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I. INTRODUCTION 

Let M be a compact differentiable manifold and F a differentiable mapping 
of M into itself. In the study of the orbit structure of 9~ the periodic points, 
fixed points of some power of p, are of paramount importance. In [I] Artin 
and Mazur introduce an invariant in the form of a formal power series that 
measures the isolated periodic points of 9~. Since this formal series is analogous 
to the classical zeta function they call their new formal power series the zeta 
function for the mapping 9~. Let NV be the number of isolated fixed points 
of pV where v is a positive integer, then the zeta function [(s, p’) or l(s) for 9~ 
is given by 

Let f’, r > 1, be the set of all Cr mappings of M into itself with the usual 
C’ topology. In [Z] Artin and Mazur show that there is a dense set in/ 
such that NV < KYwhere K is some constant depending on 91 but not on V. 
Hence there is a dense set in p’ such that the zeta function has a nonzero 
radius of convergence. 

The theorem of Artin and Mazur does not indicate the nature of the set 
of mappings for which this estimate holds since their method of proof is 
based on algebraic approximation techniques as developed by Nash. In [2] 
the author announced that for a certain general class of diffeomorphisms 
recently introduced by Smale [3, 41 th e a b ove estimate holds. With a closer 
look at the proof in [2] one sees that the theorem is true for mappings also. 

* This research was supported in part by NASA Grant No. NGR 40-002-015 and 
NASA, Huntsville, Contract No. NAS 8-11264 while the author was at Brown 
University and in part by ONR 3776(00) while th e author was visiting the University 

of Minnesota. 
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This new class is the most general class presently known that contains all 
known examples of diffeomorphisms with global stability properties (see [4] 
for discussion). 

In order to define this class of mappings we shall need the following defi- 
nitions: A point p E M is called a wandering point of y if there exists a 
neighborhood U of p such that U n q~( U) = o for all positive integers Y. A 
point is a nonwandering point if it is not a wandering point. Let 52 be the 
set of all nonwandering points of 9. Then 9 is a compact subset of M that 
contains all the periodic points of y. In general Q is only a semi-invariant set, 
i.e., Sz 3 v(Q). 

Let M be endowed with some Riemannian metric structure with norm 
in the tangent space denoted by // * 11. Let /l be some semi-invariant set under 
9. Then 4 is said to have a hyperbolic structure (U-structure in some 
references) on /l if for each point p E fl there is a splitting of the tangent 
space at p, T, , into a direct sum T, = E,” @ EPs such that the splitting is 
a continuous function of p with 

and 

II D&4 3 C/v II u II (u E GUI 
I/ Dq(v)ll < C-W” !/ v 11 (v E 4”) 

for allp E fl and all positive integers v where C and h are constant, X > 1. 
Throughout differentiable or smooth maybe taken as C2. The first theorem 

establishes here is: 

THEOREM 1. Let v be a smooth mapping of M into itself with a hyperbolic 
structure on its set of nonwandering points. Then there exists a constant K 
depending only on q~ such that NV < KY for all positive integers V. 

COROLLARY 1. Let IJI be as in Theorem 1. Then the zeta function for v 
has a nonzero radius of convergence. 

It has been conjectured that the set of mappings y that have a hyperbolic 
structure on the set of nonwandering points is dense in p’. If this were the 
case, then Theorem 1 would include the theorem of Artin and Mazur, but 
at present the two theorems are distinct. 

One has a similar set of concepts for differential equations or flows on M. 
Let {IJJ~}~~~ be the one parameter group of diffeomorphisms defined by a 
smooth vector field X on M. In order to count the periodic solutions of X 
Smale [4] has introduced the following candidate for a zeta function for 

btb 

E(s) = n fi {I - [exp T(Y)]-“-” 
YET k=O 
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where I’ is the set of all closed orbits of vt excluding singular points and 7(y) 
is the minimal period of y. Of course, this is a formal product since one is 
not even sure that there are a countable number of periodic orbits in general. 
However, we shall show that for a certain general class of flows the zeta 
function is a well-defined analytic function in some right half plane. This 
class is, of course, the class analogous to the class of Theorem 1. 

A point p E M is called a wandering point if there is some neighborhood 
U ofp and some real number t,, :b 0 such that 

Also a nonwandering point is a point that is not a wandering point. Let Q 
be the set of nonwandering points of {vt}. Clearly D is a compact invariant 
subset of M. 

Let fl be any invariant set for (yt> then (1 is said to have a hyperbolic 
structure on the set fl provided there is a continuous splitting of the tangent 
spaces of M on R, T, = E,” @ ED” @ EPo such that 

and ED0 is the subspace generated by the velocity vector of {p)$} at p. Moreover, 
there must exist constants C > 0, y > 0 such that 

and 

for allp E d. 

II Dd4ll < C-le-utII 0 II (v E E,“) 

Again the class of flows introduced by Smale in [4] is the class of all flows 
with hyperbolic structure on the set of nonwandering points. For flows the 
theorem corresponding to Theorem 1 is 

THEOREM 2. Let {yt} be the one parameter group of diffeomorphisms 
generated by a smooth vector field X on M such that (vt} has a hyperbolic structure 
on the set of nonwandering points. Let N, be the number of periodic orbits of 
{cJ+} of period less than or equal to 7 (singular points excepted). Then there exist 
constants H and 7 depending only on (q.~> and not on T such that 

COROLLARY 2. Let {yt} be as in Theorem 2, then the xeta function for 
{cJ+} has a right half plane of unzform absolute convergence. 
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The proofs of Theorems 1 and 2 are almost the same, yet neither theorem 
contains the other. Theorem 2 does contain Theorem 1 for diffeomorphisms 
by using the suspension theorem found in [4]. The basic idea of the proofs 
is very simple but the necessity to check uniformity at each step has 
lengthened the arguments considerably. 

The first step is to reduce the problem to one of counting the fixed points 
of a mapping from Euclidean space into itself. For mappings this is done by 
using a finite number of coordinate systems and for flows by using a finite 
number of partial cross sections. The next step is to show that the Jacobians 
at the periodic points grow at most exponentially. This estimate on the 
Jacobian along with a sharp form of the implicit function theorem allows one 
to estimate the size of the domain upon which there is a unique fixed point. 
From this last estimate the theorem follows easily. 

II. PROOF OF THEOREM 1 

In what follows let 1 * 1 denote the usual Euclidean norm in R” with 
respect to a fixed basis and also the corresponding matrix norm. The following 
lemma is a direct result of the implicit function theorem with estimate on 
the domain of validity as found in Hartman [5] page 12. This lemma is 
central to the proof of both Theorems 1 and 2. 

LEMMA 1. Let a, b and c be fixed positive constants and n a positive integer. 
Let &, be a C2 map from the closed ball B of radius an about the origin in R” 
into R” with &(O) = 0. Let the modulus of thefirst and secondpartial derivatives 
of & be less than b” on B. Let i(ZI$~(O) - Z)i ,< c” and I(D&(O) --I)-’ / < cn 
where D+,(O) denotes the Jacobian matrix of &, at the origin and Z is the identity 
matrix. Then there exists a constant d depending only on the dimension m and 
the constants a, b and c but independent of n such that 4% has a unique fixed 
point in the closed sphere of radius d” about the origin. 

Proof. Consider the function g(.z) = S&(X) - x. The fixed points of & 
correspond to the zeros of g. Let A = D&(O) -Z and h(x) t= g(x) - Ax 
and so g(x) = Ax + h(x) with h(0) = Dh(0) = 0. 

Since first and second partials of & are bounded by b” there exists a constant 
k, depending only on the dimension m and b such that 

I Q(x)1 < kin and I Dh(x)I < k,” I x I 

for 1 x I < an. Let k, = min{a, (2ck,)-l}. Then for / x I < kzn one has 

I Q&-l I = I A-l I I(1 + klDh(x))-l ( d 1 _ , zdIDh , < (2~)~. 
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Now the implicit function theorem cited above can be applied to g to show 
that g has a unique zero in the sphere of radius d’l where d = k,(2k,c)-‘. 

Let ( Fj , yJ and (U, , s;), i ::= I ,..., Y be a finite number of coordinate -- 
systems for M sucn tnat I,-, 3 I -, , u C;, 3 M, s, = yi 1 U, andyl( V,) is com- 
pact in RI”. Consider the sets yr( I Yi) and xi( Ui) in R”‘. There exists a constant 
6, 0 < 6 < I, such that each point of xi( b,) is contained in a closed sphere 
of radius 8 that is completely contained in yi(Vi) for i =- I,..., Y. We shall 
count the number of fixed points of qn in each xi( ti+). Let ‘/ . ,/ denote the 
norm in the tangent space of yi( 1’;) m d uced by the Riemannian metric of M. 

LEMMA 2. Let x0 he afixedpoint of &, = xi . qn . x-l and let .?! =- L)#,(x,) 
then there exist constants N and c > 0 that are independent of x0 and n such 
that i(A -I), ./ c” and l(A - I)-] 1 ( cn for all n > N. 

Proof. Choose coordinates at x,, so that A has the form A = diag(A, , A,) 
where A, and A, are the matrix representations of D&(x,,) on the spaces 
E& and E& respectively. One has a norm ‘11 . :/I in R” induced by these co- 
ordinates. Since the set of nonwandering points is compact and the splitting 
of the tangent spaces is continuous there exist constants k, and k, > 1 which 
are independent of n and x0 such that the matrix norms satisfy 

It is clear that there exists a constant k, independent of x0 and n such 
that 1 A 1 < < k5n and so !(A - 1)i < kSn + 1 11 < (k, + 1 I I)“. 

Now let N be such that C-tP’ < 1. Then 

Let c = max{k, + / I /, 2k,k,( 1 - C-lh-N)-l). 
The constant a” maybe taken as 6 in the case under consideration. 
Hence we have established the existence of the constants a, b and c of 

Lemma 1 and so the existence of d if n > N. 
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Let L be the total volumn of all the y&(V,) in K”“. The fixed points of p?” 
in .vi(6’J can be covered by disjoint balls of radius d”/3. And since by our -~ 
construction d < 6 < 1 these balls are interior to one of the JJ~( Vi). From 
elementary calculus there is a constant k, depending only on the dimension vz 
such that the volumn of one of these balls is greater than or equal to k,(&“/3)“‘. 
Hence for IZ > N 

from which it follows that N, < K” where K = (I $ Lk;‘)3”d+. A standard 
argument hields the theorem for all n 3 0. 

III. THE PROOF OF THEOREM 2 

The proof of Theorem 2 is essentially the same as the proof of Theorem 1. 
In order to apply Lemmas 1 and 2 to the case of a flow one most make a 
reduction to a problem related to mappings and this is done by choosing 
a finite number of cross sections. These mappings are not defined on the 
intersection of a cross section and the stable or unstable manifold of a saddle 
point. Therefore, one must obtain an estimate on the rate of growth of the 
derivatives of these maps near these intersections. This new estimate is the 
only major difference between Theorems 1 and 2. (see Lemma 3 below). 

Cover all the singular points of X with coordinate systems (Ui , xi) and 
(Vi , rJ, i = l,..., Y as follows. Let ( IVi , zi) be some coordinate system that 
contains a singular point and is such that zi takes the local stable and local 
unstable manifolds into the coordinate planes Rfl x (0) and (0) x Rq res- 
pectively in R” x Rq = Ii”< (see [5] Chapter IX). Moreover, assume that 
zi(Wi) is an open ball of radius one about the origin in R”. 

Henceforth we shall omit the index i until the two neighborhoods are 
constructed. Take spheres S, and S, in Rp x (0) and (0) x Rl respectively 
of radius 3/4. Consider the cylinders 

and 

2, = ((5,~) E R” x Rq : (5,O) E S,> n x(W) 

Z, = {(E, 7) E Rp x RQ : (O,?) E S,) n X(W). 

If we choose & sufficiently small all trajectories of X that start on Z, with 
1 77 / < d at t = 0 intersect Z, once and only once before leaving .zi(Wi). 
Put P = Z, n ((6, ~)i / 77 1 < 8). Let Q be the set of all points Z, that are 
images of points of P under the flow plus S, . Let UY( U) be the closure of the 
union of orbits joining P to Q and U = z-1(x(U)) and x = z 1 U. Let V 

505/5/2-9 
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and y be constructed in the same way only using 6/2. Let the sets corrc- 
sponding to P and Q be denoted by P and Q. (Henceforth indexes will be 
replaced). 

Cover M - UL, Vi with a finite number of closed flow boxes (see [6]) 
(C’, , xi) and (Vi , yJ i = Y -t- I,..., s such that Uio 3 Vi , yi z xi ( t,‘; and 
such that the interiors of the 1, cover M - u:=r Vi’. In each flow box 
(Ui , xl) pick a cross section P, C x,(Ui) and let p, = P, n yi( ri,). Although 
not every orbit of X crosses one of these cross sections P, ; i =m I,..., Y,..., s; 
every periodic orbit does. 

The vector field X in zi( W,) C RI’ x R” is given by the ordinary differential 
equations 

where 5 and 7 are p and q vectors respectively, A and B are p x p and 
q x q matrices respectively and G and H are C2 functions defined on 
zi(Wi) C Rn x RQ and map into R” and Ru respectively. The eigenvalues 
of A(B) have negative (positive) real parts. Also G(0, y) = 0, H(x, 0) y- 0, 
DG(0, 0) = 0 and DH(0, 0) = 0. 

Let # be the map that sends a point [ E P to the point on Q where the 
trajectory of X through 5 meets Q. # is well defined on all of P except on S, . 
We need to estimate the size of the derivative of $ near S, . Let T(f,, qo) be 
the time required for trajectory passing through (&, 70) E P to meet Q. 

LEMMA 3. Let (to ,rlo) E P, v. $ 0. There exist the constants f and g 
such that the modulus of the first partial derivatizjes of 4 are bounded by f ‘@oSq@’ 
on the subset of P de$ned by 

Remark. This lemma asserts that there is a neighborhood of (5,) qo) that 
decreases at most exponentially with T upon which the derivatives of 4 
increase at most exponentially with T. 

Proof. Since all the eigenvalues of B have positive real part there exist 
K, and K, > 0 such that 1’ e-Bf 1 < KIe--K*t for t 3 0. Let us reverse 
time by taking 7 = -t. Then 7’ = -BT - H(t, 7) where prime represents 
derivative with respect to 7. 

Consider the solution (&T), q(~)) that goes through a point (6, , qr) EQ 
at 7 = 0 and intersects P at (to , +lo). Then 

q(7) = ecB’Tl - lT e-B(T-s)H(((s), v(s)) ds. 
0 
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Without loss in generality we can assume that the neighborhood zi( l4’i) 
is sufficiently small that 1 H(f, v)l < (K,)(2K,)-’ 1 7 1 and then 

and by Granwalls inequality 

and letting 7 = T(t, , q,,) we have 

Thus if we take a neighborhood N of radius & j v. 1 about (to, qo) in P 
then the maximum time T(N) for any trajectory through this neighborhood 
to reach Q is bounded by the relation 1 7” ) (2 ) rll I)-’ ,< exp(-4 &T(N)). 
Thus the spherical neighborhood 1V of (5,) rlo) on P has a radius bounded 
below by f “*o 7o) where f is some positive constant. 

The Jacobian of II, satisfies the first variational equation which is a linear 
homogeneous differential equation with bounded coefficients. It is well known 
that the solutions of such an equation grow at most exponentially with time. 
Thus the lemma follows. 

With this lemma the proof of Theorem 2 follows in the same way as the 
proof of Theorem 1. One considers the fixed points of the mappings of the 
partial cross sections Pi , i = I,..., Y ,..., s into themselves defined by the 
flow. 
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