 

(4) 

The interpretation of these conditions is similar to the previous inter- 
pretations. 

In order to show these two definitions are equivalent a simple algebraic 
identity is needed. By II.A.7 

MA-%(A)=0 

and since c?V/~X is homogeneous of degree -2 

z av aV 
t -&‘A)=&4 for all 1. 

Differentiate (6) with respect to t and then set t = 0 to obtain 

(7) 

(Euler’s formula). Combining (5) and (7) yields 

SA = 2MA. (8) 

Now assume there exist W and /3 satisfying (4). Define U = W +bA and 
V = MKW + PMKA. It is easy to check that U and V satisfy (3i) and (3ii). 
With the aid of (8) it is easy to check that (U, V) satisfy (3iv) with a = 2. 
Thus (3iii) must be verified. Assume that U is parallel to KA and so 

U= 6KA, (9) 

where 6 # 0. Thus 

W+pA=-KA, 

(S+M)(W+PA)=-dK(S+M)A3 

4pMA = -3dKMA, 

0 = 4pA rKMA = 3 6A TMA 

and so 6 = 0. This contradiction implies II is not parallel to KA. 
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Conversely assume there exist U, V and a such that (3) holds. Let W= 
CT- (a/2)A. Then (4i) follows from (3i). Solving for V from the first 
equation in (3iv) yields V = -MKU - aMKA which when substituted into 
(3ii) yields (4ii). The proof that (4iii) implies (3iii) is similar to the proof of 
the converse given above. From the second equation in (3iv) 

SU+KV=aMA. 

SU + K(MKU + aMKA) = aMA, 

(S + M)U = 2aMA 

which is (4iv) with B = 2a. 
Thus the two defintions of non-degenerate relative equilibrium are the 

same. 

III. NON-SYMMETRIC PERIODIC ORBITS 

A. Small Mass 

In this section we show that under mild non-resonance assumptions a non- 
degenerate periodic solution of the restricted problem can be continued into 
the full (N + 1)-body problem. This result follows easily from a standard 
perturbation lemma after the Hamiltonian of the (N + 1)-body problem with 
one small mass has been scaled. This scaling shows that the restricted 
problem is the first approximation of the full problem with one small mass. 

A non-trivia1 periodic solution of an autonomous Hamiltonian system has 
the characteristic multiplier +l with algebraic multiplicity at least equal to 2. 
Roughly speaking one multiplier is fl because the system is autonomous 
and one characteristic multiplier is +l because the system admits an 
integral. A periodic solution of an autonomous Hamiltonian system will be 
called non-degenerate if the multiplicity of the characteristic multiplier + 1 is 
precisely 2. A non-degenerate periodic solution is stable under small 
Hamiltonian perturbations as is seen from the following lemma. 

Let P, be a smooth one parameter family of symplectic manifolds and 
K,: P, ---) R a smooth one parameter family of Hamiltonians for / E I < E,. Let 
g(t) be a non-degenerate, T-periodic solution of the system whose 
Hamiltonian is K,. Let k, = K,@(t)). Then there exists an E, > 0 and 
smooth functions T(E, k), @(t, E, k) such that 

0) T(O, k,) = T, @(t, 0, k,) = O(t), 
(ii) @(t, E, k) is a T(E, k)-periodic solution of the system whose 

Hamiltonian is K,, 
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(iii) K,(@(t, E, k)) = k 

for I&( < E, and Ik- k,l < cl. 

This is an elementary and classical result (see Abraham and Marsden 
[ 1 I). The proof is a simple application of the implicit function theorem to the 
cross section map restricted to an energy level. 

The solution @(f, E, k) will be called a continuation of 4(t). 
Consider the (N + I)-body problem in rotating coordinates where the 

particles are indexed from 0 to N and consider the zeroth mass to be small 
by setting m, = e2. The Hamiltonian HA.8 becomes 

where HN is the Hamiltonian of the N-body problem with particles indexed 
from 1 to N. As in Section HA let 2 = (x, ,..., x, ; y, ,..., y,) and Z* = 
(a , ,..., a,; -m, Ja, ,..., -m,Ja,) so Z* is a relative equilibrium. By Taylor’s 
theorem 

Hzv(Z) = H,,@*) + Hz - z*)‘s(z - z*) + o(llz - z*llq, (2) 

where S is the Hessian of HN at Z*. In (1) make the change of variables 

x0 = r, Yo = E2rl, z=z*-EU. (3) 

So xi = ai + O(E). This change of variables is symplectic with multiplier E? 
and thus (1) becomes 

H N+I = 

Thus to lowest order in E the Hamiltonian of the (N + I)-body problem 
decouples into the Hamiltonian of the restricted (N + 1)-body problem, 

and the Hamiltonian of the linearization of the N-body problem about the 
relative equilibrium Z*, 

H,. = 4 VSU. (6) 
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Thus, when E = 0, the equations of motion are 

(7) 

and 

ri= J&U. (8) 

Let M=e*+m,+ ... + m, and U= (U ,,..., u,. ui ,..., L’~) so xi= ai -cui 
and yi = -miJai - EL’~. Since the center of mass of the relative equilibrium is 
fixed at the origin Cy miai = 0. Thus the center of mass of the system is 

C= (.s*<--e(m,u, + ... +m,u,V)\/M 

and linear momentum is 

(9) 

L=&zn-&(v,+..‘+v,V) (10) 

and angular momentum is 

I = c2crJn - 5 (ai - sui)r J(miJai + &vi). 
I 

(11) 

From (9), (10) and (11) we see that the manifold B, of the reduced space 
depends smoothly on E. Now apply the lemma stated above to the system on 
the reduced space whose original Hamiltonian is (4) to give: 

Let #(t) be a periodic solution of the restricted problem (7) with period r 
and characteristic multipliers 1, 1, /I, /I- ‘, where p # 1. Let the characteristic 
exponents of the relative equilibrium be 0, 0, fi, fi, Mu,..., &a,, where 
ajt f 0 mod 2;rri for j = 4,..., N. Then the z-periodic solution r = $(t), U = 0 
of Eqs. (7) and (8) can be continued into the (N + 1)body problem on the 
reduced space. 

By the lemma given above it is enough to show that the periodic solution 
r = q%(t), U = 0 is non-degenerate on the reduced space. By the results of 
Section 1I.B passing to the reduced space eliminates 0, 0, fi, fi as charac- 
teristic exponents of the relative equilibrium and so the characteristic 
multipliers of this periodic solution are 

1, l,P*‘, exp *a, 5 ,..., exp *a,$, r. 

Thus the multiplicity of the characteristic multiplier fl is exactly 2 and the 
lemma applies. 
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An immediate consequence is: Any non-degenerate periodic solution of the 
classical restricted three-body problem whose period is not a multiple of 27~ 
can be continued into the three-body problem, since the relatioe equilibrium 
of the two-body problem has a4 = i 647 Section KC. 

This corollary is the main result of Hadjidemetrious [ 111. 

B. Bifurcation of a Primar) 

Another method of introducing a small parameter into the (N + 1).body 
problem is to assume that the distance between two of the particles is small. 
In this case we shall show that there are periodic solutions where N - 1 
particles and the center of mass of the other pair move approximately on a 
relative equilibrium solution and the pair move approximately on a small 
circular orbit of the two-body problem about their center of mass. 

Consider the (N + 1)-body problem written in Jacobi coordinates as 
discussed in Section KC. Assume that the center of mass and linear 
momentum are fixed at the origin and so the Hamiltonian is (cf. II.C.16) 

and total angular momentum is 

(1) 

(2) 

By II.C.10 the vector U, is the position vector of the first particle relative 
to the zeroth particle and we wish to consider the case when these two 
particles are close, thus we make the change of variables 

u, = E4(, (3) 

where E is a small positive parameter. This change of variables is not 
symplectic, but compensation will be made later. The Hamiltonian becomes 

H ,v+, = II t’, ll’P4, - E~~‘Ju, - $f$ + H, + O(c4), (4) 

where H,%, is the Hamiltonian of the N-body problem in a rotating coordinate 
system. Note that the O(E’) terms do not contain the momentum terms 
1’ 1 ,...) L’,y . Angular momentum becomes 

I= E~<~JL~, + : u;JLT~. (5) 
i=2 
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As before define Z = (u, ,..., u,v. vz ,..., v,v) and let Z* be a relative 
equilibrium so 

H,@) = H,dz*) + $(Z - z* y S(Z - z*) + O(ll z - z* II’). 
NOW change variables by 

rj = 0 J&Z, 

&U=Z-z* 

(6) 

and change time and the Hamiltonian by 

t=&. H&r+, - H,,(Z*) = E-6K. (8) 

The composition of (3) and (7) is a symplectic change of variables with 
multiplier .s2, and so the new Hamiltonian becomes 

IIrll12/2W -7$’ +2 I I -trJrj + + iJTSU 
I 

+ O(E’). (9) 

Thus to zeroth order in E the Hamiltonian K is the Hamiltonian of the 
Kepler problem and at sixth order the rotation term of the Kepler problem 
and the quadratic terms of the relative equilibrium appear. 

The gradient of angular momentum at the relative equilibria Z* is non- 
zero and so the angular momentum integral becomes 

z = I’ + &I, u + O(E2), (10) 

where I’ is Z(Zz) and I, is the gradient of the angular momentum at Z* 
written as a row vector. Holding Z fixed is equivalent to holding 
E ‘(I - I’) = I, V + O(E) fixed. Thus the reduction to the full reduced space 
is smooth in a. 

For the moment neglect the O(e’) terms in (9) and consider the approx- 
imate equations 

r’ = q/M, + c6Jt, 
rl’ = -wG/ll~l13 + c6Jrl, (11) 
U’ = J,, SU, 

where ’ = d/k. A periodic solution of these equations is 

t* = exp(oJs)a, 

II* = M, 6J exp(dJs)a, 

Li”r G 0. 

(12) 
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where o=6+c6, 6= l/m,+m,, and a is a constant vector with ]]a]] = 1. 
The period map in an energy level is the identity map up to terms of order 
O(E’) and so care must be taken in calculating the characteristic multipliers. 
Change variables by 

(13) 

so that the first two equations in (11) become 

r,, + 2655’ - s*y = -(s’gII [l13). (14) 

The Jacobian of [/]I []I3 at a = (1,0) is R = ( ;* y ) and so the linearization 
of (14) about a is 

r,, + 26J[ - S*[ = -6*R[ (15) 

from which it is easy to calculate the characteristic polynomial 

P(P + S’}. (16) 

Let the relative equilibrium have characteristic exponents 0, 0, fi, fi, 
*a 4,..., *a,, where ai # 0 for i = 4,..., N. Then the characteristic exponents 
of the solutions (12) of Eqs. (11) are 

l,l,exp (*$)=~*E~~+O(E~~): 

1, 1, exp(*ie62n/w), exp(fiP2n/w), exp(*P2ra,/w),.... 
(17) 

On the reduced space the characteristic multipliers are 

1, 1, 1 + E62ni/6, 1 f P2zi/& 1 f Pad 2n/w ,..., 1 f E6a,,r2z/w (18) 

plus items of order .s’* or higher. Thus the characteristic multipliers are of 
the form 1, 1, 1 f c6pJ + 0(&i’) ,..., 1 f s6P,,, + O(s”), where pi # 0 for i = 
4,..., N. 

In order to continue this solution into the full (N + 1)-body problem an 
extension of the classical perturbation theorem quoted in Section II1.A must 
be proved. This extension is very similar to the continuation theorem given 
in Henrard [ 141. 

Let &(t, E) be a T,,(e)-periodic solution of a Hamiltonian g’stern with 
smooth Hamiltonian L,(u, E), where u E 0 is an open set ciRZm, 1 E 1 < Q, with 
characteristic multipliers 

1, 1, 1 f &Py2 + 0(&P+ ‘) ,.... 1 * Epy, + 0(&p+ ‘). 
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where yj f 0 for j = 2,..., m. Let the period map in an energy level be the 
identity map up to order E - p I. Then for any smooth function t(u, E) there 
exists an E, > 0 and smooth functions T,(E), @,(t, E) for ICI< 1 such that 
#,(t, E) is a T,(c)-periodic solution of the system whose Hamiltonian is 
L ,(u, E) = L&4, E) + &“f qu, E), where T,(E) = T,,(E) + O(eP+ ‘) and 
4l(O, E) = #o(O, E) + o(Ep+‘). 

Proof: At #,,(O, 0) E 0 choose a hyperplane transversal to i,(O, 0). This 
hyperplane will be transversal to both flows for E small enough. Consider the 
intersections uo(s) and o,(c) of this hyperplane and the level surfaces 
L,(u, E) = L&,(0,0), 0) and L,(u, E) = L,(&,(O, 0), 0). For E small and near 
d,,(O, 0) both co and rr, are symplectic manifolds of dimension 2m - 2 and 
the period maps P, and P, are defined. Let v be local coordinates in u,, and 
u, with L’ = 0 corresponding to &(O, 0). The hypothesis gives P, = P, + 
O(sP+ ‘) and P,(c. E) = L’ + spQ(v) + 0(&P+ ‘), where Q(0) = 0 and the 
Jacobian matrix of Q at 0 has eigenvalues kyz,..., fy,. To find a periodic 
solution of the system with Hamiltonian L, one must solve 

or 

P,(v, E) = v 

c + @Q(v) + O(E”+ ‘) = v 

or 

Q(v) + O(E) = 0. 

The implicit function theorem implies that this last equation has a smooth 
solution U(E) such that V(O) = 0. The solution $,(t, E) is then the solution of 
the system with Hamiltonian L, with initial condition U(E) at t = 0. 

This elementary perturbation lemma proves that the solutions (12) can be 
continued into the full (N + 1)-body problem. 

The condition that the relative equilibrium be non-degenerate is very weak. 
For N = 2 or 3 all the relative equilibria are non-degenerate, also Palmore 
[23 ] has shown that the collinear relative equilibrium is non-degenerate for 
all N and all masses (cf. Section 1I.E). Palmore [24] also has established that 
almost all central configurations are non-degenerate. 

For N = 2 the above result gives the so-called Hill solutions of the three- 
body problem established by Moulton [2 11, and also discussed by Siegel 
(281 and Conley 191. If the relative equilibrium is the triangular 
configuration given by Lagrange then the above establishes the existence of 
the periodic solutions of the four-body problem given in Crandall [lo]. If the 
relative equilibrium is the collinear configuration of the N-body problem then 
the above establishes the existence of the periodic solutions of the (N + l)- 
body problem given in Perron [26 ]. 
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C. Orbits at Infinity 

A small particle which is far from the other N particles would exert very 
little influence, and so it is natural to assume that there are periodic solutions 
of the (N + I)-body problem where N particles move approximately on a 
relative equilibrium solution and a small particle moves on a nearly circular 
orbit at a great distance. It is very easy to prove that there are two families 
of periodic solutions of the restricted (N + 1)-body problem which are nearly 
circles of large radius (see, for example, Moulton [20] for N = 2 or Meyer 
[ 17 1, in general). These periodic solutions are nearly 2x-periodic and even on 
the reduced space the linearized equations of the N-body problem about a 
relative equilibrium have 2x-periodic solutions. Thus this case is very close 
to resonance. By the calculations in Meyer [ 171 the families of periodic 
solutions of large radius of the restricted problem are non-degenerate and 
these periods differ slightly from 2n. Thus by the result of Section I1I.A these 
solutions can be continued into the full (N + 1)-body problem for small 
mass. Since these periodic solutions are obtained in a two-step proof there is 
no obvious relation between the orders of magnitude. All one knows is that 
the mass must be made small after a large radius is chosen. In this section, 
we present a method of scaling which obviates the relation between the 
various orders of magnitudes. 

Consider the (N + 1)-body problem in Jacobi coordinates (II.C.16) and so 
the Hamiltonian is 

where H,,, is the Hamiltonian of the N-body problem again in Jacobi coor- 
dinates. As before consider HN as a function of 2 and let Z* be a relative 
equilibrium of the N-body problem so that 

HN(Z) = HN(Z*) + +(Z - Z*)T S(Z - Z*) + O((lZ - Z” /13). (2) 

By 1I.C. 12, 

:v- 1 

dNi = U,V - 2 CZN/lU, 
/=I 

and by II.C.6, 

IV,= m,,,(m, + ... + rn,-,)/(m, + ... + m,v). (4) 

Assume that the mass of the particle indexed by N is small by setting 
mN = cl3 and considering E as a small parameter. Thus MN = &I3 + O(E~~). 
We may assume that the total mass is 1 so that m. + ... + m,+, = 1 + 
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O(E’~) since this can be accomplished by a change in scale. In (1) make the 
symplectic change of variables 

u,v = E - =r, 0, = & 14ff, Z-Z” =E6u. (5) 

The multiplier for (5) is sL2 and so (1) becomes 

H= 4 vsu- r’Jq + E3{11q11=/2 - 1/11511} + O(P). (6) 

Let A = J,,-, S so the equations of motion to zeroth order in E are 

Li=AU; t=J<, rj=Jq. (7) 

In all the examples where the characteristic exponents of the relative 
equilibrium are known the matrix A has the eigenvalues fi. Thus to this 
order of approximation there is a l-l resonance between the two sets of 
equations in (7). Changing the exponents in (5) will not eliminate this 
problem because the requirement that (5) the symplectic forces CFSU and 
trJ~ to appear at the same order in E. The scaling in (5) introduces 
correction terms on the approximate periodic solutions period that overcome 
this resonance as we shall see below. 

Angular momentum becomes 

where I’ is the value and I, is the gradient of the angular momentum of the 
N-body problem evaluated at Z*. Thus the system admits the smooth 
integral 

r’= (I - I’)/&6 = I, u + 0(&y (9) 

which depends only on U to lowest order since I, # 0. Thus the reduction to 
the full reduced space is smooth in E. The passage to the reduced space does 
not change the form of the Hamiltonian (6) since this reduction is accom- 
plished by holding r’ fixed and ignoring a variable conjugate to f 
Specifically, by Whittaker [34], we may assume that I’= U, + O(P), where 
U = (U, ,...), so that the passage to the reduced space is effected by holding 
U, fixed (=0) and ignoring V,,- , . Setting V = (U, ,..., U,,- I, U,, ,..., U,,-,) 
the Hamiltonian (6) becomes 

H=f V7’V-trJq + ~~{115711=/2 - 1/11tlll + W?, (10) 

where T is the Hessian of the Hamiltonian of the N-body problem on the 
reduced space. 
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Assume that the relative equilibrium is non-degenerate so that T and B = 
J z,v-3 T are non-singular. The full equations on the reduced space are 

ri= BV+ O(c6), 

ts = J< + c3v + O@‘), (11) 

ri = Jrl - ~‘t/ll <II + W6). 

If we ignore the O-terms in (11) then this system admits a periodic solution 
of the form 

VE 0, 

< = emJta, q = fe3JewJ’a, 
w 

where a is any vector such that l/all = 1 and o = 1 k e3. Since B will have 
the eigenvalues fi, in general, and the period of the functions (12) is nearly 
27~ we must calculate the characteristic multipliers to high order. Assume 
that the coordinates V have been chosen so that B = diag(B,, B2), where B, 
has eigenvalues of the form fni, n a positive integer, and B, has no eigen- 
values of the form fni. For simplicity we shall assume that B, is 
diagonalizable so exp 27rB, = I; this is true if N = 2 or 3. (If this is not true 
one can place B, in Jordan canonical form and scale again so that the off- 
diagonal terms are of order c6.) The matrix exp(2nB,) -I is non-singular 
since B, does not have eigenvalues of the form fni. Let V = (V, , VI) be the 
decomposition of V corresponding to the decompositions of B. Integrate the 
first equation in (11) from (V,,, V,,) at t = 0 to t = 27c/w = 
27r( 1 F s3 + O(P)) to obtain 

V, = [exp 2~(1 T e3 + O(e6)) B,] V,, + O(P) 

= V,, ‘f c327rB, V,, + O(P), 

V, = (exp 27rB,) V,, + O(c3). 

(13) 

From the first equation in (13) one sees that some of the characteristic 
multipliers are of the form 1 + e3/I + O(P), where j3 # 0. From the second 
equation one sees that some of the characteristic multipliers are of the form 
P, P+ 1. 

For the moment ignore the higher terms in (11) and so the second set of 
equations is equivalent to 

4’- 2& - r = -&y//l (113. (14) 

In (14) make the substitution r = ewJ’nr so that 

6 f E~Jw~ - c& = -&/II WI)‘. (15) 
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In these coordinates the approximate solution is given by w = a. Let a = 
(l,O); the linearization of (15) about the equilibrium solution a is 

ti f c3JG - &$ = +R)+l. (16) 

where R = diag(-2, 1). As in the previous section the characteristic equation 
of (16) is J*{,J* + Ed} and so the remaining four characteristic multipliers of 
the approximate solution (12) are 1, 1, 1 f c3i. 

As in the previous section we have given approximate solutions of the 
equations and calculated their approximate characteristic multipliers. We 
now proceed as in the previous section or as in Henrard [ 141 to show that 
these approximate solutions can be continued into the full (N + I)-body 
problem for small E. 

IV. SYMMETRIC PERIODIC ORBITS 

A. Small Mass 

In this section we shall show that a non-degenerate symmetric periodic 
solution of the restricted (iV + 1)-body problem can be continued into the full 
(N + 1 )-body problem under mild non-resonance assumptions. 

Let a, ,..., a.,, be the position vectors of a symmetric central configuration. 
Specifically assume that there is a reflection R and a permutation o of 
(l,..., N) such that a* = identity, aj = Ra,,,, and mj = m,,j,. By rotating the 
axes, if necessary, we may assume that the fixed line of the reflection is the 
abscissa and so R = diag(1, -1). Consider the Hamiltonian H,v of the N- 
body problem in rotating coordinates (II.A.8), let Z = (x, ,..., x~,Y, ,..., J;Y), 
Z* = (a, ,..., aN, -m, Ja, ,..., -m,Ja,) and F the matrix of the transformation 
xi + Rx,(i) 9 Yi + -R-Y,(i) * Thus F is an anti-symplectic involution on R4N, 
FZ* = Z* and H,(FZ) = HN(Z). As before H,(Z) = HJZ*) + j(Z - Z*)r 
S(Z - Z*) + O((lZ - Z*)13), where S is the Hessian of HN at Z*. Since 
H,,(FZ) = EZJZ) the matrix S satisfies FSF = S or S is block diagonal. 

Now proceed as in Section I1I.A and change variables by x, = c, y, = e*q 
and Z = Z* - EU so that the Hamiltonian becomes 

H N+,= 
I 

+ + ursu + O(E). (1) 

This Hamiltonian is .invariant under the anti-symplectic involution 

<+Rt-, rl-, -Rv. 

iJ+ FU. 
(2) 

Now consider this system on the reduced space. When E = 0 the reduction 
does not depend on the {, 4 variables and so only the U variables are 

505.‘39 I 3 
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affected. Choose local coordinates V at the image of the relative equilibrium 
on the reduced space with V= 0 corresponding to the relative equilibrium. 
Then when E = 0 the Hamiltonian (1) is of the form 

where 3 is the Hessian of the reduced Hamiltonian at V= 0. The map (2) 
projects to 

(4) 

where g is an anti-symplectic involution. By the results of Section 1I.D we 
can choose symplectic coordinates ([, v) at V= 0 such that VrSV= crA[ + 
v7Bv and the symmetry manifold Q is locally given by v = 0. In these coor- 
dinates the equations become 

z = Bv + O(ll [II2 + II vl12)9 

i = --AC + O(llCll' + 11 VII’). 

Let r = 4(t), v = v(t) be a non-degenerate 2T-periodic solution of the 
restricted problem, i.e., they satisfy the first pair of equations in (5). Assume 
that the characteristic exponents of the relative equilibrium are 

09 0, fi, fi, *a, ,..., *a,, 

where aj T f 0 mod 7ci for j = 4,..., N. Thus by the results of Section 1I.D the 
eigenvalues of ( -9, f) are *a, ,..., *a,. 

Now we claim that E, = $(t), q = v(t), c = v = 0 is a non-degenerate 
periodic solution of (5) and hence can be continued into the full (ZV + l)- 
body problem. Since the first and second pairs of equations in (5) are 
independent and we have assumed that ($, w) is a non-degenerate symmetric 
periodic solution of the first pair in (5), it is enough to show that [ = v = 0 is 
a non-degenerate 2T-periodic solution of the second pair of equations. 

To prove the non-degeneracy of the solution [ = v = 0 we can linearize the 
equations to calculate the necessary Jacobian. The solution of < = Bv, 
3=-A< which satisfies <=co, v=O at t=O is 
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q(t, 5,) = -B-‘(sin at) I&. 

The eigenvalues of BA are a:,..., ai, and so the eigenvalues of a are taken 
from *a,,..., *a,. Thus this solution is non-degenerate since 

$ (r, 0) = fdet B(sin a4 T) . . . (sin aN T) 
0 

is non-zero. 
An immediate consequence is: Any non-degenerate symmetric periodic 

solution of the restricted three-body problem whose period is not a multiple of 
271 can be continued into the three-body problem. 

B. Bifurcation of a Primary 

In this section we consider symmetric periodic solutions when two of the 
bodies are close. Introduce the scale parameter and change variables as 
discussed in Section 1II.B so that the Hamiltonian becomes 

K = (II’1[1*/2 - 1/1l<ll’\ + c6{+ UrSU- <r&r) + O(E’). (1) 

Note that we have also scaled the variables so that M, = mom, = 1. As in 
the previous section we assume here that the relative equilibrium of the N- 
body problem is symmetric in a line and so K is invariant under the anti- 
symplectic involution 

where R and F are as in the previous section. 
In order to calculate the necessary Jacobian it is convenient to change 

from the rectangular coordinates <, q to the Delaunay elements 1, g, L, G so 
that 

1 
K=-%+s6 

I 
+ UTSU - G 

I 
+ O(E’). (3) 

In the Kepler problem I is the mean anomaly, g is the argument of the 
perihelion and G is angular momentum. In these coordinates an orthogonal 
crossing of the line of symmetry occurs when g and I are multiples of 7~. See 
Szebehely [3 1 ] for a complete discussion of Delaunay’s elements and the 
symmetry condition. 

As in the previous section we consider this Hamiltonian on the reduced 
space and use the coordinate system ([, V) introduced here. The Hamiltonian 
becomes 
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K=-&+;(~rAr+“rB”-2G)+O(&‘). (4) 

Assume that the relative equilibrium is non-degenerate so that A and B are 
non-singular. The equations of motion are 

1’ = l/L3, L’ = 0, 

g’ = -&6, G’ = 0, 

r’ = c6Bv, v’ = -c6A[ 

(5) 

plus terms of order O(E’). 
These equations are autonomous and so we may take the fast angle as the 

independent variable so that the equations of motion become 

dL 0 -= 
dl ’ 

dg=pE6~3 dG 0 -= 
dl ’ dl ’ 

5 = .9L3Bv 
dl 

!! = -$L3& 
’ dl 

(6) 

plus terms of order O(E’). 
In these coordinates the symmetry manifold Q is given by I, g = 0 mod 71 

and v = 0. 
For the moment ignore the higher order terms and seek a symmetric 

periodic solution of the approximate equations. Let a and /I be relatively 
prime integers and set s6 = a//I. Integrate the approximate equations (6) from 
l=;~rto[=(l+P)lrwithinitialconditionsL=l,r=r,,v=O,g=-nand 
G = G,. Let the subscript a stand for approximate solution. Thus 

L, = 1, 

g, = -7r - &“/In = -( 1 + a)n, r,=r,, (7) 

c, = 0, v, = -8’A&P = -aA&, . 

Thus if [,, = 0 this approximate solution satisfies the symmetry condition. By 
holding a fixed and taking fi large the scale parameter E is small and so one 
might expect that these approximate solutions persist. As Arenstorf 12, 3. 5 1 
has pointed out the usual implicit function theorem does not apply since one 
cannot set E = 0 and find the approximate solution. Thus we must proceed 
along a path suggested by Arenstorf. 
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Fix the integer a and the initial condition for G once and for all. Let the 
subscript f denote the full, a the approximate and e the error. Integrate the 
full equations (7) from l= x to I = (1 + /?)n starting with initial conditions 
L=L,, c=&, v=O, g=-n to obtain 

gXLo,ro,&,P)=g,(L,,r,,&,P)+gl(L,,r,,&,P), 

&&&I, c-0, E,b) = --7c - E6P7h$ 

vjcw k3~ &?/a = v&l, 61 &,P) + v,(L,, co, E,P), 
(8) 

“&, 7 6 16 P) = -E6A&&. 

The error terms g, and v, are due to the O(E’) terms which must be added to 
Eqs. (6). The Lipshitz constants for these equations is O(s6) and the error 
term is O(E’) and so by standard Grownwall estimates, see Hartman [ 131 or 
Coddington and Levinson [8], there are constants c, and c2 such that 

(9) 

In these estimates the full solution must remain in a compact neighborhood 
of the approximate solution. This can be assured by bounding s6p < a and 
taking E small. Similar estimates hold for the partial derivatives of g, and v,. 
Because A is non-singular and because of estimate (9) the equation 
u,JL,, , Co, E, /?) = 0 can be solved for &, ; i.e., there exists a function @, , E, /I) 
such that [(Lo, O,p)= 0 and yxL,,r(L,,&,p),&,p)=O. I= O(E"~), as does 
its partials. Thus we must solve 

q&9 c&l, E,P), E,P) = 41 + ah. (10) 

The approximate equation g,(L,,, c E, p) = --K - s6/W.i has a solution when 
s6 = a/P and L, = 1. Moreover (ag,/&,)( 1, c E, /.I) = -3ax when .s6 = a//I 
which is a fixed non-zero number. From estimate (9) the error function g, 
can be made arbitrarily small by taking /? large and fixing I? = a/P. Similar 
estimates on the particles of g, hold. Thus the implicit function theorem of 
Arenstorf [2, 3, 51 applies and here a constant j3, exists such that if p > /I,, 
there is a solution L&l) such that 

g#Jb>, r(L,@), 6 P). c, P) = 41 + ah 

where s6 = a//?. Thus the solution of the (N + 1)-body problem with these 
initial conditions is a symmetric periodic solution. 

The relative equilibrium of the two-body problem is non-degenerate and so 
this result contains the main result of Arenstorf [3]. Palmore [23] has shown 
that the collinear relative equilibrium of the N-body problem is non- 
degenerate and so this result contains the main result of Arenstorf [5]. 
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C. Orbits at Infinity 

In this section we shall show that there are periodic solutions of the 
(N + 1)-body problem where one small body and the center of mass of the 
other N bodies move approximately on a large elliptic solution of the two- 
body problem and the N bodies move approximately on a relative 
equilibrium solution when the relative equilibrium admits a line of symmetry. 

As before assume that the relative equilibrium is symmetric in a line and 
is non-degenerate. Scale the Hamiltonian as in Section 1II.C so that the 
Hamiltonian on the reduced space becomes III.C.5 or 

As in the previous section introduce Delaunay’s elements 1, g, L, G so that 
( 1) becomes 

H = f WTU - G - E~/~L~ + O(E~). (2) 

Also as in the previous section introduce coordinates ([, v) so that the 
symmetry manifold becomes v=O, I= Omod rr, g= Omod rr. Thus the 
Hamiltonian becomes 

H = f{cTAc + vrBv) - G - c3/2L2 + O(c6) (3) 

and the equations of motion are 

i= E~/L~, i = 0, 

g= -1, G = 0, (4) 

(= Bv, 3=-AC 

plus terms of order s6. Jn this case g is the fast angle and so we use it as the 
independent variable so that the equations become 

d’ = --E3/L3, 
dL 

& 
- = 0, 
ds 

dG -=o 
dg ’ 

3 = -Bv, 
& 

dv 
-=A[ 
ds 

(5) 

plus terms of order e6. 
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Let a and /I be relatively prime integers and set s3 = a//3. Integrate these 
approximate equations from g = x to g = (1 + /?)z starting with the initial 
conditions L = 1, G arbitrary, I= 7c, [ = B = 0 to obtain 1= (1 - a)~. Thus 
this approximate solution satisfies the symmetry condition. If a is held fixed 
and /3 is chosen large then these solutions can be shown to persist in the full 
(N + 1)-body problem by the method of the previous section. 
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