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Abstract

We use the error bounds for adiabatic invariants found in the work of Chartier, Murua and Sanz-Serna 
[3] to bound the solutions of a Hamiltonian system near an equilibrium over exponentially long times. Our 
estimates depend only on the linearized system and not on the higher order terms as in KAM theory, nor do 
we require any steepness or convexity conditions as in Nekhoroshev theory. We require that the equilibrium 
point where our estimate applies satisfy a type of formal stability called Lie stability.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

In our previous work [15] we started a search for stability results around an equilibrium point 
that depend only on the quadratic part of the Hamiltonian, i.e., only on the linearized system. We 
do not search for stability criteria that depend on the higher order terms as in KAM theory, or on 
the steepness and convexity conditions found in Nekhoroshev theory. The only complete result of 
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this type is Dirichlet’s Theorem [4], which gives stability of the equilibrium when the quadratic 
part is positive (or negative) definite. Stability cannot be determined from the eigenvalues of the 
linearized system alone as shown by the classical example of Cherry – see [14]. This gave rise to 
many different formal results, as discussed in [15,21,22] and the references therein.

Here we take a different approach. We establish bounds for exponentially long times on the 
actual solutions near an equilibrium of an analytic Hamiltonian system following the tradition 
found in [7,8] – see Lochak [12,13]. First we use the theory developed by dos Santos and cowork-
ers [21,22] on Lie stable systems to prepare the quadratic part of the Hamiltonian to obtain 
enough proper formal adiabatic invariants. Next the error bounds found in Chartier, Murua and 
Sanz-Serna [3] are applied to the adiabatic invariants. And finally, a straightforward Liapunov 
type argument transfers the estimates from the adiabatic invariants to the actual solutions.

Other approaches to get estimates for elliptic equilibria of Hamiltonian systems may be found 
in [19,6,17,20]. Similarly to Lochak [12,13], the authors of the previous papers apply Nekhoro-
shev theory and obtain sharp results on stability over exponentially long times. In their papers 
they require convexity of the Hamiltonian (or related conditions), hence there are no resonances 
of order less than 5, but they do not assume any Diophantine conditions among the frequen-
cies. Moreover they do not assume any type of formal stability. Our approach is different, since 
we provide estimates for elliptic equilibria that are formally stable and the kind of stability re-
quired is characterized by the quadratic terms of the Hamiltonian. We also require a Diophantine 
hypothesis among some of the frequencies of the linearized equations of motion.

The present paper has six sections. In Section 2 we state our main theorem and give an 
example. In Section 3 we deal with the calculation of formal invariants for a resonant Hamilto-
nian using a normal form approach. In addition we present two propositions which characterize 
Hamiltonians that are Lie stable by checking only the linearized equation, relating the concept of 
Lie stability to the existence of a linear combination of the formal integrals for the normal form 
Hamiltonian. Since our theory relies on the estimates for adiabatic invariants of Chartier et al., 
in Section 4 we present these authors’ result and its connection with our approach. In Section 5
we give the proof of our main theorem. Finally, in Section 6 we relate Lie stability to normal 
stability and apply the ideas of the previous sections to the spatial case of the circular restricted 
three body problem.

2. The system

We consider a real analytic Hamiltonian defined in N , a neighborhood of the origin in R2n, 
of the form

H(x) =H(x) +K(x) , (1)

whose equations of motion are the Hamiltonian system

ẋ = J∇H(x) , (2)

where J is the standard 2n × 2n symplectic matrix of Hamiltonian theory [14].
In (1) above, H is the quadratic Hamiltonian

H(x) = 1xT Sx , (3)
2
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with S = ST a 2n × 2n real symmetric matrix. Since H(x) is analytic, the function K(x) is a 
convergent expansion in x that we require to start with terms of degree three.

Depending on context, we denote the general solution of Hamilton’s equations by x(t) or 
x(t, x0), where x0 is the initial condition. The linearized equations of motion are

ẋ = Ax, A = J S , (4)

where A is a 2n × 2n real Hamiltonian matrix. Throughout this paper, we assume that A is 
nonsingular and that the linearized system is stable, i.e., all the eigenvalues of A are nonzero 
purely imaginary numbers and A is diagonalizable over the complex numbers. If A is singular 
then there are nonlinearities that lead to instability. In the nonsingular case, possibly after making 
a suitable linear symplectic transformation to bring the linear part to diagonal form, one can 
introduce action-angle variables

Jj = 1
2 (u2

j + v2
j ) , φj = tan−1 vj

uj

, x = (u1, . . . , un, v1, . . . , vn) ,

such that H takes the form

H= μ1J1 + · · · + μnJn , (5)

where ±μ1 i, . . . , ±μn i are the eigenvalues of A. (Note that we keep the same name for the 
variable x, and also for A, H and H.) In [7,8] strong nonresonance conditions are imposed on 
the eigenvalues which we do not require.

Let H̄ be the normal form of H defined in (1), i.e., H̄ is a function

H̄ =H+ K̄3 + · · · + K̄N + · · ·

obtained from H through a symplectic change of coordinates whose series expansion in x starts 
at degree two, such that each term K̄j is a homogeneous polynomial of degree j , and satisfies 
{H̄, H} = 0, see [14].

Our first assumption is that we can arrange terms so that

H = σ1Q1 + · · · + σdQd , (6)

where all the Qi are formal integrals of H̄ and semidefinite quadratic forms in x and the σi are 
real. The rearrangement process is discussed in Section 3.

Second, we need to impose a Diophantine condition1 on the vector σ = (σ1, . . . , σd); that is, 
we suppose that there are fixed constants c > 0 and ν > d − 1 such that

∀k ∈ Z
d \ {0} , |k · σ | ≥ c|k|−ν . (7)

Roughly speaking our main result of the paper is the following.

1 Analogous (1-dimensional) number theoretic conditions were first used in a dynamical systems setting by C.L. Siegel 
[24,5].
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If the real analytic Hamiltonian (1) has H of the form (6) as discussed above and the frequency 
vector σ satisfies the Diophantine condition (7), then there exist C > 0, K > 0, a > 1 and ρ0 > 0
such that for all ρ ∈ (0, ρ0), and for all x0 with |x0| < ρ we have

|x(t, x0)| < aρ for all 0 ≤ t ≤ T = C ρ exp

(
K

ρ1/(2(ν+1))

)
.

A more precise statement is given in Theorem 5.1 in Section 5. Notice that in case H is definite 
then a classical theorem of Liapunov assures stability.

In Section 3 we treat the following five-degree-of-freedom example

H = 5(
√

5 − 1)J1 + 2(
√

5 − 1)J2 + (
√

5 − 1)J3 − 18J4 + 18(
√

5 + 1)J5 .

= μ1J1 + μ2J2 + μ3J3 + μ4J4 + μ5J5 .
(8)

Note that H is an indefinite quadratic form in x since μ4 < 0, while the other μi are positive and 
there are many relations among the eigenvalues. But after the rearrangement

H = (
√

5 + 1)Q1 − 2Q2 = σ1Q1 + σ2Q2

where

Q1 = 5J1 + 2J2 + J3 + 18J5 , and Q2 = 5J1 + 2J2 + J3 + 9J4 .

Clearly Q1, Q2 are positive definite and (σ1, σ2) = (
√

5 + 1, −2). Now |σ1/σ2| = (
√

5 + 1)/2 is 
the golden mean. It is well known that the golden mean and its equivalents are the irrational num-
bers that are most badly approximated by rational numbers and thus the Diophantine condition 
is satisfied.

Therefore if the analytic Hamiltonian H starts with H as above then the solutions satisfy the 
estimates given above.

3. Formal invariants

In this section we use the ideas found in dos Santos et al. [21] to prepare the quadratic part 
of the Hamiltonian and construct formal invariants. They were interested in a type of formal 
stability called Lie stability and we refer to their paper for references on various types of formal 
stability. Concretely, the Hamiltonian H expanded as

H =H+K3 + · · · +KN + · · · ,

where Kk represents a homogeneous polynomial of degree k in x, is said to be Lie stable if there 
exists an integer m > 2 such that the normal form Hamiltonian obtained from it, i.e.

H̄N =H+ K̄3 + · · · + K̄N with {H̄N,H} = 0 ,

is stable in the sense of Liapunov for any N ≥ m, where N is an arbitrary integer. The Hamil-
tonian H̄N is supposed to be truncated at degree N , thus it is obtained from H through a finite 
sequence of symplectic transformations.



H.S. Dumas et al. / J. Differential Equations 263 (2017) 1125–1139 1129
Following [22], we introduce the Z-module associated with the frequencies μi of (5), which 
is given by

Mμ = {k = (k1, . . . , kn) ∈ Z
n
∣∣k · μ = k1μ1 + · · · + knμn = 0} .

The set Mμ is finitely generated, so there exist k1, . . ., ks ∈ Mμ such that

Mμ = k1
Z+ · · · + ks

Z = {j1k
1 + · · · + jsk

s
∣∣ j1, . . . , js ∈ Z} .

Take a minimal set of generators, so 0 ≤ s < n and the kj are linearly independent. The case 
s = 0 corresponds to the situation where all the μi are independent over the rationals. When 
s = 1 one says that the Hamiltonian H has a single resonance, whereas the case of multiple 
resonances corresponds to s > 1.

After transforming the Hamiltonian H to normal form up to degree N , we know that H̄N has 
n − s integrals in involution that are linear combinations of the actions Ji ; see Lemma 1 in [22]. 
They are calculated as follows. One determines the null space of {k1, . . . , ks}, leading to a vector 
subspace of Rn spanned by vectors {a1, . . . , an−s} that satisfy ai ·kj = 0. Then we set Fl = al ·J
with J = (J1, . . . , Jn). The Fl are independent because the al are linearly independent. We may 
choose the coefficients of the vectors al to be integers.

It is possible to arrange H so that it has the form

H = ξ1F1 + · · · + ξn−sFn−s , (9)

where the ξl are linear combinations of the μi with the condition that ξ = (ξ1, . . . , ξn−s) is a 
nonresonant frequency vector, a feature that is always guaranteed by the construction of the Fi

from the set Mμ. Since ξ corresponds to the vector (ω1, . . . , ωd) of Chartier et al., the d in [2,3]
corresponds to the n − s of dos Santos and Vidal [22]. From now on we use d instead of n − s.

The auxiliary set

S = {J = (J1, . . . , Jn)
∣∣F1(J ) = · · · = Fd(J ) = 0} (10)

is introduced in [22] in order to prove Lie stability under some additional hypotheses. In partic-
ular, if S = {J = 0} one defines the positive definite first integral W = F 2

1 + · · · + F 2
d , which in 

turn is a Liapunov function for H̄N , since W > 0 except at the origin of R2n, and Ẇ = 0. Thus 
one proves Liapunov stability for H̄N or, in other words, Lie stability for H (this is Proposition 2 
of [22]).

We are ready to state some properties regarding the set S defined in (10).

Proposition 3.1. Given the Hamiltonian system (2) with H as in (9), the following statements are 
equivalent:

(i) The set S = {J = 0}.
(ii) There is a linear combination of the d formal integrals Fl for the normal form Hamiltonian 

H̄ related to H such that it is a positive definite quadratic form in x.
(iii) The Hamiltonian H can be written as

H = σ1Q1 + · · · + σdQd , (11)
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where all the Ql are nonnull formal integrals of H̄ and positive semidefinite quadratic forms 
in x. The frequency vector σ = (σ1, . . . , σd) is nonresonant.

To prove 3.1, we need to apply a theorem we call the Gordan–Stiemke Alternative [9,25]. 
Suppose A is a p ×m matrix and for z ∈ R

k write z > 0 when zj > 0 for each j , and z ≥ 0 when 
zj ≥ 0 for each j .

Theorem 3.1. (Gordan–Stiemke Alternative) Exactly one of the following systems has a solution:

(a) xT A > 0 for some x ∈ R
p ,

(b) A y = 0 and y ≥ 0 for some nonzero y ∈R
m.

Moreover, when the entries of A are rational numbers, we may choose the vectors x and y to be 
rational also [23].

Obviously when A has integer entries, x and y may be chosen as integers. We now prove 
Proposition 3.1.

Proof. (i)=⇒(ii). Let A be the d × n matrix whose rows are the vectors al = (al
1, . . . , a

l
n). We 

rewrite the system F1(J ) = · · · = Fd(J ) = 0 as A J = 0, and since (i) holds, its unique solution 
is J = 0. Applying the Gordan–Stiemke Alternative, there is a vector p = (p1, . . . , pd) such that 
pT A > 0 (option (a)). This implies that the combination

G(J ) = p1F1 + · · · + pdFd

= p1(a
1
1J1 + · · · + a1

nJn) + · · · + pd(ad
1 J1 + · · · + ad

nJn)

= (p1a
1
1 + · · · + pdad

1 )J1 + · · · + (p1a
1
n + · · · + pdad

n)Jn

is an integral of the normal form H̄N , which is a positive definite function in the coordinates x, 
since qi = p1a

1
i +· · ·+pdad

i > 0 for i = 1, . . . , n. Note that qi ∈ Z
+ since pi and aj

i are integers.
(ii)=⇒(iii). We write m1 = (q1, . . . , qn), where qi are the positive numbers obtained in (i) 

above, thus m1 = p1a
1 + · · · + pdad . Without loss of generality, we suppose p1 
= 0 and replace 

the basis {a1, . . . , ad} by {m1, a2, . . . , ad}, since it is also a basis of the null space of {k1, . . . , ks}. 
Now, the equation α1m

1 + α2a
2 + · · · + αdad = 0 becomes

α1p1a
1 + (α2 + α1p2)a

2 + · · · + (αd + α1pd)ad = 0

and since p1 
= 0, then α1 = 0, so α2 = · · · = αd = 0. For l = 2, . . . , d , we introduce ml by 
ml = rlm

1 + al where rl is a positive integer such that all components of ml are nonnegative. 
Now β1m

1 + β2m
2 + · · · + βdmd = 0 is rearranged as

(β1 + β2r2 + · · · + βdrd)m1 + β2a
2 + · · · + βdad = 0 .

Since {m1, a2, . . . , ad} is a basis, we have β2 = · · · = βd = 0 and, finally, β1 = 0, so the set 
{m1, m2, . . . , md} spans the null space of {k1, . . . , ks}. Now define Ql = ml · J for l = 1, . . . , d . 
Then since ml ≥ 0, the Ql are positive semidefinite quadratic forms in x and are formal integrals 
j
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of H̄ because the Ql are linear combinations of the Fk . The σl are readily obtained from the ξk

in (9) and, by construction, the frequency vector (σ1, . . . , σd) is nonresonant.
(iii)=⇒(i). We take the Ql as linear combinations of the actions Jk with positive parameters, 

if necessary after performing a suitable linear symplectic change of variables. Next, the set S is 
constructed from the functions Ql as

S = {J = (J1, . . . , Jn)
∣∣Q1(J ) = · · · = Qd(J ) = 0} ,

but since the Ql are positive semidefinite and J cannot take negative values, the unique solution 
to the system above is S = {J = 0}. �

Another result concerning the set S is the following.

Proposition 3.2. If the set S related to the Hamiltonian H given in (9) contains nonzero vectors, 
then there is a Hamiltonian H = H +K, where K(x) is a convergent expansion in x starting at 
degree three and the origin of R2n is unstable.

Proof. By applying the Gordan–Stiemke Alternative, there is no function G(J ) as in item (i) of 
Proposition 3.1, but there is a vector of nonnegative integers r = (r1, . . . , rn) such that A r = 0
and F1(r) = · · · = Fd(r) = 0. (Note that r ∈ S.) Hence r is in the orthogonal complement of the 
space spanned by a1, . . ., ad , so r ∈Mμ with r · μ = 0 and r 
= 0. Now we prove that the origin 
of R2n is unstable for a certain Hamiltonian H. We choose

H(J,φ) =H(J,φ) +K(J,φ) = μ1J1 + · · · + μnJn + J
r1/2
1 · · ·J rn/2

n cos(r1φ1 + · · · + rnφn)

and consider the function

C(J,φ) = −2J
r1/2
1 · · ·J rn/2

n sin(r1φ1 + · · · + rnφn) .

In terms of x, the function C is a homogeneous polynomial of degree r1 + · · · + rn. We have

Ċ = J
r1−1
1 · · ·J rn−1

n (r2
1 J2 · · ·Jn + r2

2 J1J3 · · ·Jn + · · · + r2
n−1J1 · · ·Jn−2Jn + r2

nJ1 · · ·Jn−1) .

Let 
 be the region where C > 0, so J1 
= 0, . . . , Jn 
= 0. But Ċ > 0 in 
 and 
 has points 
arbitrarily close to the origin, so Chetaev’s Theorem [14] shows that the origin is unstable. �

According to Propositions 3.1 and 3.2, we may view Proposition 3.1 as a characterization 
of Lie stability for the case where it is established using only the linearized system around the 
equilibrium. Specifically, we have proved that a Hamiltonian system for which S 
= {J = 0} can 
lead to instability. However this does not mean that any Hamiltonian system (2) with H as in (9)
and such that S 
= {J = 0} is unstable. For example, the origin of R6 is stable for the Hamiltonian

H = 2
√

5J1 + 4πJ2 − (π + √
5)J3 + J 4

1

because

L = 2
√

5J1 + 4πJ2 + (π + √
5)J3
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is a Liapunov function for H, although the set S of the quadratic terms of H is given by 
{(2J3, J3, 4J3) | J3 ≥ 0}. It is also possible to choose the higher order terms K so that one gets 
Lie stability; see Theorem 1.1 of [22].

We now reconsider Hamiltonian (8) and compute the Z-module Mμ, solving the equa-
tion k · μ = 0 with k = (k1, . . . , k5), μ = (μ1, . . . , μ5) for the integers kj . We set s = 3, 
d = 2 and obtain the linearly independent vectors k1 = (0, 0, −18, 2, 1), k2 = (1, 0, −5, 0, 0), 
k3 = (0, 1, −2, 0, 0).

The first integrals are obtained from the null space of {k1, k2, k3}. Concretely, a basis for the 
null space is given by the vectors a1, a2 with a1 = (5, 2, 1, 0, 18), a2 = (5, 2, 1, 9, 0). Therefore 
two positive semi-definite formal integrals of a normalized Hamiltonian, H̄=H + K̄, with K̄ an 
arbitrary perturbation, are

Q1 = a1 · J = 5J1 + 2J2 + J3 + 18J5 , Q2 = a2 · J = 5J1 + 2J2 + J3 + 9J4 .

By Proposition 3.1 one gets S = {J = 0}, thus the origin in R10 is Lie stable. Moreover

H = (
√

5 + 1)Q1 − 2Q2 .

The function G = (
√

5 + 1)Q1 + 2Q2 is a positive definite integral of the truncated nor-
mal form H̄N . Also (σ1, σ2) = (

√
5 + 1, −2) and |σ1/σ2| = (

√
5 + 1)/2. As a vector in R2, 

ω = (
√

5 + 1, −2) is not only Diophantine, but belongs to the class of “most Diophantine” vec-
tors in the sense that, for every ν > 1, there is a c > 0 such that for all k ∈ Z

2\{0}, |k ·ω| > c|k|−ν . 
(Other vectors in R2 may satisfy a Diophantine condition only for larger values of ν.) For dis-
cussions and proofs of these facts, see e.g. [10] or [11].

4. Adiabatic invariants

In references [1–3] and [15] the authors construct d formal integrals in involution for the 
Hamiltonian (1). Although conceptually the same, they are constructed by different algorithms, 
so there may be slight differences. Since we use the estimates of [3], we will take their definition 
of the invariants. Specifically, we are going to apply the estimates on the invariants found in 
Corollary 3.6 of Theorem 3.5 in [3].

By the theory of Hamiltonian normal forms [14] we know that for a Hamiltonian H̄ =H + K̄
with H given in (9), the functions Fj , with Fj as in Section 3, are d formal integrals of motion. 
Applying the inverse of the Lie transformation that brings (1) into its normal form, the functions 
Fj are transformed back to functions Pj which correspond to d formal integrals of H. The Pj

are formal series and we can choose them so that their principal terms are given by ξlFl ; see [18].
We need to rearrange the Hamiltonian (1) to apply the results of [3]. Since we are interested 

in the stability of the origin for H, we stretch coordinates by x = εy. This change of coordinates 
is symplectic with multiplier ε−2. The resulting Hamiltonian reads

F(y, ε) =H(y) + G(y, ε) =H(y) +
∞∑

k=3

εk−2Gk(y) , (12)

where G is obtained from K in (1) as ε2G(y, ε) = K(εy) and each Gk is a homogeneous polyno-
mial of degree k in y.
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Let I1(y, ε), . . . , Id(y, ε) be the d formal series in y given in [3]. They are formal integrals 
for the Hamiltonian F given in (12); that is,

{F , Ii} = 0 , i = 1, . . . , d ,

where {·, ·} is the Poisson bracket operator. The integrals Ii are in involution, so

{Ii, Ij } = 0 , i, j = 1, . . . , d , i 
= j .

Moreover they are of the form

Ii(y, ε) =
∞∑

k=2

εk−2Iik(y) ,

where each Iik(y) is a homogeneous polynomial of degree k in y and

Ii2(y) = Fi(y) .

Each Ii is related in a straightforward way with Pi ; specifically, we have

ε2ξiIi(y, ε) = Pi(εy) .

The Ii are only formal series, so to get estimates we truncate the series, thereby obtaining adia-
batic invariants. The truncation IN

i is

IN
i (y, ε) =

N∑
k=2

εk−2Iik(y) .

We now introduce a few more notations before stating the results of Chartier et al. on adiabatic 
invariants in a form suited to our needs.

Take N = BR to be the open ball of radius R > 0 centered on 0 in R2n. Given a solution 
y = y(t, y0, ε) of the system (12) with initial condition y0 in N , let γ = γ (y0, ε) be the solution’s 
first time of escape from N , i.e.

γ = inf{t > 0
∣∣ |y(t, y0, ε)| ≥ R} . (13)

Given γ > 0 and T > 0, we set

D = [0, γ ) ∩ [0, T ] , (14)

i.e., D is the shorter of the two intervals.

Theorem 4.1 (Chartier, Murua and Sanz-Serna). Let the real analytic system (1) satisfy the Dio-
phantine condition (7) and let y0 ∈ N . Then there are constants C > 0 and K > 0 such that for 
small enough ε > 0, there is a positive integer N such that for sufficiently small κ > 0 and for 
i = 1, . . . , d ,
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|IN
i (y(t, y0, ε), ε) − IN

i (y0, ε)| < κ2 for all t ∈ D = [0, γ ) ∩ [0, T ] ,

where

T = C κ2 exp

(
K

ε1/(ν+1)

)
.

Here we have taken the liberty of changing the notation of Corollary 3.6 of [3]. We changed 
δ to κ2 and 1/C′ to C. Also the corollary contains the proviso “for any solution x(t) of (47) 
that remains in N for 0 ≤ t ≤ T ” which we incorporate in the definition of D after replacing x
by y. Finally, when we use this result below, we replace “for small enough ε > 0” by “for all 
ε ∈ (0, ε1), where ε1 > 0 is an appropriate threshold.”

The fact that all the invariants remain small does not by itself imply that the solutions remain 
small. In Cherry’s classic example (cf. §13.1 of [14]) the Hamiltonian

H = 2J1 − J2 + J1J
1/2
2 cos(φ1 + 2φ2)

is an integral but the origin is unstable. Thus, no matter how small H is, some small initial 
conditions generate solutions tending to infinity.

5. Main theorem

Assume now that the origin of the Hamiltonian system (2) is Lie stable and that this stability 
character is deduced using only the quadratic terms of H. According to Proposition 3.1, the 
Hamiltonian H can be written as in (11). Thus, there are d formal integrals for the normal form 
H̄ associated to H introduced in (1), and they are given by Ql . These functions are positive 
semidefinite quadratic forms in x. Applying the inverse of the Lie transformation that brings H
to the form H̄, the Ql are transformed back, becoming formal integrals for H that we call Ml . 
The Ml are formal series that can be selected in such a way that their principal terms are σlQl . 
Introducing y in place of x as in §4, we define the functions Ii as

ε2σiIi(y, ε) = Mi(εy) for i = 1, . . . , d .

Furthermore we have

Ii(y, ε) =
∞∑

k=2

εk−2Iik(y) ,

where each Iik(y) is a homogeneous polynomial in y of degree k and Ii2(y) = Qi(y). Note that 
we can assume that the Ql are linear combinations of the Jk with positive constants. We are now 
ready to state our main result.

Theorem 5.1. If the real analytic Hamiltonian (1) has H in the form (9) satisfying conditions (i), 
(ii) or (iii) of Proposition 3.1, while the frequency vector σ satisfies the Diophantine condition 
(7), then there exist C > 0, K > 0, a > 1 and ρ0 > 0 such that for all ρ ∈ (0, ρ0), and for all x0
with |x0| < ρ we have
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|x(t, x0)| < aρ for all 0 ≤ t ≤ T = C ρ exp

(
K

ρ1/(2(ν+1))

)
.

Proof. Let C, K, ν, ε, κ, T and N be as given in the statement of Theorem 4.1. Define λ =
|σ1| + · · · + |σd |. If IN

j (y, ε) is the truncation of the function Ij (y, ε) at degree N in y, that is, it 

is an adiabatic invariant, we introduce V N as

V N(y, ε) = |σ1|IN
1 (y, ε) + · · · + |σd |IN

d (y, ε) .

The quadratic part of V N is V2 = |σ1|I12(y) + · · · + |σd |Id 2(y), and it is a positive definite 
quadratic form in terms of y because Ii2(y) = Qi(y) and the Qi are positive semidefinite since 
item (iii) of Proposition 3.1 holds.

First we prove that if ε̃0 is small enough, there are positive constants α and β , independent 
of ε, such that whenever ε|y| ≤ ε̃0, we have α|y|2 ≤ V N(y, ε) ≤ β|y|2. Defining MN

j (x) to be 
the truncation of the formal integral Mj at degree N in x, we define

UN(x) = sign(σ1)M
N
1 (x) + · · · + sign(σd)MN

d (x) .

The quadratic part of UN is the positive definite form

U2(x) = sign(σ1)H1(x) + · · · + sign(σd)Hd(x) .

Thus, given small enough ε̃0 > 0, we know that there are positive constants such that whenever 
|x| ≤ ε̃0, we have α|x|2 ≤ UN(x) ≤ β|x|2. Therefore we have αε2|y|2 ≤ UN(y, ε) ≤ βε2|y|2, 
so α|y|2 ≤ V N(y, ε) ≤ β|y|2 when ε|y| ≤ ε̃0.

Assuming the estimates of Theorem 4.1 hold for t ∈ D and letting 0 < κ < 1, we have

|V N(y(t), ε) − V N(y0, ε)| ≤ |σ1||IN
1 (y, ε) − IN

1 (y0, ε)| + · · · + |σd ||IN
d (y, ε) − IN

d (y0, ε)| ,
|V N(y(t), ε) − V N(y0, ε)| < λκ2 ,

|V N(y(t), ε)| − |V N(y0, ε)| < λκ2 ,

|V N(y(t), ε)| < λκ2 + |V N(y0, ε)| ≤ λκ2 + β|y0|2 .

At this point we observe that κ and ε are independent small parameters in Theorem 4.1, and it 
will be useful to relate them by choosing ε = κ . We also need to express κ in terms of ρ. We set 
κ = √

ρ so that, from the inequality |x0| < ρ we deduce that |y0|2 < ρ. Thus

α|y(t)|2 ≤ V N(y(t), ε) < (λ + β)ρ ,

and therefore

|y(t)| < a
√

ρ for t ∈ D , (15)

where

a =
√

λ + β
.

α
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We show next that γ > T and thus D = [0, T ]. Assume the contrary, that is, assume γ ≤ T , 
so that D = [0, γ ). We choose ρ0 = min{√ε̃0, 

√
ε1} (where ε̃0 is given above and ε1 > 0 is the 

threshold guaranteed by Theorem 4.1), and we take ρ < min{1, R2/(4a2)}. Now by assumption, 
|y(t, y0, ε)| ↗ R as t ↗ γ . But by Theorem 4.1 and estimate (15) above, we have |y(t, y0, ε)| <
a
√

ρ < R/2 for all t ∈ [0, γ ), which is a contradiction. It follows that γ > T , so D = [0, T ] as 
desired.

Finally, we return to the Hamiltonian H defined in (1). First we observe that |y(t)| < a
√

ρ

leads to |x(t)| < aρ. Since

T = C κ2 exp

(
K

ε1/(ν+1)

)
,

expressing κ and ε in terms of ρ, we see that |x0| < ρ implies |x(t)| < aρ for all t in the interval 
[0, T ], where

T = C ρ exp

(
K

ρ1/(2(ν+1))

)
. �

Consider a Hamiltonian of the form H = H + K where H is given in (8) and K represents 
an arbitrary higher order perturbation. According to our analysis in Section 3, H satisfies the 
hypotheses of Theorem 5.1 and the corresponding estimates hold.

As a second application of Theorem 5.1, let us consider the Hamiltonian

H = (1 − √
2)J1 − √

2J2 + (2 − √
2)J3 .

We readily deduce that the normal form Hamiltonian H̄ related to the Hamiltonian H = H +K, 
where K is an arbitrary perturbation starting at degree three when it is written in rectangular 
coordinates, has two formal integrals, namely, Q1 = J1 + 2J3 and Q2 = J1 + J2 + J3. Setting 
G = Q1 + √

2Q2, then formally, {H̄, G} = 0 and G is a positive definite quadratic form in x. 
Therefore the origin of R6 is Lie stable for the equation associated to H. Alternatively, one can 
apply Proposition 3.1 and check that S = {0} to conclude Lie stability. On the other hand, since 
H = Q1 − √

2Q2, we have (σ1, σ2) = (1, −√
2), which is a Diophantine vector in R2, thus The-

orem 5.1 applies and one gets the asymptotic estimates for the equilibrium point. However, the 
lowest order of resonance is four, for instance the term J1J

1/2
2 J

1/2
3 cos(2φ1 − φ2 − φ3) can ap-

pear in the normal form K, and the standard theory of asymptotic estimates for elliptic equilibria 
cannot be applied.

Another example is the following. Consider the Hamiltonian

H(J,φ) = √
3J1 + (1 + √

3)J2 − 3J3 + J 2
1 − J 2

2 + 4J 2
3 + J

3/2
1 J

3/2
2 J

1/2
3 sin(3φ1 − 3φ2 − φ3) ,

which is already in normal form. Here H has formal integrals Q1 = J1 + J2 and Q2 = J1 + 3J3, 
and the set S = {0}. Hence, the origin of R6 is Lie stable for the equation associated to H, 
the quadratic part of H is written as H = (1 + √

3)Q1 − Q2 = σ1Q1 + σ2Q2, and (σ1, σ2) =
(1 + √

3, −1) is Diophantine, hence Theorem 5.1 is satisfied. On the other hand, although the 
lowest order of resonance is seven, since the quadratic terms in the actions may be written as 
J 2 − J 2 + 4J 2 = J T AJ and A = diag{1, −1, 4} is not sign-definite, the convexity condition 
1 2 3
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does not hold (nor does the weaker quasi-convexity condition), and the estimates of [19,6,17,20,
12,13] do not apply.

As mentioned in the introduction, our main result Theorem 5 does not rely on the hypotheses 
of KAM or Nekhoroshev theory, but yields conclusions similar to those of Nekhoroshev the-
ory applied at an equilibrium. The preceding two examples show that our Theorem 5 is indeed 
complementary to versions of Nekhoroshev theory requiring convexity, since it applies in these 
examples where the latter methods do not.

6. Lie and normal stability

In [15] we introduced a criterion which guarantees the formal stability of an equilibrium 
point of a Hamiltonian system. The criterion, which we call the Moser–Weinstein condition 
(MWC), see [26,16,27], is based only on the linearized system and not on higher order terms in 
the expansion of the Hamiltonian. This type of formal stability, which we call normal stability, 
applies to all normalized systems with the same linear part.

In [22] the authors prove that Lie stability generalizes normal stability, showing that the reso-
nance condition on the eigenvalues corresponding to the matrix of the linearized system can be 
relaxed. Thus the theory developed in the previous sections applies to normally stable Hamilto-
nians, and the estimates provided in Theorem 5.1 apply for the examples handled in [15].

In particular, we applied the theory of normal stability to the spatial circular restricted three 
body problem with the aim of obtaining conditions on the mass parameter μ so that the points 
L4 and L5 are normally (and then Lie and formally) stable equilibria. The coordinates of L4 and 
L5 in the six-dimensional phase space are

(
1/2 − μ, ±√

3/2 , 0 , ∓√
3/2 , 1/2 − μ, 0

)
,

where the upper signs apply for L4 and the lower signs for L5. We shift the origin to L4 or 
to L5, linearize around the origin and drop the constant terms, so the resulting Hamiltonian has 
associated eigenvalues ±λ1, ±λ2 and ±λ3 with

λ1 =
√

−1 − √
27μ2 − 27μ + 1√

2
, λ2 =

√
−1 + √

27μ2 − 27μ + 1√
2

, λ3 = i .

When 0 < μ < μR = 1
2 (1 − √

69/9) ≈ 0.0385 . . . the eigenvalues λi are all pure imaginary, the 
corresponding eigenvectors form a basis of R6 and one can build a symplectic variable change 
that transforms the quadratic terms of the Hamiltonian to

H = −ω1J1 + ω2J2 + ω3J3 ,

where each ωj = −λj i > 0.
In Proposition 1 of [15], we should exclude the values of the frequencies ωi where −k1ω1 +

k2ω2 + k3ω3 = 0 with ki integers, since the condition on the eigenvalues of the linear system is 
not fulfilled in this case. However, for certain values of μ we can obtain Lie stability by analyzing 
only H.
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Setting μ = (81 − √
5973)/162 ≈ 0.0229 . . . then

H = − 1
6 (4 + √

2)J1 + 1
6 (4 − √

2)J2 + J3 ,

and normal stability does not hold (indeed −k1ω1 +k2ω2 +k3ω3 = 0 with k1 = 3, k2 = −3, k3 =
4), but L4 and L5 are Lie stable because in this case S = {0}. Using the theory of the previous 
sections, H is expressed as H = −(4 +√

2)(J1 +J2)/6 +(4J2 +3J3)/3 with (−(4 +√
2)/6, 1/3)

Diophantine. Thus, the estimates of Theorem 5.1 apply for L4 and L5.

On the other hand, setting μ = (75 −
√

5101 − 64
√

6)/150 ≈ 0.0312 . . . , then

H= − 1
10 (6 + √

6)J1 + 1
10 (−2 + 3

√
6)J2 + J3 ,

the condition for normal stability is not fulfilled. In this case −k1ω1 + k2ω2 + k3ω3 = 0 with 
k1 = 3, k2 = 1, k3 = 2 and S = {(3J1, J1, 2J1) | J1 ≥ 0}. Thus one needs to calculate higher 
order terms in the normal form to distinguish between Lie stability or instability after applying 
some of the criteria in [22]. In this case we cannot apply Theorem 5.1.
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