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0. INTRODUCTION 

We consider a conservative Hamiltonian system of two degrees of freedom 
near an equilibrium where the linear system consists of two harmonic 
oscillators with rationally related frequencies. This paper investigates phenom- 
ena which were first observed in the planar circular restricted problem of 
three bodies near the triangular Lagrange equilibrium L, [5]. In particular 
the existence of periodic solutions whose periods are near the common period 
of the two oscillators is investigated. 

Section 1 presents numerical evidence of phenomena which suggests the 
properties under consideration for analysis. The theoretical analysis is set 
forth in Sections 2 and 3. The principal results are Theorem 1, 2 and 3 
which suggest the application to the restricted problem in Section 4. 

The authors wish to thank Professor D. C. Lewis for several useful sugges- 
tions on this work. 

1. DESCRIPTION OF NUMERICAL EXPERIMENTS 

The planar restricted problem of three bodies is defined by the Hamiltonian 
function 

wx1 ? x2 9 Yl 9 Y2 9 CL) = HYIZ + Y22) - bIY2 - X2Yd - (1 - d/f1 - P/f2 
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where pi2 = (x1 + ~)a + xs2, p22 = (xl + p - l>” + 3E22; p, 0 < p < 1, is 
the mass ratio of the two primary bodies; x1 , x are cartesian coordinates in 2 
a barycentric synodical coordinate system which leaves the two primary 
bodies of masses p and 1 - p fixed on the x,-axis at (1 - p, 0) and (--y, 0) 
respectively and yr , ys are the conjugate momenta. pr and pe are the distances 
from the primaries at (-p, 0) and (1 - p! 0) respectively to the third body. 

The substitutions xi -+ 2ci + &(l - 2,~), xs -+ xa + frfi,yr -+yi - 1/3/2 
and yn -+y2 + $(l - 2~) change the origin to the triangular equilibrium 
point L4 . In this new coordinate system one can expand H as a power series 
to obtain El = cfa Hi , where Hi , i > 3, is a homogeneous polynomial in 
or , x2, of degree i and 

Hz = +(y12 -j- y22) - (x1y2 - x2y1) + x12/8 - 3(1 - 2pj 45 XPV2/4 - 5X,2/8. 

The linearized equations defined by the system whose Hamiltonian is El, 
alone has the characteristic equation s4 + s2 + 27~(1 - !Lj/4 = 0. If 
~(1 - p) < l/27 the characteristic values are pure irnaginary and will be 
denoted by fiq , $-iw2 where wr 3 w2 > 0. Let p.r denote the value of p 
for which w1/w2 = r. 

In the interval 0 < p < pr except for p = pk (k an integer) a theorem of 
Lyapunov asserts the existence of two one parameter families of periodic 
solutions that lie on invariant surfaces that pass through the origin. Buchanan 
[2] has shown that the same is true for ~1 = p1 . These one parameter families 
are locally parameterized by energy h. To distinguish these families they shall 
be referred to as the short period family (denoted by subscript 1 j and the long 
period family (denoted by subscript 2). 

Recently, Deprit and Henrard [4] h ave found by numerical experimentation 
a phenomenon that appears at p = pi. They found families of periodic 
solutions which connect the long and short period families and are far from 
the equilibrium point. The phenomenon can be described as follows. As one 
proceeds away from the equilibrium along the long period family a critical 
orbit is reached whose nontrivial characteristic multipliers are qth roots of 
unity. This will occur for some negative energy h, . A bifurcation is then 
observed as follows: for energy h slightly greater than h, there exist two 
periodic orbits that are nearly the same as the critical orbit q-times circuited. 
One orbit is unstable and the other is of stable type, i.e., its characteristic 
multipliers lie on the unit circle. 

As h is increased one finds two similar periodic orbits for all values of h 
less than some h, > 0. The qualitative features of these periodic orbits 
approach a p-times circuited critical orbit in the short period family. 

Each of the families examined by Deprit at p = pr contains an orbit which 
lies in the energy level h = 0 of the equilibrium. 
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The second author has investigated numerically the behavior of these 
families as p varies. The periodic solution in each family that has the energy 
of the equilibrium, k = 0, was continued to lower mass ratios from TV = pr . 
It was found that as p decreased the periodic orbits of each isoenergetic 
family gradually collapsed into the equilibrium as p approached pr , Y = p/q, 
from above. The following facts were observed as p -+ pr+: 1. The periods 
of each isoenergetic family approached T = 27rp/w, = 2rq/we as TV -+ CC,.+ 
where wr and ~2 are evaluated at p = pr . 2. The nontrivial characteristic 
multipliers of the periodic orbits of each family approached unity as p + pLr+. 
3. The projection of each orbit into the or , X, plane verified that the orbit 
were shrinking in size. 

The use of the isoenergetic family, h = 0, obviates the fact that were 
a collapse to occur it would only occur along this family. 

Another phenomenon was investigated by the second author. It is illustrated 
by the results of numerical experiments performed at p = t,+ and for TV 
near ,ur , r = 712. For TV > pFL, two families of periodic orbits were found to 
bifurcate from a critical orbit on the long period family. One of these families 
contains unstable orbits; the other contains orbits of stable type. An orbit in 
either family is similar to the critical orbit in the long period family circuited 
twice. As p -+ pr+ the critical orbit shrinks to the origin. Thus, at TV < P.~ , 
these two families of periodic orbits are found to bifurcate from the family 
of short period orbits. These orbits are nearly the critical orbit in the short 
period family circuited seven times. For p-+ Pi-, the critical orbit shrinks 
into the origin. In the above, the periods of all these new periodic solutions 
are nearly 14~-/0~, = 47r/w2 where w1 and ws are evaluated at p = t.~r, 
r = 712. 

In contrast to the first phenomenon which was supported in a one sided 
neighborhood of p,. the above phenomenon occurs at p = tar and bifurcations 
from Lyapunov families appear in a punctured neighborhood of TV,. . 

Data and detailed information on the above numerical experiments can be 
found in [5]. 

2. NORMALIZATION AND APPROXIMATE SOLUTIONS 

Let the Hamiltonian H be real analytic in a neighborhood of an equilibrium 
point in four dimension phase space and also analytic in a real parameter + 
Let the equilibrium be at the origin in four space for all values of p under 
discussion. If for some range of p the eigenvalues of the linearized system 
are distinct and pure imaginary then there exists a linear sympletic change of 
variables such that H = C,” Hi where 
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and H. , i > 3, is a homogenous polynomial of degree i in the new phase 
variables a, , z, , x, , z, . fwli and +u.$ are the eigenvalues of the linearized 
system and are real analytic in p. We shall consider the case when the minus 
sign occurs in Hz and shall assume that w1 > wp > 0. The case when H, has 
a plus sign is treated in a similar manner. 

If for some range of values of p the frequencies satisfy klw, j- K,w, $ 0 
for R, , K, integers and 0 < ! K, ) -I- i K, , I < 5 then there exists an analytic , 
canonical transformation (zr , za , za , z4) -+ (Zi , Za , Z, , Z,,) which carries 
the Hamiltonian into the normalized form 

WZ* , z2 9 4 > z, 9 P> = WI(P) 4 --- W2(P) 12 
i- ?x44J*2 + w44~2 + w~22~ 

-I- Wl > z2 3 z3, z, 9 14 (2.1) 

where Zr = j(Zr2 $ Za2), I2 = :(.X2” j- Z,Z). A, R, C are real analytic in CL, 
K is analytic in all variables and has a convergent power series expansion in 
some neighborhood of the origin in Z space that begins with terms of degree 
at least six in the Zi . 

Suppose for some p = p”r , Y = p/q, that qwl(p,.) = pw.&) where p and q 
are relatively prime integers. The question to be discussed here and in section 
3 is the existence of periodic solutions whose periods are near 

T z 27rj+0~(~J :=: 2n-q/w2(&. (2.2) 

In order to discuss this problem let p - /L+. > 0 and make the following 
substitutions E -= p - CL,. , Zi --+ 2/‘ Zi in (2.1). The new Hamiltonian takes 
the form 

H(Z, , Z, , Z, , Za , E) = wlZl .- wJ2 

+ E{X,Zl - XJ2 + A1,2/2 -k BZlZ2 -)- CZJ2) 

-I- c2Jqz, , z2 3 z, , z, , 6) (2.3) 

where Xi = (d/&) W&L,.) and wi , w2 , A, B, C are the corresponding func- 
tions evaluated at p = p,. . 

Before proceeding with the formal analysis, consider the solutions to the 
first approximation. Assume for the moment that L = 0 and change to 
action-angle variables by Z, = (2Z,)*i2 cos v1 , Z, = (21J1f2 sin qr , Z, = 
W2) l/2 cos v2, 2, == (21a)1;2 sin vz. To order E, the solutions of (2.3) 
satisfying Zi(0) == Ji and vi(O) = Bi are 

zi(t) = Ii (i” 1,2) 

v&) == 4 + w,t + 44 + AJ, + BJ2P (2.4) 
p‘(t) = e, - w,t + 6(--h, -: BJ, + C]Jt. 
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To this order of approximation the short period family lies on the surface 
J1 > 0, Jz = 0 and the long period family lies on the surface Ja > 0, J1 = 0. 
Solutions (2.4) are periodic of period T + ep provided 

(2.5) 

where T = 27rp/wr = 2n-q/wp and Jl , Jg 3 0. 
With /3 as parameter, equations (2.5) give a parametric representation of 

a straight line in the plane ( J1 , J2) if AC - B2 # 0. Energy h is given by 
h = wr J1 - w2 Jz to the first approximation and so represents a straight line 
also. These two lines will have a unique point of intersection at Jlo , Jzo if 

D = {Ao$ + 2Bw,wa + Cw12) # 0 

and the corresponding value of /3 is given by 

(2.6) 

/3 = -TD-1{Aw2A2 + B(w~~~ + w24) + CqX, + (AC - B”)h}. (2.7) 

If Jlo > 0 and J2,, > 0 then to the first approximation the solutions of (2.3) 
with I,(O) = Jlo and I,(O) = Jm are periodic of period T + e/3. Since the 
two angles 0, and 6J2 are arbitrary these solutions fill a torus in the energy 
level h. 

The intercepts of the straight line (2.5) are 

Ml = wJ2 - w2h 42 - Wdl 
Am2 + Bw, 

and M, = 
Bwz + Cw, (2.8) 

and the corresponding values of h are 

h, = w,M, and h, = -w2M2. (2.9) 

If Ml and Ma are positive then the energy line will intersect the line (2.5) 
in the first quadrant for all h, h, < ?a < h, . In this case the first approximation 
of (2.3) has a one parameter family of tori each filled with T + l periodic 
solutions for h, < h < h1 . As h -+ h, these tori approach a periodic solution 
on the short period family and as k -+ h, these tori approach a periodic solution 
on the long period family. In other words, one has a family of tori filled with 
periodic solutions connecting the long and short period families. For the 
system (2.1) one has the same phenomena except the family collapses into the 

. . 
origm as p + pr+, r = p/q. 

If M1 and n/r are both negative the same result follows by defining 
E = /A+. - p. 
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If AZ1 < 0 and Ma > 0 then the line (2.5) and the energy line have a point 
of intersection in the first quadrant for h < h, if w,M1 + wzMz < 0 and 
for h > h, if CJJ&Z~ + ~$4~ > 0. Thus to the first approximation (2.3) has 
a one parameter family of tori each filled with T -/- ~13 periodic solutions for 
all h < h, . As h -+ h, these tori approach an orbit on the long period family. 

If A!Zi > 0 and Ma < 0 we have a similar bifurcation off the short period 
family. 

If &irl < 0 and Ma > 0 the system (2.1) will have a family of tori bifurcating 
off the long period family if p > CL, and a family bifurcating off the short 
period family for TV < pr . The bifurcation orbit on the long (short) period 
family tends to the origin as ,U -+ pr+ (p -+ pr-). 

In the case when &li and &Zg have different signs the families described 
above persist at p = pr . Assume that K e 0 and p = pr in system (2.1). 
Let E > 0, make the substitution &. -+ ~2~ and change to action angle 
variables. Then the approximate solutions are 

w = Ji (i= 1,2) 

cpl@) = 4 + 4 + @./I -t- BJ,)t 

P*(t) = 02 - w2t -I- @I, + cm 

These solutions are T -+ +I periodic if 

(2.10) 

Under the assumption that Mi and M2 are of different sign and D f 0 the 
equations (2.1 I), when jl is eliminated, represent a straight line in J1 , J2 plane 
with positive slope through the origin which intersects the energy line in a 
single point. The value of p is 

/3 = TD-‘{B2 - AC)h (2.12) 

Thus to the first approximation system (2.1) has a one parameter, h, 
family of tori filled with T + +l periodic solutions that approaches the origin 
at p = pr as h---z 0. 

3. MAIN THEOREMS 

LFMMA 1. Let p and q be relatively prime integers, p > 2, and d and g 
constants, dg < 0. Let P(x, y; 6) be analytic in all variabks for 
x2 + y2 < -3dg-I, 1 E ( < c0 and be an urea preserving dz~emorphism for 
each f;xed E. 
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Let P have the form P = F f ERG where 

F : (r, 0) - (r, 0 + 2dP + 4d + g+> 
Y = x2 + y”, 0 = tan-l y/x (3.1) 

Then (1) there exist an c1 > 0 and an analytic function k(e) = (kl(e), kz(c)), 
ICI <El, such that k(0) = (0,O) and (x, y) = k(c) is the unique$xed point of 
Piforx2+y2<-2dg-l, 1~1 <Q, 1 <j<p. 

(2) there exists a closed analytic curve S, in the x, yplane which is analytic in E, 
diffeomorphic to a circle and contains k(c) in its interior for 1 E 1 < Ed such that 
S, = {(r, 0) : Y = -dg-l, 8 arbitrary} and either (a) PP leaves SE $xed or 
(b) PP has 8jixedpoints on S, , co > I> 2~. In case (b) at least p points of PP 
have index f 1 and at least p points of PP have imlex - 1, 

(3) PP has no other fixed points than those described in (1) and (2) for 
x2 + y2 < 2dg-l, 0 < j E j < l 1 . 

Proof. By (3.1) the Jacobian of P with respect to x andy at x = y = E = 0 
has eigenvalues exp(*2rqi/p). Thus the Jacobian of Pj, 0 <j <p, at 
x = y = E = 0 does not have an eigen value of plus one and part (I) 
follows from the implicit function theorem. 

Change variables by x + x - k,(E), y + y - k,(c) so that the form 
of P is unchanged except now G(0, 0, E) = 0. Let PP : (Y, 0) -+ (R, 0) and 
consider Q(Y, 6, E) = E-l{O(r, 8, 6) - S> = p{d + gr} + &(Y, 0, E), where K 
is analytic in all variables provided r # 0. Since g f 0 the implicit function 
theorem yields the existence of a function [(B, 6) with [(B, 0) = -dg-l and 
Q([(6, E), 0, 6) = 0. The curve S, is given by S, = {(Y, 0) : Y = [(0, E), 6’ 
arbitrary). Since P” is area preserving and leaves the origin fixed, 
Pp(S,) n S, f a. Each point of Pp(S,) n S, is a fixed point of PP. Since 
Pp(S,) and SE are defined by analytic functions either (a) they coincide or (b) 
they intersect at a finite number of points. In case (b) the same argument as 
found in [l] pp. 215-18 gives at least one fixed point of index +l and one 
fixed point of index -1. There are no other fixed points of P” since 
O(Y, 8,e) - 0 is not zero off of S, for E small. 

THEOREM 1. Let ,L+ , Y = p/q, be such that qo&,.) = pwg(,ucr) where p and 
q are relatively prime integers p > q > 1, p > 3. Let T = 2npplw, = 2rrq/w2 
and y = TD+(B2 - AC}. Assume A+ + Bwl < 0 and Bw, + CW, > 0 
and D > 0 (resp. D < 0). Then there exist an h, > 0 and a neighborhood N 
of the origin such that for each h E (0, h,) (resp. h E (-h, , 0)) the system whose 
Hamiltonian is (2.1) with TV = t+ has either (a) a torus jilled with periodic 
solutions or (b) /periodic solutions, 03 > 1” > 2 in the level surface H = la. 

These periodic solutions have period T + hy + O(h) and tend to the origin as 
h -+ 0. Moreover there are no other periodic solutions with period in a neighbor- 
hood of Tin N. 
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Proof. Change variables in (2.1) by Zi --+ y’;Z; where E > 0 so that 

N(Z* ) z, , z, , z, , l ) = cull1 - w212 + ; {AI12 + 2BIJs + cq} 

+ e2w1 f z2 7 z, 2 z, 3 4 (3.2) 

Consider the approximate equation obtained from (3.2) by letting L = 0 
(call this system (3.3)). If time is restricted to a compact set the solutions of 
(3.2) and (3.3) differ by terms that are O(G). In (3.3) change to action angle 
variables so that (2.10) are the solutions of (3.3). Let D > 0 and h > 0 be 
fixed. In the energy level h consider the transversal cross section vi = 0 for 
systems (3.2) and (3.3). Th e cross section map P for (3.2) differs from the cross 
section map F for (3.3) by terms that are O(G) so in light of Lemma 1 it is 
sufficient to compute F. The time required for F is 2z-/w, + it + O(G) where 

f = -27i-{A], + BJ&J,” (3.2) 

Which is easily computed from the component or in (2.10). Eliminating fr 
by using the relation k = wlJl - w2Jz + O(E) one finds that 

F : (Jz , 8,) + (Jz + Ok2), 82 - 274~ + 4d t gJ,J + O(e2)) 

where d = T(Aw, + Bw,} h/q2, g = TD/w,p 

Under the assumptions of the theorem dg < 0 and so Lemma 1 can be applied 
to yield the existence of fixed points of Pp. Thus the existence of the periodic 
solutions is assured. The fact that in case (b) of the lemma one fixed points 
has index +l and one has index -1 guarantees that there are at least two 
distinct periodic solutions. The fixed points lie on S, which has J2 coordinate 
given by Jz = -dg-l + O(c). Substituting this and h = w1 Jl - wzJz + O(E) 
in (3.4) yields the desired formula for the period. 

LEMMA 2. Let P(x, y) be an area preserving d$eomorphism of a neighborhood 
of the origin into itself with the originjxed. Let the Jacobian of P at x = y = 0 
x = y = 0 have eigenvalues exp * 2&/k, k and L are relatively prz’me integers 
k > 3. Then there exists a symp!ectic change of variables (x, y) -+ (u, v) such that 

where 
P : (Y, 0) --+ (R, 0) 

r = 2s + 02, e = tar-l u/v 
R = r + 2b(sin k0) yklP + R,(p, 0) 
0 = fJ + $J + m + b(cos kB) r(k-z)/2 + 6$(p, 0) 

a and b constants, 4 = 2&/k 
R, and 0, are analytic in r1J2 and 8, 2m periodic in 0 

0, = 0(,3/“), R, = O(p2), p = Y=/~ 
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Remark. Observe that if k > 4 the terms in rkJ2 and rk--2J2 can be absorbed 
in R1 and 0, respectively. The constants a and b are invariants and do not 
depend on the particular choice of transformation that reduces P to the above 
form. If P depends on a parameter E such that P at E = 0 satisfies the above 
conditions then the transformation can be constructed in the same way 
except now a, b, I,$, R1 and 0, depend on E. 

The proof of this lemma is just a minor modification of the Birkhoff 
normalization theorem. 

LEMMA 3. Let p and q be relatively prime integers, p > 4, and let d, e and g 
be aonzero constants. Let P(x, y; E, h) be analytic in all variables, x2 + y2 < 01, 
ol>O,j~/<~~,~~>O,/h+de-~j<P,P>O.ForJi,lced~andhletPbe 
an area preserving dz#eomorphism. Let P have the form P = F + l 2G where 

F : (y, 4 -+ (r, 0 + 2qlp + 4d + eh + gr>> 
r = x2 + y2, 0 = tan-l y/x 

Theft (1) there exist <I > 0, /3, > 0 and an analytic function k(<, h), 1 E 1 < l 1 , 
/ h + de-l ] < /3, such that k(0, h) y 0 and (x, y) = k(<, h) is the uniqueJixed 
point of Pi for x2 + y2 < 0112 and 1 < j < p. 

(2) there exists an analytic function h(c), j E j < Ed , such that h(0) = -de-l 
and the eigenralues of the Jacobian of P at k(E, h(E)) are exp(f2?rqi/p). 

(3) For h > h(c) when eg < 0 (or h < h(E) when eg > 0) there exists an 
analytic curve S,,, in the x, y plane such that S,,, is da$eomorphic to a crz’cle, 
k(c, h(e)) lies in the interior of S,,, , S,,, = {r = -(d + eh)/gj and 
S,,, -+ k(E, h(c)) as h -+ h(E). 

(4) P” either leaves SE9,$xed OY there are /fixed points, CO > G > 2p, of PP 
on % . In the second case at least p points have index + 1 and at least p fixed 
points have index -1. 

(5) PP has no otherjxedpoints than those described above for x2 + y2 < n/2, 

I E I G 9, I h + de-l I d A . 

Proof. Part 1 is proven the same way as part 1 of Lemma 1. Change 
variables by x + x - kl(E, h) and y + y - k2(e, h) so that the form of P is 
unchanged except now G(0, 0; E, h) = 0. Let P : (I, 19) -+ (R, 0). Observe 
that the eigenvalues of P at x = y = 0 are exp(f+) where 7) = 
O(0, 0; E, h) - 0. (Note O(0, 0; E, h) is independent of 0). Since e # 0 there 
exists, by the implicit function theorem, a function h(E) such that h(0) = -d/e 
and O(0, 0, E, h(c)) - 0 = 2rq/p. Let 1 = h - h(c). Apply Lemma 2 to P 
so that P has the form P : (r, 0) -+ (R, 0) and 

w, 8, E, 5) = e + 2dp + 44 + gd + 3@,h 4 5 5) 

where 0, is analytic in r112, f?, E, 5 and 0, = O(r). 
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Thus a@/& is continuous at r = 0. NOW let Pp : (r, 0) -+ (R’, 0’) where 
O’(r, 8, E, 5) - f3 + pe(e{ + gr} + E%&‘(~, ~9, E, 5) and 0,’ has the same 
properties as 0, . Since g f 0 the implicit function theorem yields the 
existence of a function ~(6, E, 5) = -e[/g + O(E) such that 

oyp(e, E, g, e, E, I) - 0 = 0. 

Moreover p is Cl and analytic for [ f 0. The curve SE,,& is defined as the set 
((r, 6) : 6 arbitrary and r = ~(0, E, 5)). 

The rest of the proof proceeds in the same manner as the proof of Lemma 1. 

THEOREM 2. Let pT , r = p/q, be such that qwl&) = pw&) where p and 
q are relatively prime integers p > q > 3. Let T = 2np/o.4 = 233-q/o+ , 
E = p - p,. and assZcme MI < 0, Ma > 0 and D # 0. Then there exist a 
neighborhood N of the origin, and c0 > 0 atid co~~tinuo~~s functions h,(.) aBd 
h,(a) such that 

(a) h,(.) : (0, Q) + (- 03, 0), h,(.) : (---co , 0) -+ (0, W) and hi(e) = 
Ehi + O(E) us E + 0. 

(b) There exists a unique orbit I’,(e)for E E (--co , 0) (resp. r,(e)for E E (0, Q)) 
in N on the short (long) period family .uith mm trivial characteristic multipliers 
that are pth roots (qth roots) of unity. r,(e) tends to the origk as E -+ 0. The 
va&e of energy for F,(C) is IQ(C) for system (2.1). 

(c) For fixed E, 0 < E < 60 (resp. ---co < E < 0) there exists an 7 > 0 s&z 
that for each h E (he(E), h,(e) + 7) or h E (h,(c) - ‘I, h,(c)) the system zuhose 
Hamiltonian is (2.1) hau either a torus filled wit?1 periodic so&ions or i, 
GZ > 8 > 2, periodic solutions with energy h in N. 

(d) The periods of these periodic solutions are given by 

T + es + hy + Ok, 4 

where 

8 L- -TlV{Aw,h, + B(w,hZ + w&,) + Cc&} and y = TD-1(B2 - AC) 

(e) There exist no other periodic solutions in N with leavt period in a neigrrzbor- 
hood of T. 

(f)Fore$xed,O<E<EO, (resp. -eQ < F < 0) the.se periodic solutions as 
given in (c) tend to II,(E) (resp. FI(e)) as h + h,(E)+ (resp. h -+ h,(e)-). 

Proof. Change coordinates so that (2.3) results from (2.1). The soiutions 
of (2.3) and the approximate equation obtained from (2.3) by letting L GE 0 
differ by terms O(G) provided time is restricted to a compact set. As in 
Theorem 1 we compute the section map for the approximate equations given 
in this case by the formulas (2.4) and then apply Lemma 3. 
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THEOREM 3. Let pr , Y = p/q, be such that qo+&) = po~~(p.~) where p 
and q Me relatively prime integers p > q > 3. Let E = /1 - TV, > 0 and 
T = 2~-p/w,(p,) = 2rrq/w&,.). Assum.e Mi > 0 (i = 1,2) and let h, and h, 
be defined by (2.9). Then there e.Gst a neighborhood N of the origin, an c0 > 0, 
and continuous functions h,(e), hp( +) such that: 

(a) h,(e) : (0, E,,) -+ (0, oo), h,(m) : (0, Q) -+ (-co, 0) and hi(c) = l hi + O(E) 
as E -+ o+. 

(b) The system which is de$ned by the Hamiltonian (2.1) has either a torus 
filled with periodic solutions or has 8, ok > L > 2, perioric solutions in N for 
each E, 0 < E < E,, and for each value of energy h in (hz(E), h,(e)). 

(c) As E -+ Of these periodic solutions tend to the origin. 

(d) The periods of these periodic solutions are given by 

where 

T + ~8 + hy + O(e, h) 

and 

S = -TP1{Aw,X, + B(w,h, + w2X,) + Cwlhl} 

y = TD-l(B2 - AC) 

(e) There exist no other periodic solutions in N with least period in a nesghbor- 
hood of T. 

(f) There exist a unique orbit rI(e) (resp. L’,(E)) in N on the short (long) 
period family with non trivial characteristic multipliers that are pth roots 
(qth roots) of unity. r,(c) tends to the origin as E --+ O+. The value of energy for 
F,(E) is hi(E). 

(g) For E jked, 0 < E < E,, , these periodic solution as given by (b) tend to 

F,(E) (resp. I’,(e)) as h -+ h,(c)- (resp. h + h,(E)+). 

The proof of this theorem is similar to the proof of Theorems 1 and 2. 

4. APPLICATIONS TO THE LAGRANGE EQUILIBRIUM L4 IN WTRICTED PROBLEM 

In this section the restricted problem is examined to determine the values 
of the mass ratio for which the theorems of section 3 apply. It is only necessary 
to check the signs and zeros of the function 

ml& - ma&, 4~2 + Bwi , Bws + Cw, and Aw,~ + ~B~.J,uJ, + ~$2. 
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The Hamiltonian function for the restricted problem has been normalized 
through terms of fourth order by Deprit and Deprit [3] for 0 c p < pz ; 
pa < p < h . The coefficients A, B, C of sections 2 and 3 are 

A = wa2(81 - 6960,~ + 124~~~) 
72( 1 - ~cLI,~)~( 1 - 5w12) 

w,w,(43 + 64~~%0~~) 
(4.1) 

B = - 6(4~+~co~~ - 1)(25o~,~w~~ - 4) 

and 

C(9 7 w2) = JG,,%) 

The function D = 8c.t~~~ + 2Bw,w, + CUJ,~ is given by 

D = 36 - 541~,~w,~ + 644w,4w$ 
~(~w,~oJ,~ - 1)(25w1%op” - 4) (4.2) 

It is found that wrh, - w2A, > 0 for all p in the interval 0 < p < pr by 
using the relations wl/w2 = --X,/X, and noting that A, < 0 and A, > 0 hold 
throughout this interval. By direct evaluation using (4.1) one finds that 

Acop + Bwl > 0 P2 <P <l-Q 

Aw2+Bwl<0 O<P<clZ 
Bw,+C&>O P2<CL<ILLl> O<Fc(Pd 

Bw,+Cq<O Pa (tL <P2 

where pEGd is the unique number defined by Bw, + Cw, = 0, 0 < pd < pl 
pFcd has the approximate value pd = 0.0127. 

The function D has a unique zero at p = pc in 0 < p < pa and no zero in 
pa < p < pI . pG has the approximate value pc = 0.0109. 

The ordering of these endpoints of intervals is given by 

Specifically one has 

(a) Theorem 3 applies to the restricted problem for all pL1. , Y = p/q, 
p > q > 3, in the intervals p2 < pLT < pL1 and pd < pT < p2 . For the intervai 
pEc, < pr < p1 the periodic solutions appear for p > pdr and for the interval 
pd < pLr < pa the periodic solutions appear for ,u < pr . 

(b) Theorems 1 and 2 apply to the restricted problem for all pr , Y = p/q, 
p > q > 3, in the interval 0 < p < pd . For p < i-l+. , the bifurcating family 
terminates in the family of short period orbits and for p > pr the bifurcating 
family terminates in the family of long period orbits. 

505/W6 
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One can verify that neither ,ud nor pc is such that qwl = pw, where p and 
q are relatively prime integers, p > q > 1. 

Therefme, for any pFLT , r = p/q, r > q > 3, in the restricted problem 
either Theorems 1 and 2 apply or Theorem 3 applies. 

Note added in proof. At several points in this paper the phrase “analytic in E” 
should be changed to “analytic in E~/~.” 
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