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n independent adiabatic invariants in involution are found for a slowly varying 
Hamiltonian system of order 2n x 2n. The Hamiltonian system considered is 
4 = A(t)u as E -+ O+, where A(t) is a 2n x 212 real matrui t&h distinct, pure 
imaginary eigen values for each t E [- co, CO], and d’ild/dt’i) EL,(- W, CO), 
for all j > 0. The adiabatic invariants I,(u, t), s = I,..., 17 are expressed in 
terms of the eigen vectors of A(t). Approximate sc;lutions for the system to 
arbitrary order of E are obtained uniformly for t E [- =J, mJ. 

1. INTRODUCTION 

In the classical literature a conservative dynamical system of 12 degrees of 
freedom was considered solved when n independent integrals in involution 
were found. One need only look at the chapters in Whittaker [8] titled 
“The soluble problems of particle dynamics” and “The soluble problems 
of rigid dynamics” to see the importance of n integrals in involution. Almost 
every example is analyzed by such integrals. 

In systems which vary slowly with time, integrals must be replaced by 
quantities which also vary slowly with time, i.e., with adiabatic invariants. 
Of course the knowledge of n independent adiabatic invariants in involution 
for a dynamical system does not imply that the system is “solved” as it does 
in the conservative case. However a great deal of mathematical and physical 
information can be obtained from adiabatic invariants [3,4, 11. 

In order to illustrate our theorem consider the system 

8 = Au; zi = d/dt 1.1 

where u is a 2n dimensional column vector and A is a constant 2~2 x 2n real 
Hamiltonian matrix with distinct pure imaginary eigen values ;\1 ,..., X,, . Let 
the eigen values be ordered so that h,,, = --X, = 1, for s = l,..., n. If 
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Cl ,...I cza are row eigen vectors of A corresponding to X, ,..., h,, (i.e., c,9 = 
&c,) which satisfy the reality condition cS+ll = C, , s = l,..., 11 then the ?z 
real functions I,(zc) = (c,u)(c,+, u) = j cp j2, s = I,..., n form a set of n 
independent integrals in involution for 1.1. 

If the matrix A were now allowed to vary slowly with t then one would 
expect that there would exist rz functions close to I1 ,..., 1, which also vary 
slowly with t. This is the general content of our result. 

In order to be precise we must make some definitions. A function 
f: (-co, W) -+ R or C will be gentle if (&fl&) E L,(- co: ‘~3) for s = 0, 1,2,.. . 
If f or even dfidt is gentle then 

lim ~ 

t+rtci &S ’ s = 0, 1, 2,... 

exists and so we may consider f and all its derivatives as defined and continuous 
on [-a, a]. The assumption that a system varies slowly with t is expressed 
by considering a system of the form 

Eli = A(t)u 1.2 

where d is a 2n x 2n real matrix such that each entry of dA/dt is gentle 
and E is a small positive parameter. This assumption is more easily understood 
when one uses the parameter C- = e-9 so that 1.2 becomes dzcid~ = A(ET)z~. 

Furthermore the system 1.2 is assumed to be Hamiltonian. Thus the 
matrix S(t) = -JJt) . 1s symmetric where J is the usual 2n :K 2n matrix 
of Hamiltonian mechanics given by 

The system 1.2 is then written in the Hamiltonian form 

ti = J(aH/&l) 1.3 
where 

H = (l/&) GS(t)u. 1.4 

Let #(t, to , zc, , E) be the solution of 1.2 which satisfies $(t,, , t, , u,, , E) = u0 . 
A function I(zl, t) will be an adiabatic inwriant of 1.2 if 

qcQ to > %l 2 c) - X(-m, to , u. , e) .= O(G) as E 3 O-’ 

for all s = 0, 1, 2 ,... where 9 (t, to , 2bo , E) == .r(G(t, to , u. , E), t). 
Usually in the literature an adiabatic invariant need only satisfy 

=@(cQ to 3 %I, e)--S(-03, tO,uo,e) =O(el) as E-+0+. 
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Let 1r ,..., I, be 1 functions of (u, t) E R2”+l. The Poisson bracket of I, 
and I,, (1,. , IS} is defined by 

(Ir , IJ = (2~~lkc)* J(Xs/2u). 1.5 

The set of functions 1r ,..., I5 are said to be in involution if (1,) IS} = 0 
for 1 < S, Y < I. The set of functions I1 ,.,., 1, are said to be independent 
if (Zrjau),..., (ZJ&) are independent vectors for all (u, t) except for a 
subset of RanS1 with no interior. 

We can now state our main result. 

THEOREM 1. Let the eigen values qf A(t) be distinct and pure inzaginapy 
for each t E [- m, co]. Then the system 1.2 admits TZ independent adiabatic 
imariants in imolution. 

In fact the adiabatic invariants are constructed as follows. Let Al(t),..., &(t) 
be the eigen values of A(t) with the order such that h,,,(t) = --h,(t) == x,(t) 
for s = I,..., n. For each t the eigenspace of A(t) corresponding to the eigen- 
value hi(t), i = l,..., n, is one dimesnional and so there exists exactly two 
eigenvectors of unit length &c-;(t). In Lemma 1 we shall show that the choice 
of unit eigenvector c,(t) can be made so that c,(t) is C” for i = l,..., z and 
t E (-co, co). Let c,+, = cS for s = I,...., n so that c, ,..., c~, are a full set 
of eigen vectors of A. Here as before we take the c, to be row eigen vectors 
so c&4(t) = h,(t) cJt). Th en the n adiabatic invariants of Theorem 1 are 

Is@, 4 = I es(t) Jd&-l (c&)m+n(w 

= I c,(t) JC:+n(w I cs(t)zc I2 1.6 

for s = I,..., 71. 
In order to compare our theorem with similar results in the literature 

consider the equation 
cl-g $- !$‘(t)f = 0, 1.7 

where 4 is a positive function of t such that d#dt is gentle and +(co) > 0, 
+(-LX) > 0. Eq. 1.7 can be written as a system in the form of 1.2 by intro- 
ducing ~5 = q. In this case the matrix d turns out to be 

which satisfies the hypothesis of our theorem. The eigen values of A are 
j+(t) and the eigen vectors are (+i$, 1). The quantity 1 c,(t) Jc&n(t)/ in this 
case is 24 and so the adiabatic invariant is I = (l/24) (i$f + 7)(-i&f + 7) = 
(l/24) ($25’ + ~2). This complete result was first obtained by Littlewood [5] 
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and the reader is referred to this paper for a discussion of earlier partial 
results, Recently Wasow [6] has given an eloquent proof of Littlewood’s 
theorem by fully describing the form of the fundamental matrix solution of 
Eq. 1.7. Wasow has evenobtained the precise asymptotic order of the adiabatic 
invariant under further mild assumptions on + by using turning point theory 
[7]. Indeed the present authors were first stimulated by the results of Professor 
Wasow and wish to thank him for several enlighting conversations on the 
subject of adiabatic invariants. 

2. FIRST ORDER DIAGONALIZ~~TION 

In this section we shall show how to diagonalize Eqs. 1.2 to first order by 
a linear symplectic change of variables. 

LEnrMA 1. Let Al(t),..., A,,(t) be the e$ea values of A(t) and cl(t),..., c&t) 
the corresponhg smooth TOZD eigen vectors of unit length. Then h,(t) and the 
entries of L,(t) are gentle fm s = l,..., 2n. 

Proof. Let p(t, A) I= det(A(t) - Al). p(t, A) is a polynomial of degree 
2n in X with coefficients with gentle derivatives. By assumption the zeros of 
p(t, A) are distinct for --03 < t < co. Let I’, be a circle in the complex h 
plane centered. at h,(a) and sufficiently small that x,(00), T i; s, lies in the 
exterior of I’, . Then there exists a T > 0 such that for all t >, T, .Fs contains 
A,(t) in its interior and h,(t), Y f s, lies in the exterior of I’, . Thus for t > II 

where R,(t, iJ is a rational function of 5 whose denominator is bounded 
away from zero for t > T, [ 6 Fs and whose numerator is a polynomial in 5 
with gentle coefficients for 1 = 1, 2,... . Thus we can interchange the order 
of integration to show that (dQ,/dtz) EL,(T, a). In a similar way (dzAs/&z) E 
&(--co, T’) for 1 = 1, 2 ,... and so A, is gentle. 

Now let B(t) = A(t) - X,(t)1 so the entries of B(t) have gentle derivatives. 
Since (a$B(t)) B(t) L= det B(t)1 = 0 the nonzero rows of adj s(t) are eigen 
vectors of A(t) corresponding to the eigen value A,(t). Since rank B(t) = n - I 
for --a < t < co there exist closed intervals 0, ,..., 0, such that ~0~ = 
[-a, 001, int OinintO,+,# g;, OinO,= ,u if Ii-j\>1 androws 
hi(t) of adj B(t) such that b,(t) # D on 0, . Thus on 0; the unit eigenvectors 
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of A(t) corresponding to A,(t) is &(t)(l[ bi(t)ll}-l. Now it is clear that we can 
choose the signs so that es(t) is Cm on (-co, co). Also since es(t) = &b,(t) 
(11 6i(t)ll}-1 on Oi it is clear that (dr/&) c,(t) E&(OJ for I = 1,2,... and 
i = l,..., 7. Thus C,(t) has gentle entries. 

With the information from Lemma 1 we shall construct a symplectic 
change of variables. Let the ordering be such that h,+,(t) = -n,(t) = x,(t) 
and c&f) = c,(t) for s = l,..., n. 

Since A is Hamiltonian -41 + J/l* = 0 so h,.c,JcsT = c+4JcsT = 
-c, JATcsT = --h,c, JcsT. Thus c, JcsT = 0 unless & $ ,\,- = 0 or j Y - s 1 = n. 
Since c, JcsT = 0 for all s is impossible we have that c, JcsT # 0 when 
) Y - s 1 = n. Now let 1 < 7 < n. 

and so c, J& is pure imaginary. By interchanging X, , h,+% and c, , c,+, if 
necessary, we may assume c,JcF+‘;, = cti with a, > 0. Now define d,(t) = 
1 CT(t) Jcr+n(t)T (-l/ac,r(t) for 7 = l,..., n and d+%(t) = &(t) for 7 = I,..., n. 

Thus we have dTJdsT = 0 for 17 - s 1 # n and d,JdT+,, = +i. 

Remark. Note that the adiabatic invariants defined in the introduction 
are just IT(t, U) = (d,u)(d,,u). 

Let P(t) be the 2n x 2n matrix whose 7th row is d, . Then from the above 
P(t) JP(t)T = iJ and P(t) A(t)P-l(t) = A,,(t) = diag(h,(t),..., A&t)). Note 
that by Lemma 1 the matrix p has gentle entries. It will be important in the 
argument that follows to keep track of the fact that Eq. 1.1 is real. Let Q be 
the 2n x 2n matrix defined by 

Now by construction B = QP and so Q&Q = A,, . 
We are now ready to make the change of variables ,2: = P(t)zl in Eq. 1.2 

to get 
EGZ = [A,(t) + &ll(t)]x 2.1 

where 

A,(t) = P(t) A(t) P(t)-” 2.2 

A,(t) -= p(t)P-l (t). 2.3 

Since P JPT = iJ and 1 det P(t)/ = 1, Al(t) is gentle A, and 8, satisfy the 
reality condition Q-4sQ = ~1~ , s = 0, 1. The change of variables x = P(t)u 
is a symplectic change of variables with multiplier i and so Eqs. 2.1 are 
Hamiltonian. 
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The new Hamiltonian is of the form 

where E&,(x, t) = +?&,(t)r, Nr(x, t) = &~Sr(t)~. Here, both the matrices 
S, = -J&, and S, = -JpP-l are symmetric, because PJF = iJ. Since 
Q/ = -JQ one sees that S, and S, satisfy the condition QS,Q = -S, , 
s =o, 1. 

Remark. In the new coordinates the adiabatic invariants of our theorem 
now take the simple fomr 1Jx, t) = x,Jz,+~ . Thus it is clear that they are 
independent and in involution. 

3. FORMAL DIAGONALIZATION 

In the preceding section we showed how to diagonalize the equations of 
motion to first order. In this section we shall show how to formally diagonalize 
the equations to all orders. In order to do this we shall deal extensively with 
a class of functions which we shall now define. A function K(x, E) will be 
calIed a GR function if K(x, t) = 9-S(t) x where S(t) is a 2n x 212 symmetric 
matrix with gentle entries which satisfies the reality condition S 1 -QSQ, 
This last condition is usually called a reality condition. GR stands for gentle- 
real. 

For notational reasons which will become clear as we proceed we shall 
consider a slightly more general Hamiltonian. Consider now 

3.1 

where 
‘72 

Hgo(x?, t) = Ho(x, t) = c A,(t) x&x,+, 
.s=l 

and N?*(x, t) is a GR function for j > 1. In the previous section we reduced 
the Hamiltonian to this form with Ho0 = Ho , HI0 = HI , Hjo = 0 for 
j > 2. We shall use the method of Lie transforms developed by Deprit [2] 
to reduce the Hamiltonian 3.1 by a formal linear symplectic change of 
variables to a Hamiltonian whose equations of motion are diagonal. The 
change of variable x = 4(y, t, E) will be constructed by constructing a function 
W(x, t, e) and requiring (b to be the solution of 

dx/dc = J(iW/~x)(s, t, c> 3.2 
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subject to the initial condition ~(t, 0) = y. The function + will be linear in y 
since the function W will be constructed quadratic in x. For fixed t, E the 
function + will be symplectic since Eq. 3.2 is Hamiltonian. 

The new Hamiltonian &K[y, t, E) is the sum of &H*(y, t, C) = 
E-lH&$(y, t, E), t, C] and a remainder function R given by the formula 

WY, 4 4 = IO’ ; W$(y, t, s), 4 s] ds. 3.3 

The Hamiltonian E-1.K. will have a formal expansion 

~-lK(y, t, e) = c-l go -$ Kj(y, t) 
where K’-’ = Ho0 and for j > 1 

Kj(y, f) = i a2ysys+n. 
S4 

3.4 

3.5 

The functions aj will be gentle and pure imaginary so Ki is a GR function. 
The change of variables will be constructed by defining W order by order. 

Specifically let 

W(% t, E) = f f wj+l(x, t). 
j=o - 

3.6 

We will construct W so that IV, is a GR function and so that the new 
Hamiltonian is given in 3.4 and 3.5. 

Let 

f*(x, t, e) = f G&O@, t) 

j=O . 

be any formal expansion in E. The method of Lie transforms gives a recursive 
method for computing the function f*(y, t, E) =f&(y, t, E), t, ~1, the Lie 
transform off* . The computation is done by computing a double indexed 
set of functions {fkz> which agree with our previous definition when I= 0 
and are related by the formula 

3.7 

where ( , } is the Poisson bracket operator. The function f* then has the 
expansion 

f*(Y, 6 cl = go$U(Y, 9. . 3.8 
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It is convenient to display the functions {f:> in the triangular array 

3.9 

Note that the coefficients of ,i/j! in f* appear in the far left column of 3.9 
and the coefficients of &/j! off * appear on the main diagonal of 3.9. 

From the above we see that to compute N* and R we need compute two 
sets {Hfiz} and (R,Z} where R,O - aWj,/at, Hjo is as given before and then 

H"(y, t, c) = f (d/j!) H,‘(y, t) 3.10 
j=O 

Wy, t, 6) = 5 (.c~/j!) R’6-yy, t). 3.11 
j=l 

Before proceeding we require a technical result. 

LENrn?rA 2. Let L be a GRfunctioz. Then there exists a GR function D ad 
a GR function F of the form 

fs pure imaginary and gentle, such that 

F==L+(H,O,D). 3.12 

Proof. Let L = ~~iklx, D = xTEx, M = (m,,), E = (e,J. Since 
(8Hoo/13x)TJ = -xT.Ao we have {Hoe, D) = -xT{AoE + EA,)x. The coefE= 
cient of x,x, in L -+ (Hoe, D} is m,, - (A, + Xs)ers . If 1 Y - s i $ y1 then 
A,. + A, is a function with gentle derivative which is bounded away from zero 
so we may choose ers = (X, + Xs)-l?~zz,, . Thus e,, is gentle and e,, T= e,, . 
If [ T - s / = n let ers = 0. Define f? = 2m,,,+, . With these definitions we 
clearly have 3.12 and so we need only check the reality conditions. Since L 
is a GR function mrJ = -m~Bwhen~~--\ =I~---/31 =n.Ifjr-ai = 
/ s - p 1 = ‘IE then A, = A, , x, = A, and so c~,- = (& + x,)-l~T, = 
Gk + W1 (-fib) = --eaB - Thus D is a GR function. Also f,. = 2mr,r+,z = 
2ml.+n,r = -2@.,,,, = -fT so f, is pure imaginary. 
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Before proceeding with the inductive construction of 4 we note that the 
class of GR functions is an algebra over the reals where addition is taken as 
pointwise addition of functions and the product of two functions is taken as 
their Poisson bracket. In fact if R is a GR function then so is (H,,O, K]. 
(Note that Ho0 is not a GR function but its derivative is.) 

INDUCTION HYPOTHESIS 1,. Let Hkz, R,a and W$ be determined for 
I, k > 0; 2 + k < m; 1 ,< s < m; 01, /3 > 0, 01+ ,8 < m - 2 such that (1) 
all except Ho0 are GR functions, and (2) K,” = Horn + RT-” is of the form 

where the coefficients a,nz are gentle and pure imaginary. 
I0 is trivially satisfied. Now assume I,,+1 . First we note that I?:-2 can be 

calculated from T/v, ,..., H<,+r which are given as GR functions by Imp1 . 
To see this consider the array 3.9 and the formula 3.7 with thef’s replaced 
by R’s. Note that the far left column is known down to RLe2 since Rjo = 
aWj,/&. The formula 3.7 shows that successive columns can be computed 
as far down as the row containing R,B with 01 + ,6 = m - 2, i.e., the m - 1 
row. Since the GR functions form an algebra it is clear that each R,fi will be 
a GR function. 

Now we turn to the computation of the H’s. from I,,-, we know Hkz 
for If k < m - 1 and Hmo is given. From 3.7 we have 

H;, = IT,’ i- 3.14 

In the above we have separated off the one term which contains I%$, . Thus 

His-1 = E;,, + Woo, J,v,nl 3.15 

where EA-, is a GR function computed from functions given by .lm-, and so 
is known. A simple induction argument on 1 gives 

Hi‘-, = E:,-, -t {Hz, Wn) 3.16 

for 1 < I< m where Eibi is a GR function computed from functions given 
by &+r . Thus 

Kom = Horn + R;;“-’ = Eo”’ + Rc-” + {Ho’, W,}. 3.17 

Now in Lemma 2 take L as Eom + Rc-2 and let IV, be the solution D and 
K,m the solution F. This proves I, . 
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Now $(Y, t, 4 h as a formal expansion of the form 

40, 4 4 = f (cjij!) #‘(Y, t) 
i=O 

where $O(y, t) = y. Forj > 1 the functions +j are of the form @‘(y, t) = @(r)y 
where @j(t) is a 2n x 2n matrix with gentle entries. In order to see this let 
f*(x, t, E) = x, , the s-component of the vector X, then f*(y, t, e) is the 
s-component of the vector $(y, t, l ). A simple induction argument using 
formula 3.7 yields the above claim. 

In summary we have. 

LEMMA 3. Under the above assumption there exists a formal linear symplectic 
change of variables 

which reduces 3.1 and hence 2.4 to the Hamiltonian 3.4. In the above a0 = I 
ad the entries of CD’, j > 1 are gentle. 

4. THE ESTIMATES 

By the remark at the end of Section 2 it is enough to prove that I,(x) = 

X,X,+?% is an adiabatic invariant for the system 2.1 for s = l,..., n. Let m be a 
positive integer and consider the truncated change of variables 

.t’ = j z (d/j!) @j(t)/ v IO 
(cf. Eq. 3.18). Then Eq. 21.1 becomes 

EQ = j i. (d/j!) a(t)/ v -j- P~flLq, ,)v 

4.1 

4.2 

where i2i = diag.(a,j ,..., a,j, -a,j ,..,, -aal), ad are gentle and pure imaginary 
and D(t, 6) is a 2n x 2n matrix with gentle entries such that 

fTm II D(f, c>ll dt < B for 0 G 6 < o E a sufficiently small number. 
Now consider the truncated system 

Cc = 1 go (d/j!) Bj(t)i 2~. 4.3 
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Because all the matrices .N are diagonal with pure imaginary entries the 
fundamental matrix solution of 4.3 which is the identity at t = 0 is uniformly 
bounded for t E [-co, co] and E E (0, 11. Moreover the functions wu,w,+, , 
s = l,..., n are integrals for 4.3. 

Let x,, be fixed and V,,(E) be computed from 

x0 = 
1 i. (~jii!) @W j Zfo(E) so q)(O) = x0 . 

Let x(t) = x(t, E, x0) be the solution of 2.1 satisfying x(O) = x0 and let 
v(t) = v[t, E, V,,(E)] and zu[t, E, U,,(E)] be the solutions of 4.2 and 4.3 respectively 
which are equal to V,,(E) when t = 0. 

Thus x(t) is carried into v(t) by 4.1 and since a0 = 1, @(&co) = 0 for 
j > 1 we have X(&W) = ~(&co). Represent v in 4.2 by the variation of 
parameters formula, with E “+lD(t, E)V as the inhomogeneous term. Then, by 
a standard Gronwall inequality estimate we have v(t) - w(t) = O(@), 
uniformly for t E [-co, CD]. Thus 

Since m is arbitrary we have shown that x~(co)x,+,(w) - x,(- o~)x,,,(-CO) 
is asymptotic to zero as E + Of and so I, = X,X,+, is an adiabatic invariant 
for 2.1. 

Remarks. (1) An explicit form for the solution w in 4.3 can be obtained 
readily because the coefficient matrix is diagonal. Since v(t, C) - w(t, c) = 
O(P), we can easily calculate an approximate solution for u to the order of 
P uniformly for t E [- 03, co]. 

(2) In this paper JA(t) is assumed to be symmetric. If this assumption is 
removed, we can still find a formal transformation which diagonalizes the 
system 2.1. Thus, when we perform a change of variables analogous to 4.1, 
the system 2.1 is changed to 4.2 with dj = diag. (arj,..., a,i, a,$) and D(t, e) 
satisfying the same properties. The a,j(t) are gentle, but are not longer pure 
imaginary for j > 1. /lo(t) is still pure imaginary, therefore the estimates 
v(t, e) - w(t, c) = O(P) remains valid. However, the quantities zuswsCn(t, l ), 
1 < s < n is now no longer constant for t E [-co, co]. 
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