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Abstract

A planar central configuration of théN-body problem gives rise to a solution where each
particle moves on a specific Keplerian orbit while the totality of the particles move on a
homothety motion. If the Keplerian orbit is elliptic then the solution is an equilibrium in
pulsating coordinates so we call this solution dltiptic relative equilibrium

The totality of such solutions forms a four-dimensional symplectic subspace and we give a
symplectic coordinate system which is adapted to this subspace and its symplectic complement.
In our coordinate system, the linear variational equations of such a solution decouple into three
subsystems. One subsystem simply gives the motion of the center of mass, another is Kepler's
problem and the third determines the nontrivial characteristic multipliers.

Using these coordinates we study the linear stability of the elliptic relative equilibrium defined
by the equilateral triangular central configuration of the three-body problem. We reproduce the
analytic studies of G. Roberts. We also study the linear stability of the four- and five-body
problem where three or four bodies of unit mass are at the vertices of a equilateral triangle or
square and the remaining body is at the center with arbitrary mass
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1. Introduction

Letqs, ..., gy € R? be the position vectorgsy, . .., py € R? the momentum vectors
of N particles of massesi1, ..., my in an inertial (sidereal) frame. Let the distance
between thgth andkth particles be denoted ¥ =| ¢; — g« ||. In these coordinates
the Hamiltonian H, and theself-potential S for the N-body problem are

N 2
Il pjl mjmg
H=Y "= —Sq.....qv). S= ) : ()
; 2m ‘ d'k
j=1 J 1<j<k<N

and the equations of motion are

. . a8 .
qj =pj/mj, pjza—, j=1...,N. (2)
qj
A central configuratioris a solutiong1 = a1, ..., gy = ay of the algebraic equations
oS
—miqi = — (q1, ..., 3
idj 5q]' (91 qn) 3

for some constani. One shows thaf = S(a)/21 (a) > 0 wherel = %ijnaj”z is
the moment of inertia.
Only the planamN-body problem is considered here and so sometimes we will think
of vectors inR? as complex numbers, i.e. we will identifg? and C in the usual way.
A classical and elementary res|i0,12,15,20]is

Proposition 1.1. Let as,...,ayn, a; € C be a central configuration with constarit
Let (z(1), Z(t)) € C? be a solution of the Kepler problefecentral force problemwith
Hamiltonian

1 ﬂ
Hg = Enzn2 —zll, 2z, Z € R 4
Then
qgi = z(t)a;, pi =m;Z(t)a;, i=1,...,N

is a solution of the N-body problem
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Given a central configuration the totality of pointsi{" swept out by such solutions
is a four-dimensional, invariant, symplectic subspd®el0]. We give a symplectic
coordinate system which is adapted to this subspace and its complement. This improves
and extends the coordinates discusseflliy Section 4.6]

If (z(t), Z(¢)) is a circular orbit of the Kepler problem with frequeney, then
it would be an equilibrium solution in a coordinates system which rotates uniformly
about the center of mass with frequenoy Such a solution is often called relative
equilibrium We are interested in the case when the solutiain), Z(¢)) of the Kepler
problem is an elliptic orbit in which case the solution is an equilibrium solution in
pulsating coordinates (see Secti@?), and so, we call such a solution ailiptic
relative equilibriumas in the title of this paper.

We are interested in the linear stability of circular and elliptic relative equilibria,
i.e. the characteristic multipliers of these solutions. To that end, we study the linear
variational equations. In our coordinate system, the variational equations are block
diagonal with one block corresponding to the translational invariance of the problem and
one block being the variational equation for the Kepler problem. The first two blocks
integrate to give the characteristic multiplier +1 a multiplicity of 8. The last block
contains all the information about the remaining (nontrivial) characteristic multipliers.

We study several examples in detail. First, we study the elliptic relative equilibrium
when the central configuration is the Lagrange equilateral triangle configuration. In that
case, the stability depends on two parametete eccentricity of the Kepler solution
and the mass parameter

mimo + moms3 + m3mq
(m1+ m2 + m3)?

p2 =

We obtain the variational equations in a very simple form and study the stability
domains in thee, f parameter space using perturbation methods.

Gascheay8] in 1843 showed that (circular) Lagrange relative equilibrium solution
of the three-body problem is linearly stableif < 2i7 (also se€23, p. 113ff). This
inequality is also found in Routh’s 1875 papé®].

Next, Danby[5] using numeric methods and Schmi@2] using analytic methods
study the stability of the corresponding Lagrarggeequilibrium in the elliptic restricted
problem. They find the stability domains in tleeu plane, whereu is the mass ratio
parameter corresponding 10 See[22] for further references on the elliptic restricted
problem.

The first to study the elliptic Lagrange relative equilibrium solution in the three-
body problem with general masses was Dafly Danby’s analysis was incomplete
and was completed in the elegant paper by Roj@@% Danby and Roberts uses the
integrals and symmetries of the three-body problem to reduce the dimension from 12
to 4, whereas, we use a linear symplectic change of variables to isolate the important
four-dimensional system. Roberts studies the stability regions inetlfie parameter
space usinge as a small parameter and by numerical methods for largé/e use
normal form theory to reproduce the small parameter expansions of Roberts, but do
not study the problem for large by numerical methods.
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Another class of central configurations of th¥ + 1)-body problem ha¥-bodies of
mass 1 at the vertices of a reguldragon and another body of arbitrary massit the
center. The variational equations ar&/ 4 4 dimensional which by our linear change
of coordinates can be reduced to & 4 4-dimensional system. We explicitly derive
the variational equations for all, t when N = 3,4, and we completely analyze the
characteristic exponents when= 0 (the circular case).

2. Central configuration coordinates

Vectors will be column vectors, but written as row vectors in the text. Qe
(q1,....qn) and P = (p1, ..., pn). Let

01 . (@
J:|:—10i|’ J=diag(J, J,...,J), J:[_ﬂ@)]

wherel and O are the identity and zero matrix, respectivelywill always be 2x 2,
but the dimensions ofl, [ and J will depend on the context. With this notation the
integral of angular momentunis

C= Zq Jp; = 0TJP.

If (a1,...,an) is a central configuration then so (8Aazy, ..., xAay) whereo is a
nonzero scalar and € SO(2, R) is any 2x 2 rotation matrix. Alsoy m ja; = 0. Thus,
a central configuration begets the set of central configurafieas, ..., cAay) : o €
R, A € SO(2, R)} which is a two-dimensional linear subspaceR#". (The origin is
included for completeness.)

Leta = (a1, ..., an) be a fixed central configuration which is scaled so thatn; ||
aj 2 = 1. We will define three subspacest which reflects the translational
invariance of the problemj3 the space swept out by all rotations and dilation of
the central configuration, and the complement of the first two spaces. Specifically,
define

A={b,b,...,b:mic,moc,...,myc) € R* : b, c € R?},
B ={(aAay, ...,aAayn; fPBmiai, ..., fBmyay) : o, f € R, A, B € SO(2, R)}, (5)

C={xeR™ :{x, A} ={x,B) =0

Here{, -} is the usual Poisson bracket defined fay y} = x7 Jy.
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Proposition 2.1. A, B, and C are all symplectic linear subspace &*". A& B, B
and B C are invariant A and B are four dimensionaland C is 4N — 8 dimensional
RN =A@ BaC. {A B ={B,C}={C, A} =0.

Proof. Without loss of generality we normalize the masses so thak; = 1. A
symplectic basis fotd is

1 0 0 0
0 1 0 0
1 0 0 0
0 1 0 0
Y1 = ol Y2 = ol 01= mi |’ 02 = 0 (6)
0 0 0 mi
0 0 my 0
| 0 | O | | 0 | | my |
and soA is a four-dimensional symplectic subspace.
A symplectic basis foi3 is
a1 ] [ Jap ] 0 ] 0 ]
_ an N JaN _ 0 _ 0
=g |"a=| o |9%B= may |- 04 = miJay 7
L 0 | | 0 ] | myan | | myJan |

and soB is a four-dimensional symplectic subspace. One sees {that3} = 0 by
checking on the basis vectors given above and recalling Xhat;a; = 0.

Since C is the symplectic complement of the eight-dimensional symplectic space
A® B, it is a symplectic subspace of dimensiov 4 8 by Proposition 4, p. 43 of
[12]. This proposition also shows th&* = A& B C.

For the moment, think of the vectotg, p;, etc. as complex numbers. Then the set
B is the same as

B=1{(za1,...,zaN; Zmia, ..., Zmyay) : z, Z € C}. (8)

Let (zoas, ..., zoan; Zomia, ..., Zomyay), z0, Zo € C, zo # 0 be any point inB
and letz(r), Z(r) be the solution of the Kepler problend)(starting atzg, Zo when
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t = 0. Then a direct substitution verifies that
V() = (@), P(1)) = z(t)aa, ..., z(M)an; Z(t)miaa, ..., Z(H)myan)
is a solution of the equations of motion of thebody problem 2) and clearlyV (¢) € B

for all t. This shows thaf3 is invariant.
In a like manner

A®B = {(g+za,...,g+zan,
m1G +mi1Zas, ..., myG +myZay) : g,G,z, Z € C}.

Consider the Hamiltonian
Hi = 31IGI? + 31217 = 2/llzll,
the corresponding equations of motion
¢=G, G=0, =2, Z=—Jz/|zl® 9)
(Hy is the Hamiltonian of the two-body problem in Jacobi coordinates.) (ggt+
zod1, - .-, 0 + zoan; m1Go + Zomaazi, ..., myGo+ Zomyay) be any point ind @ B

and (g(1), z(¢), G(t), Z(t)) the solution of 9) through that point at = 0. Then a direct
substitution verifies that

Vt) = (g(t) + z(B)ax, ..., gt) + z(t)an; m1G(¢)
+Z@t)ymiay, ..., myG@) + Z(t)myay)

is a solution of theN-body problem and thaV (r) € A® B, so A ® B is invariant.
Now

BeC = A+
={(q,p):bp1+---+bp, — (cmig1+ ---+cmygy) =0 for all b, c € C}
={g.p):pr+-+p,=0mq1+ - +mngn =0}.

In other wordsB & C is the set where the center of mass of the system is at the origin
and total linear momentum is zero. This is a well-known invariant spalce.

Theorem 2.1. There exists a linear symplectic transformation from the old coordinates
(Q, P) to the new coordinatesg, z, w, G, Z, W) with (g, G) symplectic coordinates
for A, (z, Z) symplectic coordinates foB and (w, W) symplectic coordinates fof.
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The change of coordinates has the following properties

e Kinetic energy is

! =

Yoo =S G I ZIP D Wi

— m 2 —

j=1 j=1

e Angular momentum is preserveice.
N
C= Z quJpj =glJG+7"TZ+wlIw.

j=1

e The self-potential is independent of ige.

S(Q) = S(z, w).

e The spaceB is invariant and the Hamiltonian on that space is the Hamiltonian of
the Kepler problemi.e.

0H(0,7,0;0,Z,0)/0g =0, 0H(0,z0;0,Z,0)/0G =0,
0H(0,2,0,0,Z,0)/0w =0, 0H(0,z,0,0,Z,0)/0W =0, (10)
H(0,2,0:0,Z,0) = Hc(z, Z) = 5 1 Z |2 =4/ | z I,

where

mjnmj

A= E—
laj — akll

1< j<k <N

(11)

Remark.

e Since S and henceH is independent ofy (the center of mass of the system), its
conjugate momentun® (total linear momentum) is an integral. As is customary we
will set ¢ = G = 0 and forget these variables in the subsequent analysis.

e Hy is the Hamiltonian of the Kepler problem (the central force problem), &) (
says thatB = {¢ = G = w = W = 0} is invariant and the motion on this invariant
subspace is Keplerian.

Let z(¢), Z(¢+) be any solution of the Kepler problem, thég = 0,z(¢), w =
0;G=0,Z(t), W =0) is a solution of theN-body problem. Think of the vectors
in R? as complex numbers. In this solution tith particle follows the trajectory
qi (t) = z(t)a;, p;(t) = Z(t)a;. Thus, each particle moves on a trajectory of the Kepler
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problem and the configuration of tieparticles remains similar to the original central
configuration.

e Since the change of variables preserves angular momentum it works well with rotating
coordinates also. Thus, if, p are rotating coordinates so that the Hamiltonian is

Y N1
H=Y" — —q; Jpj — S(Q),

then after this change of coordinates

1 N-2
H=Z31GIP+1Z1P+) 1w |
j=1

N

—(eTIG+TIZ +wlIW) — Sz, w).

e A slightly different change of coordinates can be given such that kinetic energy is
preserved, i.e.

N N-2
SR A KA A o N
i ij' 2m1 2m2 =1 2mj+2
and
_lzi2_ 2
2mz izl

where /. has the same form a5 but thea;’s are normalized so thaf_ mj”aj”Z =
1/mo.

Proof. As before Q = (g1, ....qn) € R, P = (p1,...,py) € R?N and Y m; = 1.
Let X = (g, z,w) € RPxR2x RPN 4 Y = (G, Z, W) e RPxR*x R?V . 0, P, X, Y

are to be considered as column vectors. The linear symplectic change of variables will
be of the form

Q0=AX, P=A"Ty, (12)
whereA is a 2N x 2N nonsingular matrix with the following properties

ANA =0, ATMA=1 (13)
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andM is the 2V x 2N diagonal matrixM = diag(m1, m1, mo, mo, ..., my, my). Here
A*T — (AT)fl — (Afl)T.

The form of the change of variables ih2) insures the transformation is symplectic.
Kinetic energy is

N 2
3 ”;’1 I 1pTytp = yTa iy tA Ty
=t =

1 1 =
=SV =SNG IPHNZ 1P+ ) W1
j=1

(Remark. If we replaceA by A = AMY2 then AT MA = M and kinetic energy would
be preserved as stated in the remark given above.)
Angular momentum is preserved because

N
Y qlipj=0Q"dP=x"ATJA" Y
j=1

= X0y =g"IG+:"7Z +wldw.

The matrix A will be constructed by a modified Gram—-Schmidt method to insure that
A satisfiesA” M A = [, which by an abuse of terminology we will call-orthogonal.
Think of A as a block matrix made up of 22 matrices, that is

A1 A1 - Ay
A= Ap1 Ay -+ Aoy

An1 An2 -+ AN

where A;; is a 2x 2 matrix. Each of these submatrices will have the special form
A;;j = [b, —Jb] whereb is any 2-column vector. A direct computation shows that if
A;; has this special form theiiA;; = A;;J, and if each of the submatrices Ahave
this special form them~—1JA = J.

Let A =[c1,co, ..., con] werec; is thejth column ofA. The first four columns are
1] 0]
0 1
1 0 ay —Jay
0 1 ar —Jaz
1= , 2= , 3= . |, ca=

an —JaN

[« R

OF -
[
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By recalling that) " m; = > m; lai |2 = 1, > m;a; = 0 one sees that these four vectors
are M-orthogonal, and the special form of thex22 submatrices holds. Moreover,
clTMcl = cZTMcg = CgMcg = CZMC4 =1.

If ATMA = 1 then A=t = AT M. By the definition ofc; and ¢o this implies
X =(g,z,w) = (mig1+---+myqn,-, ) OF g,=miq1+ --- + mygn is the center
of mass of the system. ThiBis independent of. In a like mannerG is total linear
momentum.

We now use induction to construct the remaining column vectors by pairs. The general
step is the same as the first. Llebbe any vector independent of, ¢z, c3, c4 ande the
M-projection ofd onto the span of the first four, sb-e is M-orthogonal to the first four.
Let « be the scale constant so that= a(d —e) SatiSfieSCgMCB = 1. The construction
of ¢ is just the same as the Gram—Schmidt procedurecd et [nl, Ny ens nN] where
eachy; is a 2-column vector. Defines = [—Jnl, —Jny, ..., —JnN]. By construction
chce =1 andchC5 =0.

We claim thatcg is M-orthogonal to the first four also, since if it were not then
would not beM-orthogonal to one of the first four. Say for example th@ﬂflm #0
then since

cdMcz = Zmimai = Zmi(_J’?i)T(_Jai) =ciMeq

this would imply thatcs is not M-orthogonal to the first four which contradicts the
construction ofcs. The other cases are similar.
By (13) AT = M A and so the first 4 columns of~7 are

m1 0
0 m
o Ol miay —m1Jay
0 moay —moaJas
d1 = ydo=| M2 | d3= ) ,dy =
’ ; mya —myJa
my 0 NUN N N
| 0 | | my |

The spaceA is spanned by, 5, 01, 02 in (6) which is the same as the space given
by O = gic1 + goco, P = Gidy + Gado where g1, g2, G1, G2 € R. Similarly, the
spaceB is spanned byys, 74, 03, 4 in (7) which is the same as the space given by
Q = z1c3 + z2¢4, P = Z1d3 + Z>ds Wherezay, z2, Z1, Z2 € R.

Again think of the various vectors as complex nhumbers. The spalcas coordinates
7, Z see B) and the constructed change of coordinates;jis= za;, p; = Zmja;.
Substituting these into the Hamiltoniaf) (gives

N

2
HIB = Z | Zmja; | _ Z m;mg
] 2m; 1< k<N llzaj — zak||
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N
o1 12117 mm 1
=2 il Py la; —arll [ 121
=1 1<j<k<n 14— % <
2 "
_lze
2kl

Corollary 2.1. Let (z(¢), Z(t)) be a T-periodic elliptic solution of the Kepler prob-
lem, i.e. of the system whose Hamiltonian i& in (10). Then(g,z, w, G, Z, W) =
(0,z(2),0,0, Z(¢), 0) is a T-periodic solution of the N-body problem. The linear vari-
ational equation of this periodic solution is of the form

=V(@®)

g.g. N- - QOQ
S Nna Qo

whereV (1) is the block-diagonalT-periodic 4N x 4N matrix V (t) = diag(V1(¢), V2(1),
V3(1)) with

0 0 10
0010 0 0 01
0001 2_,2
no=|o000l Ve=|2Fz% %2 4|
r A
0000 272 — 72
/ISZlSZZ 3 12511 00
r r

r(t) = /22 4+ z5. V3(T) is a T-periodi¢ (4N — 8) x (4N — 8) matrix which depends
on the particular central configuration

Proof. This is a straight forward computation, see for example Len3nia [J

Corollary 2.2. The characteristic multiplier-1 of an elliptic central configuration so-
lution has algebraic multiplicity at leas3.

Proof. This is known in various special casgd),18,23] By Corollary 2.1 the varia-
tional equation decouples into three parts. The first part with coefficient métriis
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autonomous and

T

or o™

0
T
0
1

OO o
[eoNeN e}

Thus, ¢"1T has +1 as an eigenvalue of multiplicity 4.

The second part with coefficient matri% is the variational equation of the Kepler
problem which is a Hamiltonian system with two integrals (energy and angular mo-
mentum) in involution. The characteristic multiplier +1 of a periodic solution of such
a system has multiplicity 4, s¢&,11,17] O

3. Lagrangian triangular configuration

Consider the three-body problem with general masses normalized #yno+ms3 =
1. The Hamiltonian of the three-body problem with coordinatgsp; € R2j=1,23
is

3 2
Ip; mim,
H3=§:§#—53(61), Ss) = Yy

i M 1<iTi<3 lg; —arll
An equilateral triangular central configuration is given by
a1= 1,0 —cm, az=(-1/2,/3/2)—cm, az=(-1/2,—/3/2) —cm,
where the vector
em = (1/2)(2my — ma — m3, V/3mp — /3m3)

is chosen so that the center of mass is at the origin. It is possible to scale all distances
by dividing by a common factor. If we choose the factor to 8 with

2
B = mamo + mom3z + mimsa

thenma||a1||? 4+ m2|laz||? +m3|laz]|? = 1 and the position coordinates for the triangular
configuration are given by

[ VBma+m3) mz—m> ~( Bmy mi+2ms
“= 26 28 )0 T\ T2p T 2 )
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B \/éml —mq1 — 2mo
az= | — T 25 .

The three masses have to rotate with angular velooity /33 around the origin, that

is the center of mass, so that their configuration remains at a relative equilibrium.
Let O = (q1.92.43), P = (p1. p2, p3) € R® and correspondingh = (g, z, w),

Y = (G, Z, W) € RO (all considered as column vectors). Make the symplectic change

of coordinates of the form

0=AX, P=ATy,
where A is a 6x 6 matrix. This was the first example we constructed, but not by
the general Gram-Schmidt procedure given in Theofefn If you were given two
orthonormal vectors ifit® and asked to find a third to form an orthonormal triple and
hence an orthogonal matrix you would simply take the cross product. This example

was constructed by analogy to the above. ThinkAo&s a block matrix made up of
2 x 2 matrices, i.e.

A1 A1 Ag3
A= | Ax1 A2 A3 |,
Az Az Azs

where eachd;; is a 2x 2 matrix. The first two columns are

10
A11—A21—A31—[0 1i|-
Let
Ao =1a;, —Jai], =123

that is, the first column ofd;, is ¢; and the second column isJa;. Lastly,

[mom3 [mims3
Az = (A21432 — A31422)7 , Az = — (A11432 — Az31412)7
mi ma2
mimo
Azz = | s (A11422 — An1d12)" .

These last three definitions are given in symmetric form and are inspired by the cross
product formulas. They can be simplified by remembering that is the identity
matrix.
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Specifically,
B V3(ma+m3)  ma—mg3 —/mom3 ]
10755 2 0 }
_mp—m3  3(mp+mz)  /mam3

01 - 2 Ao 0

10 _Y3m _mit2ms /3 /mimz fmam3
2 2 2B /m2 2B /m2

A=

01 ™mit2ms _ V3m _ Jmim3 V3 /mymz

2 2 2B /m2 2B /m2

10 _ A3my 2mptmy _ N/3mimaz Jmimz
28 2 2B /m3 2B /m3

0 1 —2Zmatm _Bmy /myma V3/mima

i Pl 26 T 2hms 2 mz

One can verify directly thad” MA = [ and A~1JA = J, and so total angular
momentum is preserved. Kinetic energy in these coordinates is

K =3UGIP+1ZI7 + W1,
angular momentum is
C=gliG+"iz+w"Iw

and the self-potential is independent@fand is

mi;m;
S(z, w) = Z i 17

1<i<j<3 dij
where
2 2
m3(m{ + mima + m5) A/ 3mom
Bodf = 2+ 5+ —— 2wl + wd) + Y2 (wy — zawp)
mima Jm1
Jm3(2my + m2)
- (z2w1 + 22W2),
mim2
2 2
m1(m5+moms—+ms%) 3mi(mo+m
Py = Z+ 3+ T2 D (w2 ) - YLD ()
moms3 W

n Jmi(mz —m3)
Jmoms3

(zaw1 + zow2),
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2 2
ma(mi +mimz +m3) P N/ 3mom3
B2d3, = 2+ 2+ (Wi + ws) + ———(z2w1 — z1W2)
31 17T%2 mima 1 2 /1
Jmo2(2mq + ms3
+¥(11w1 + z2w2).

mim3

3.1. Kepler's problem

The invariant subspach is given byg = w = G = W = 0. The Hamiltonian in the
variablesz and Z is then the Kepler problem with = ﬁ3

A

1.2
Hx = SIIZ]° - Tk

2

Among the solutions of the corresponding differential equations

Az
i+ —= =0,
llzII®

we consider elliptic orbits with semi-major axi@ and eccentricitye, and whose
perigee lies on the positiver-axis. In terms of the true anomafythese solutions are
given by

z1 =rCoSf, zz=rsinf,

where

p

1+ ecosf (14)

r=lzll =

and p = a(1—¢?) is the latus rectum. The mean motioriis= \///a3. The Lagrangian
triangular configuration rotates with angular velocity Since the two mean motions
have to be the same we can find fromm = n the value of the semi-major axis
a=1/p.

In what follows we will use the true anomaly as the new independent variable and
we go to pulsating coordinates. Thus, we do not use the above result directly, but use
instead the following relationships for the Kepler problem

r

r2f = /op = Vial — é?), 'r':i(%—%). (15)
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3.2. Equations in rotating and pulsating coordinates

Settingg = G = 0 fixes the center of mass at the origin and we can restrict ourselves
to consider the Hamiltonian

H=3Z2+ 72+ W2+ W2) - S(z, w).

The three bodies move on elliptic orbits around the origin in such a way that they
always form a central configuration. This motion takes place in the invariant subspace
B and it was described in the previous section. We now change to nonuniformly rotating
and pulsating coordinates, so that the configuration appears to be stationary.

Lemma 3.1. There exist symplectic coordinatés= (Z1, Z2, w1, W2, Z1, Z2, W1, Wa)
such that the variational equations for the Lagrangian triangular configuration depend
on the true anomaly f and are given by /df = ®{ with

0 1 0 0 1 0 0 O
-1 0 0 0 0100

0 0 0 1 0 010

0 0 1 0 0 001

_ 2—cosf
P = I+ecosf 0 0 0 0100
0 -1 0 0 -10 0 O
8 4e cosf 3V/3(ma—m3)
0 0 = Zﬁ+négsf) aTrecos)) 0001
3J/3( ) —4my+5(ma-+m3)—4e COS
Y ALteoos]) e 0 010

Proof. We first change to coordinatésand w which rotate with the speed of the true
anomaly. The transformation matrix is given by

_ [cosf —sinf]

sinf cosf
The transformation can be generated by the function
F(Z,W,%,0)=-2Z"Az — WT Aw

and is given by
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Since the transformation is time dependent we have to add to the transformed Hamil-
tonian

oF . . ~ . - .

o —ZTAz —WTAw = —ZT AT A7 — WT AT Aw,

t

so that the Hamiltonian in the coordinates rotating with the true anomaly is given by
H = %(Z% + 75+ WZ + W2) + (2271 — 2172 + oW1 — 01 Wo) f — S(Z, ).

The next step is to introduce coordinatesind w which pulsate withr as given in
(14). The position coordinates are transformed by

I=rz, W=ruw.

It would suffice to scale the momenta byrlin order to make the transformation
symplectic but it turns out that the resulting Hamiltonian is simpler if instead the
transformation

1, o 1.
Z=-7Z+rz, W=-W+rw
r r

is used. This transformation can be generated by the function

- A 1. 4 oA A A Foo . - -
Fi,w,Z, W)= ;(ZlZl + 2272 + wiWi + waWo) + Z(z% +z§ + w% + w3)

via
. OF - OF . O0F -~ 0F
= "%, zZ=—, w = —x, = —
0Z 0z oW ow
With
OF A Fr—ri? 5 o .
— = —-@Q1Z1+ 22Z2 + waW1 + woW2) + —— (] + 25 + w1 + w3)
ot r 2

the transformed Hamiltonian is
1 o0 20 22 o2 - T S P S
H = 5521+ 2y + Wi+ W3) + (221 — 2aZy + oW1 — 01 W2) f

AP S R S 1. .
+E(Z1+ZZ+U)1+U)2)-;S(Z,U)).
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The third step is to introduce the true anomaly as the new independent variable. We
achieve this by dividing the Hamiltonian by. We also use the relationship$5] and
arrive at

2+ W2) + 2271 — 2120 + o Wr — 1 W2

_ 1 s
B 2\/pi
+/1(p r)

2J/p

GI+25+ 0l + w3 — Sz, w).

,
VP2
The last step uses the scaligdg— /p4Z and W — /pAW. This is a symplectic
transformation with multiplier 4,/ p/, so that finally the Hamiltonian is given by
H = S22+ 23+ W2+ W2 + 271 — 2170 + W — by W
=541 2 1 2) + 2241 — 2142 + w2W1 —wiW?
p

—r . 22 | A2 | A2 " cia A
+_(11+Z2+w1+w2)_as(23w)~

With A = /3 the correspondlng system of differential equations has a stationary solution
for31=Zo=1,% =271 =101 = Wy = Wy = Wo = 0. In order to study what happens
to solutions nearby we look at the variational equations. We set

Z21=147Z21, Z2=172, 21221, 22214—22,
W1 =1, wp=wy Wi=Wi, Wa=Wy,
and determine the second-order terms of the Hamiltokian

Hy = 2224 23+ 2470 — 7071 — 20 2 1o
2= 5\ 2 122 221 — 20+ e COSf)Zl 522

1 - . S
+5(WE + W3) + Waibz — Waiin

- ((-8+9 9 4 A
+8(1+ecosf)(( + 9mo + 9m3z + 4e cosf)wy

—63/3(m2 — ma)wiwz + (4 — 9my — 9m3z + 4e COSf)W3).

The matrix @ for the variational equations follows from this Hamiltoniari]

As expected the variational equations split into two components. The part corre-
sponding to the first line irf, gives the variational equations for elliptic orbits in the
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two body problem. The four characteristic multipliers in this case are all 1. Thus we
can concentrate on the second partAp. With the vectorw = (w1, w2, W1, W2) the
variational equations in matrix form are

0 1 10
di -1 0 01
= — | 8-9mp—9mz—4ecosf 3V3(ma—m3) 0 1|w (16)
dt 4(1+ecosf) 4(1+ecosf)
3V3(ma—m3) —44-9m+9mz—4e cOSf 10
4(1+ecosf) 4(1+ecosf)

It is advisable to bring the & 2 submatrix in the lower left corner of the matrix in
(16) into diagonal form, as then the matrix will only depend on the paramgtdhis
diagonalization can be accomplished by a rotation in the position and in the momenta
space.

Since the sum of the three masses is equal to 1, givere can then determine the
massesni andm» in terms ofms and f§ by

my = %(1—m3—\/(1—m3)(1+3m3) —4p%).

my = 3(1—m3+ \/(1— m3)(1+ 3m3) — 45°).

Since the above square root will appear frequently in the matrix for the rotation

we abbreviate bys = \/ (1—m3)(1+ 3m3) — 4[32. The rotation matrix for the position
variables and also for the momenta is given by the orthonormal
matrix

—1+4+3m3+3S—4+/1-3f —1+4+3m3+35+4+/ 173/?z
T — 2\/2\/4(173ﬁ2)+(lf3m3735)«/173[52 Zﬁ\/4(173[32)7(lf3m373S)«/173[)’2
V3(=14+3m3—S) V/3(=14+3m3+S)

2\@/4(1—3/52)+(1—3,113—35)\/1—3ﬁ2 2\/2\/4(1—3/52)—(1—3;7;3—35)«/1—3ﬁ2

We thus have the following result, which can be verified by carrying out the transfor-
mation.

Proposition 3.1. The transformed variational equations only depend fror on a
related parameter

o =278
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and the variational equations are given by

0 1 1 0
dw -1 0 0 1
— = | 1+V/9-d?-2 i . 17
dt - 2(1:ecosifc)os‘f 0 01" (7)
1—-+/9—g2—2¢ cosf
0 otrecsn 10

For the coordinates in the rotated frame we have reused the vectdiivi, wo, W1, Wo).
The variational equations can also represented by the Hamiltonian

_ (1—2ecosf)(wi + wd) — V9 — d?(w? — w)

H
4(1+ ecosf)

1
+§(W12 + W2) + waWy — w1 Wa. (18)

3.3. Versal normal form

The change of coordinates and the resulting equations are very similar to those

of the elliptic restricted three-body problem near the Lagrangian pbintThus, it

is not surprising, that the methods used[22] are also applicable here. It appears
impossible to integrate the Egl®) in closed form. Instead we trea as a small
parameter and work with series expansioreinMe can bring these series into normal
form with the help of the Lie transformation of Depfit2]. Before this can be done

the matrix (L7) has to be put into normal form whea = 0. The matrix in {7)

is then

0 1 10
-1 0 01

A= 11+v9-0?) 0 01 (19)
0 3(1-+v9-02) -1 0

It has the eigenvaluei\/(—liv1— 02)/2 = +i(v/1+ 0 + /1—-0)/2. Since the

stability changes at = 1 (or f = 1/+/27) we will use a versal normal form near
g = 1. With complex coordinates the versal fdr7] is given by

Wi+te 0 0 e
0 —iJVite Lo 0
A= 2 .4 2
0 -1 -iJi¥e O (20)
-1 0 0 Wito
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The transformation matrif’ = (a1, o2, a3, ¢4) has complex valued column vectors with
a2 = %1 and agz = %4. The conditionT A = AT results in the set of equations

(A —ivV1-062 Doy = o, (22)

(A—ivV1—02 )y = 1;%1. (22)

By substituting 22) into (21) we obtain the system of equations

((A—i\/l—az p2_ =9 |]>a1=o

4

for 1. The system of equations has two linearly independent solutions, given here with
the two arbitrary parameterg and r;

—2(3+0) ivVI+o@B+o—+/9—02)
—iv/1+06@B+0++v9—02) —2(3+0)
n=n 0 tre 2+ 0)Va— a2
2+ 6)/9 — o2 0

The vectoray is found from @1) to be

ivI+ov9— o2 —3B+0)(-3+0+V/9-d?)
vaer | 2@+ OCB—0+VO—0%) | —ivI+ov/9- o2
4= 3+0+/9- a2 2l —VIFteB+a(c-2
I+ a(c+3)(0—2) 3+0—-+/9-02

The parameters; andr, can now be chosen so that the transformation is symplectic.
This results in the two equations

0=B404+v9—0)r? — (340 —+v9—d?)r3,
1
= B++VI-rf+ @B+ —vVI— )i,

(6—2)(0+3)(c+1)

which corresponds to the intersection of two lines through the origin with an ellipse.
A solution is given by

1
V260 + D@+ 36 - 2B+ 0+va— D)

B 1
\/2(0'+ D(e+3)(c—2@B+0—+9—02)

r1

r2
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We have thus shown how to construct a symplectic transformation to the versal
normal form, which is summarized in the following lemma.

Lemma 3.2. Let { = (&1, &, 14, )T be the coordinates for the complex normal form
(20), that is { = Tw, where¢, and &, are the position coordinates ang, and n, are

the momenta. Real solutions are given whign= &, and 7j; = 1,. The Hamiltonian
corresponding to(20) is

Ko,0 = iw(E1my — Eomp) + E18o + emny

withe=(1—-0)/4and v = %«/1+ 0. Values of interest are those of near 1.

Remark. If the real versal normal form of10) is desired then it is given by

0 _A1l+o 1-¢ 0
2 4
A 12+0 0 0 120'
1+
-1 0 o0 -
0o -1 Y o

N

and the transformation to it is given by the matriX2(Re(or), Im(ay), —Re(as),
—Im(o4)).

3.4. Lie transformation to normal form when# 0

Lemma 3.3. For e # 0 the normal form of the Hamiltonian for the variational problem
nearc = 1 is given by

K* =iw(&n — Eamp) + E1éo + enqna

2n
+ Zl %(ipzn(flfz — N1M2) + q2n1112), (23)

where py, and g2, are numerical constantsvhich can be considered to be corrections
to w and e whene # 0 and ¢ # 1.

Proof. When the eccentricitg is not zero the Hamiltonian for the variational equations
has the form

en
K = Koo+ 2; HKO,n-
n=
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The terms inKo, have the form
o EXEE R with i +i2+ it j2=2 and [k<n.

The Lie transformation uses a near identity transformation, which is generated by

el’l
W=2 — Wi,
n=0

where the function$V,, ;1 are constructed order-by-order so that the transformed Hamil-
tonian

en
K*=Koo+) —Kno
n=1 "

is as simple as possible. Since our Hamiltonian is nonautonomougttiherder terms
are determined by

0 Wy
af

Kno= P+ {Koo; Wy} —

’

whereP depends only on known terms afd; -} denotes the usual Poisson bracket.
All terms in the range of the operator

{Koo: -} — P (24)

can be eliminated. Since there are only 10 quadratic monomials in the four variables of
{ we can determine the kernel of the adjoint operator 2 directly. Representation
theory of s(2, R) shows that the space of quadratic monomials splits into four invariant
subspaces for2{), see[4]. Bases for these subspaces are

Consider the first subspace given 2b)( and let

o (F)Ms + 2B1(f)Eam + 291(f)E3
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be the term inP which lies in this subspace. We try to find the coefficieni$f),
b1(f) andc1(f) for the corresponding terms iW,, so that the terms iK, o are zero.
In matrix form this condition reads

d al 2im —2¢ O ai o1
7 b1 | — 1 2iw —2¢ b1 |=| P
I e 0 1 2w ||a "

The right-hand side contains various powers f, éut with @ near+/2/2 there is no
problem with resonances and all these termsKing can be eliminated by selecting
the appropriate functiongy(f), b1(f) andc1(f).

For the second subspace iB5( we obtain the condition

Jd | @ 0-2 O az %)
d_ b2 — 1 0 —2¢ b2 = ﬂz
f 2 0 1 0 2 V2

Again for a periodic right-hand side a solution fap(f), b2(f) and c2(f) exists
provided thatxy(f) does not contain a constant term. It means that all term&oip
can be eliminated with the exception @f#n,n, with g, being a constant term.

For the third subspace ir2%) we obtain the condition

4 | a3 —2io —2¢ 0 as o3
— | b3 | — 1 —2iw —2¢ bz | =| P3
af | e 0 1 —2iw||es Vs

For all possible right-hand sides there exists a solutiondfgrf), b3(f) and c3(f)
so that all corresponding terms K, can be eliminated. Finally for the last, one-
dimensional subspace i”25) the normalizing condition reads

dag B
W = o4(f)

so that all terms exceppj (1E, — n1n,) With p, constant can be eliminated. Due to
the way in which the true anomaly enters into the Hamiltonjanand ¢, will be zero
for odd n and real for evem. Thus the normal form of the Hamiltonian is

K* =iw(&ny — Eamp) + E1éo + enqna
e
+ Z m(lp%(ile — N1M2) + q2nN112)- 0
n=1 :
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Since the higher-order terms are thus simply corrections &md w, we set

2n eZn

Zn)!QZn

e
w=(1)+§ wpzn and 6=8+E
n=1 n=1

and get

K* =iw(&iny — Eanp) + E1Ep + enano.

From this we derive the differential equations

& = iwéy + eno,

5/2 = —iwé, + &g,
n = —iwng — &,
'7/2 = fwny — <1

Due to the reality conditions we only have to consider the first and last of these
equations. They are easily solved by setting

él — iwfx and Ny = eiwfy
which gives
X' =ey and y = —x.

Therefore, the change in stability occurs whes 0 that is for

eZn
&= _; (Zn)!an-

3.5. Direct computation of the stability boundary

Unfortunately, the computational effort is substantial when the method of Lie trans-
formation is used. Nevertheless, the knowledge obtained in the previous section allows
us to determine the stability boundary more easily by finding it directly fra6) or
from the equivalent system of second-order differential equations

01 —205—g(1+h)Q1 =0,
05+20,—g(1—h)Q2 =0
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with

3 -
§ 2(1+ ecosf) and 7 a%/9

The system can be written with complex position coordinates 01 +iQ2 as
7" +2i7 — gz —ghz =0. (26)
We will look for solutions of the form
7 =ue® 4 pe ™/,
The resulting differential equations are then

u” + 2i(w + Du' — (w? + 2w + g)u — ghv = 0,
v = 2i(w — v’ — (w? — 2w + g)v — ghu = O.

The solution will be found as a series @order-by-order, that is, we set

u = E uye”,

n=0
v = Z vpe”,
n=0
NG
w = - +Z wpe”,
n=1
1 n
& = 2 1—6+Zane .
n=1

Since we want to determine the stability boundary and we know that it occurs for
& =0 the series to be used foris

c=1+ Z one.
n=1

The functiong is given by

3 3 . 31" (1) 2% f
g:5:§+28n6" with g":W];)<k>én . (27)
n= =
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Since

h=.1-02/9= 2—f+2 hpe"
n=1

it can also be found as a seriesen
The differential equations fog and vg read

ug +i(v2+2uy — (V24 2uo — V29 = 0,
vy — (V2 =20+ (V2 = 2)vg — /211 = 0.
These equations have the constant solution
uo=1-+2/2, vo=-+2/2

and a linear solution irf, which is of no interest at the moment. The differential
equations foru,, andv, have the form

W! +iV242ul, — (V24 2u, — V27, = a, (28)
v —i(V2 =20 + (V2 - 2w, — 27, = . (29)
Due to @7) the functionsx and f# have the form

o= Z o€kl p= Z ﬁkeikf,

k=—n k=—n
where all coefficients depend on terms which have already been calculated. There is

one exception, sinceg and iy containw, and g, in a linear manner. At each order
n > 0 we set

n n
U, = Z Ake'kf, v, = Z Bke"‘f.

k=—n k=—n

By substituting into 28) and @9) and comparing coefficients we obtain for£ O

—(K? + (V24 2k + 24+ V2)Ax — V2B_; = oy,
—V24A; — (K = 2=k +2- V2B = f,.
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The system of equations has the solution

_ R+ 2V, - D) + V2B,

A
k k2(k + /2)2
V2w — (K2 4+ 2+ V2)(k + 1),
B = :
K2(k 4 +/2)2

For k = 0 the equations from2@) and Q9) are

—(vV2+2)A0 - vV2By = ap,
—V240+ (v2-2)Bg = fq.

At all ordersn > 0 we are free to choose the initial conditions for the solution and
we can selectdp = Bg = 0. We then solvexg = 0 and 5 = 0 for ¢, and w,. The
boundary curve for the change in stability is ther= 1+, _; ,¢". By performing
these computations we obtain the following result:

Theorem 3.1. The curve where two nontrivial multipliers of the variational equations
are 1, is given by

17 ,, 803 2416719, 20166411233,
_e — —_— e LI

—14+e%—
=1t 16 T256°  220376° | 51380224

(30)

To the left of the curve the multipliers are on the unit cirdbeit to the right they are
on the real axisresulting in linear instability

3.6. Normal form for the short and long period families

For the moment consider zero eccentricity, that is 0 in (17). Then for 0<o < 1,
that is O< i < 1/4/27, the eigenvalues of the matrix i14d) are purely imaginary.
They are of the formtiws, +iw with 0 < o < %2 < ws < 1. The frequencies are

given by

o = %(l—\/l—az), s = %(14-\/1—62).

The indices were chosen to remind of the families of long and short periodic orbits, as
the situation is very similar to the one near the Lagrangian pbinin the restricted
problem of three bodies.
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Lemma 3.4. With action angle variablesp1, p,, 1, ¢,) the Hamiltonian of the vari-
ational equationg(17) has the normal form

H = wspy — w1y
forO<o<lande=0.

Proof. Fore = 0 the matrix in (7) can be brought into real normal form by the transfor-
mationw = Tx, with the column vector as used previously ane: (x1, x2, X1, X2)7.
The transformation matrix is

—4—1-024+/9-02 4—/1-g2—\/9—32 0 0
66 ch) _4ws _ Ao
T = c1 c2
0 0 (\/9—0'2—;{].—0'2)&)5 (\/9—0'2+22/1—O'2)(U|
—24+/1-024V9-0? 2+V/1-6%2—/9—062 0 0
c1 c2

The factorsc; and cp are chosen such thatis symplectic and they are given by

2 =V1-02(4+V1- 62— V9-a?ws/2,

3 =V1-02(4—V1- 02 —9— D /2.

In Cartesian coordinates the Hamiltonian is therefore
w w
H==2(}+X3)— 2 (2 +X3)
2 2
from which the normal form in action angle variables follow$.]

For e # 0 the above transformation produces many additional terms. As before we
expand the transformed Hamiltoniah8] into a series ine and obtain

H = wspy — w1po + Z Z Ajgirip COS(i1¢p1 + 12y +i0f). (31)

n>1
The indices for the inner sum are restricted by
lia] + li2] <2 and |ig| <n, (32)

and the coefficients\;,,;, are homogeneous polynomials of degree 2/p; and . /ps.
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Via a Lie transformation all terms in (3.6) can be eliminated except those that are
in the kernel of the operator

0 0 0
Ws— —

)] .
¢, dp, Of

(33)

Due to the restriction32) on the indices, resonances betwegnand ws do not play a
role at this order, but whemn, = % a resonance with the forcing function is possible.

This happens when = “/7§ The characteristic multipliers are atl then and can leave
the unit circle.

Lemma 3.5. For 0 < ¢ < 1 but ¢ # +/3/2 the normal form of the Hamiltoniaf3.6)
is that of two harmonic oscillators. Fos = +/3/2+ 3" ¢"a, the normal form is

H = w1py — w2py + eAp, COSQ2p, — f) (34)

where w1 = +/3/2 + e, wo = %+ ey. The functions1, @2 and A depend on e
and ono,, n=1,2,....

Proof. Roberts has already shown [18] the existence of this exceptional value
and that it gives rise to an interval of instability when# 0, a feature which was

missed by Danby if6]. That 34) is the normal form of (3.6) follows from the kernel
(33. O

Lemma 3.6. For |@2| > |A| the origin in the Hamiltonian(34) is stable and unstable
when 2] < |A].

Proof. With the new variable), = ¢, — %f and without the ignorable variablg;

the Hamiltonian 84) becomesH = ep,(—d2 + Acosd),). By looking at the level
curves of this function the result follows. Therefore, change of stability occurs when
|w2| = |A|, that is at solutions with twice the period of the forcing functiofl

3.7. Direct computation of the period doubling curves

The series expansion for the period doubling curve \/§/2+Zn>0 ane” is found
more easily by solving26) directly. The functiong is given in @7), but this time
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and we are looking for solutions of the form

2n+1
7= Z e’ with z, = Z zn,ke'kf/z.
n>=0 k=—2n—1

For n = 0 a nonzeron-periodic solution of 26) is

20 = /372 - V11772,

For n > 0 the differential equations26) leads to the algebraic equations

k2 3 V33
(—Z —k — E) n,k — TZn,—k = Un,k» (35)
V33 k2 3
—TZn,k + <_Z +k— é) In,—k = On,—k, (36)
with k = 1,...,2n + 1 and wherex, ; and o, _;x depend only on known terms from

previous orders. One exceptiondg 1 and o, 1, which depend linearly om,,.

The determinant for35,36) is (k% — 1)(k? — 3)/16, so that he coefficients, ; can
be found uniquely foik >2. Whenk = 1, Eq. 85 can be used to determine alsgp.
In order to make the solution unique an additional condition likg = z, 1 can be
imposed. Finally, setting, .o = 0 at all orders will satisfy ¥5) whenk = 0.

Theorem 3.2. A period doubling curve starts at = /3/2, that is at § = %. A series
expansion for this period doubling curve is given by

. V3 N V11 25 , 483 4 2113
= — e — e — e — e
2 4 643  1024/11  49152/3
565461

T S 37
2883584/11 37)

Proof. A computer algebra program was used to calculate the series by the method
outlined above to an order much higher than what is listed. The perigee of an elliptic

orbit can shift by 180 degrees when the eccentricity goes through zero. Negative values
for the eccentricity can be interpreted in this way and therefore the s&igds(valid
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Fig. 1. Curves in thee—o plane, where the stability Lagrangian triangular configuration changes. The
curves are plotted from series expansionsein

for positive and negative values ef Nevertheless, the period doubling curve is drawn
only in the first quadrant of the—s plane in Fig.1 in order to visualize the region
of instability starting on thes-axis ate = +/3/2. The curve to the right of = v/3/2
belongs toe > 0 and the one to the left te < 0.

Since the coefficients in the serie87) appear to be bounded we can plotas
a function of e for |e|<1. On the other hand, the coefficients of the series3@) (
increase in magnitude when higher-order terms are computed. When graphing this curve
it becomes apparent that the seri&§)(converges for about| < 0.4.

Fig. 1 is in agreement with the numerical work of Robertg18]. He finds that the
stability curve starting at = 1 and the one starting at = +/3/2 become tangent to
each other. Roberts also finds that the period doubling curve is tangent ¢eattie at
e = 1. That it does not show up in our figure is not surprising, since we have computed
series, which are only accurate for small valuesof OJ

4. Regular polygon configurations

For regular polygon configurations with a central mass it is inconvenient to normalize
the masses so that their sum is equal to one. Instead the transformation Anathich
was constructed in Theorefh1l, can be modified in order to accommodate this case.
For arbitrary masses the first two columnsAyfthat isc; and c2, have to be divided

by /3" ;m; and the next two columns byz,’-’:llailzm,'-
For regular polygon configurations circulant matrices are useful. They are defined as
follows:
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Definition 4.1. Let w = €2™/" be annth root of unity. A circulant matrix has the
following form:

1 1 1 .. 1

1 o w2 wn—l
1 ? W2 .. 2D
1 "1 2= ... ,0-D?

For properties of circulant matrices see for exaniBle Here, it suffices to state that
each complex numben* corresponds to a:22 submatrix ofA;; of our transformation
matrix since it has the special form as required by Theofein

COos 2tk/n —sin 2tk /n
sin2tk/n  cOS 2tk/n

When considering a configuration withunit masses at the vertices of a regular polygon
and a mass of size at the center of the polygon we can use circulant matrices to
determine the first2 columns of the transformation matrix. The colur 1 can be

set up likecy except that the last nonzero componentdp ;1 will be given a different
value, so that; andcy,+1 are orthogonal to each other.

As the easiest example we consider first the regular triangular configuration with
a central mass. The three unit masses will be unit distance away from the mass
at the origin. When the three bodies move on circular orbits they appear to be at
a relative equilibrium in a coordinate system, which rotates uniformly with angular

velocity o = /+/3/3+ u around the origin. In order to consider the case where the
three bodies move on elliptic orbits we first carry out the transformation as outlined
above.

Proposition 4.1. Letm1 = m» = m3 = 1 andmy4 = u denote the masses in a four body
problem. A solution of3) is the central configuratiom; = (1, 0), a» = (—1/2, v/3/2),

az = (—=1/2, —/3/2), and a4 = (0, 0). It represents an equilateral triangular solution
with equal masses and another mass at the origin. Xet (g, z, w1, w2) € R® be
the transformed position vector an@ = (g1, g2, g3, qa) the original position vector.
With the transformation) = AX for the position coordinates an® = A~7Y for the
momenta the transformed Hamiltonian is given by

H=20G 1P+ 1 Z 1P+ Wel?+ || W2 1) — S(z, wa, wa, ).
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In the subspace3, whereg = w1 = wp = G = W1 = W» = 0, the Hamiltonian
represents the Kepler problem

1 3(1+ /3w
He =51 7 |2 -2
2 Izl

Proof. The transformation matrix is constructed as outlined above and given by

L 0 ¥ o £ o £ 0
V3 3 3 VL)
0o L o ¥ o0 ¥ o0 Vi
VER 3 e V3@
1 g _¥3 _1 _J3 1 —VH 0
Nz 6 2 6 2 /33w
o 1 1 _¥3 _1 _J3 g v/l
A i 2 6 2 6 ) /33
1 g _¥3 1 _v3 _1 N 0
V3+u 6 2 6 2 /336w
0 1. _1 _¥3 1 _J3 Vi
NE T 6 2 6 3(3+w)
1 V3
42 0 0 0 0 o0 B ?
1 3
0 NewT 0 0 0 0 0 T

Since the Hamiltonian does not depend grwe will ignore it and its conjugate
variable by settingg = G = 0. It should be noted thaf becomes singular for
w = 0. (The caseu = O reduces to the equilateral triangle central configuration
treated above.) Although negative masses are physically meaningless, we can consider
them mathematically. The transformation matfixrequires thatu > —+/3, but 2 > 0
in the Kepler problem of the proposition gives the more restrictive condition
p>—+/3/3. O

In order to consider elliptic orbits of the Kepler problem, we again go to pulsating
coordinates which rotate nonuniformly with the true anomaly of the Kepler problem.
The change of coordinates are the same as those for Lefingo that in these
coordinates the Hamiltonian is given by

H =302 1241 Wa 2+ || W2 112 =270 Z — o] TWy — g W2

ecosf

=12 - 12 =12
2(1+eCOSf)(”Z” + 1wy 174 w2 [I9)

 SG.i b2 p)
314 3w (@ +ecosf)

(38)
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Proposition 4.2. The Hamiltonian(38) has a stationary point at1 = Z> = 1, z2 =

wi=wy=w3=w4 =21 =W = Wo= W3 = W4 = 0. The Hamiltonian for the
variational equations in the subspackis given by the quadratic terms ¢88). For

these terms we use the notatian = (w1, w2), w2 = (w3, wa), W1 = (W1, W»), and

Wz = (W3, Wy) and find

1
Hy = é(Wl2 + W2+ W2+ W2) + waWy — wiWa 4+ waWa — w3Ws

B 1 2 o VBBHUD 5
—4(1 Te cosf) (wl + Wy + —1 n ,\/éﬂ (U)3 + u)4)
6,/3u(3+ W
1+ v3n (wiws w2w4)> .

Proof. Due to the rotational symmetry of elliptic relative equilibrium the entire
unit circle in thezy—z» plane consists of stationary points. We have selected a represen-

tative. O

We restricted our discussion to the case 0. In this case the variational equations
are given bydw/df = ®w with the column vectorw = (w1, wz, w3, wg, W1, Wo,
W3, W4). The matrixA is then independent of the true anomaly and is given by

[ 0 1 0 0 1 0 0 O
-1 0 0 0 0100
0 0 0 1 0 010
0 0 -1 0 0 0 01
1 34/3uB+p)
5 0 —_— 0100
®— 2 2J/1+V3u . (39)
0 1 3/3uB+w 00
2 2/ 14++/3u
_34/3uG+p V3E+w
2/ 1+v3u 0 2(1++/3p) 0 0001
3/3uB+p V3@+w _
B 2+4/14+/3u 0 2(14++/3u) 0 0-1 0_

Proposition 4.3. Consider an equilateral triangular configuration with three equal
masses ofl and a central body of masg. The bodies rotate on circleg¢e = 0)
around the center of mass. This configuration is unstable for any mass

More precisely for 0 < u < 0.274423all eight eigenvalues of the matrix A given
in (39) are in the complex plane. For > 0.274423 four eigenvalues will be on
the imaginary axis but the other four will remain in the complex plane. At=
(81 + 644/3)/249 two eigenvalues are zeravhen bifurcations to new configurations
occur. The two eigenvalues of A will remain on the imaginary axis whencreases
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Fig. 2. Location of the eight eigenvalues of the matrix B9)(as u varies. For—+/3/3 < u < 0 the
eigenvalues come froneo and are indicated by individual dots. For<Ou < 0.274423 all eigenvalues

are complex and they lie on the thin solid lines. FoR™4423< u the location of the eigenvalues is
indicated by thicker gray level lines. Four eigenvalues are on the imaginary axis. The darker dots indicate
the locations of the eigenvalues when= (81+ 64./3)/249 and thus two eigenvalues are zero.

further. Whenu becomes large the eigenvalues on the imaginary axis tentfe-1,
whereas those in the complex plane tend towards zero as shown i2.Fig.

Proof. The characteristic polynomial & can be written in a special form, s§k5,21],

O+ i+ P2 +9i2=0 (40)
with
3-3v3+2V/3u

2(1++/3p)
_ 3@+ 33+ (—18+5V3)p)
4(1+ /3w)?
_2(14-33)
(1+3w? "
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Although a configuration with a negative mass at the origin has no physical significance
the eigenvalues oA can be computed as soon as the rate of rotatioa /+/3/3 + u

is real. For—+/3/3 < u < 0 the solutions of40) are in the complex plane and come
from complex infinity.
With y > 0 the discriminant

A = 166(c? — 4B)% + do(4o® — 36f)y — 279> =0 (41)

can be used to determine when there are repeated roodf)osee[16,21] It results in

a fourth-order polynomial equation far. Unfortunately, the solutions of this polynomial

are too complicated in closed form. Two solutions are complex valued, one is negative
and another one is positive. The numerical value for the positive solution 4s
0.274423. At this value two pairs of eigenvalues Afmove onto the imaginary axis

at 08139561 and—0.813956i, respectively. Of these four eigenvalues two will move
towards the origin and the other two away from it, @sncreases. Whet = 0, that

is for

[t = (81+ 64v/3)/249~ 0.770487

two eigenvalues on the imaginary axis will pass each other at the origin. The other
two eigenvalues on the imaginary axis ared#t.24362i and appear to have reached
their maximum distance from the origin. The above valug:d$§ consistent with what
is found in[14], as it allows bifurcations to new configurations.

As u increases further all four eigenvalues on the imaginary axis will tendito
The other four eigenvalues stay for allin the complex plane and they tend to zero
asu— oo. O

When investigating the stability of the configuration fer> 0 the values ofu
will be of interest where 40) has repeated solutions, that is ;at= 0.274423 and at
1= (81+ 64y/3)/249.

As the final example we consider the five-body problem, where four bodies of unit
mass are at the corners of a square and a body of masst the center.

Proposition 4.4. Let m1 = mp = m3 = m4 = 1 and ms = u. A central configuration

is given bya; = (1,0), ax = (0,1), a3 = (—1,0), a4 = (0, -1), and a5 = (0, 0).

Let O = (¢1. 92, g3, g4, g5) € R be the old position coordinates for the five bod-
ies and X = (g, z, w1, w2, w3) the new position. The transformatio@ = AX and

the related one for the momenta gives the Hamiltonian for the five-body problem in
the form

H=3UGIP+1ZIP+IWLI?+ 1 W22+ 1 Wal?

—S8(z, w1, w2, wa, {). (42)
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In the subspacd&s, the Hamiltonian represents the Kepler problem

1 2+4J2+8
He =2 |z 2 -T2
2 Iz

Proof. The transformation matrix is again constructed with the help of circulant matrices
and given by

1 1 1 1 —Ji
aAw 0 0z 03 03 0 g 0
1 1 1 1 —JH
0 %= 0 3 0 3 0 3 0 e
1 1 1 1 —JH
s 0 0 -3-30 0 3 o= 0
1 1 1 1 —JVH
O %z z 0 0-3-30 0 7=
1 1 1 1 —J/H
A= w0 720 3 0 -5 0 7% 0 0
1l o -2~ 0-320 % 0 -1 o v/
VAR 2 2 2 2/4+ 1
1 o o i 2o o -} £ 0
ey 2 2 2 24+
1 1 1 1 —JVH
?m_ioo_??? g 2/4+
745 0 0 0 0 0 O?m (2)
1 1 2
_0 7= 0 0 0 0 0 0 3 T |

Proposition 4.5. In a nonuniformly rotating and pulsating coordinate system the Hamil-
tonian (42) becomes

1 - _ _ _ [ L
Ho= S0 Z 12+ Wl + 1 Wo 2+ 1 Wa %) = 2T Z — ] J W — b2 W

eCoSf
2(1+ ecosf)
8@z, wy, wa, w3, W)
(2+ 42+ 8u)(1+ ecosf)

— i3 W3 + 22+ w1 12+ 1 w2 124 || @3 11%)

The Hamiltonian has a stationary point gt= (1, 0), Z = (0, 1) with all other two-
dimensional vectors set to zero. Usge = (wp;_1, wy) for i = 1,2,3 and use a
similar notation for the momenta. Then the Hamiltonian for the nontrivial part of the
variational problem can be written as the sum of two separate Hamiltonian functions
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that is,
Hy = HV + H?
with
o _ 12, 2 w2 2 _ _
Hy” = 2(Wl + W5+ Ws + W§) + Wiwz — Wowy + Wswg — Wswe
- ! (V2 + pw? + wd)
(1+ 242+ 4)(1 + e cosf)
—6y/ u(4+ w)(wiws — wowe)
+(4+ W (wE + w)) (43)
and
HP = }(Wg? + W2) + Wawg — Waws — L
2 (14 242+ 4u) (1 + ecosf)
1
x{(l—\/i+4,u)w§—<§—2\/§+4,u> wi}. (44)

Proof. The coordinate transformation and the change to the true anomaly as new in-
dependent variable has been carried out as described in L8rimw@/ith it stationary
solutions are always found at the same place that ig| #of|= 1. Using circulant ma-
trices decomposes the variational equations into two parts one with variables from the
set of indices {1,2,5,6} the other one with indices from {3,4}. This has been observed
previously, sedg13], and it is known that for anyv 4+ 1-gon configuration moving on
circular orbits, the variational equations can be considered in eight-dimensional sub-
spaces, and wheN is even in an additional four-dimensional subspace. The proposition
shows that the same holds true for elliptic central configurations.

Let w = (w1, w2, ws, wg, W1, Wa, W5, W) be an eight-dimensional column vector,
or the four-dimensional column vectar = (ws, wg, W3, Wg). Then the variational
equation in the appropriate subspace is

dw . J 1
EZJ)U) with (p:['PJJ] (45)

with J a standard four- or two-dimensional symplectic matrixa four or two-
dimensional identity matrix and the Hessian with respect to the position variables.
For otherN + 1-gon configurations the structure of the variational equatidsg \ill
remain. [
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We finish our discussion by analyzing the variational equations, which follow from
(43) and @4), whene = 0. For @3) the matrix ¥ in (45) is

V2+p 0 =3/ ué+ p 0
v 2 0 V24 u 0 3/u@+
14 2V2+4p | —3/ud+ 0 44 u 0
0 3/ + 1 0 4+ p

The characteristic polynomial fop is again of the form 40) with

_ —6+2V2+4u
14+2V2+ 4"
g 25+ 38v2 — (84— 36v2)u
(1+2v2 4+ 4p)?
32(9 — 4V2)

)y = —————.
(14 2v/2 + 4p)?

The location of the eight eigenvalues is indicated in BigThe value ofu where two
pairs of eigenvalues meet on the imaginary axis is found by solving the discriminant
(42) numerically. The value where two eigenvalues cross each other at the origin comes
from =0 and givesu = (13+ 11v/2)/12. It is the value where bifurcations to new
configurations is possible, sd&4]. As u is increased further the eigenvalues on the
imaginary axis tend teti, whereas the remaining four eigenvalues tend to zero.

For (44) the matrix ¥ in (45) is

p [2(1—~/§+4u) 0 ]
14242+ 44 0 —(1—4V2+ 4

and the characteristic polynomial fa¥ is

Ay 2 18V/2(1 + 4u) _
(1+ 272+ 4p)?

It has the solutions

o 1i\/16,u2+(8—272~/§)ﬂ+9—68\/§
T2 21+ 23/2 + 4p)

The terms under the square root are negative}ier49+34v/2) < < 3 (47+34v/2).
For this range, which is-0.229 < u < 23.77, the eigenvalued are in the complex
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Fig. 3. Location of the eight eigenvalues of the variational matrix #8).( For —(1+2v2)/4 < <0

the eigenvalues come fromo and are indicated by individual dots. For<Ou < 1.00716 all eigenvalues

are complex and they lie on the thin solid lines. FaPQr16 < p the location of the eigenvalues is
indicated by thicker gray lines. Four eigenvalues are on the imaginary axis. The darker dots indicate the
locations of the eigenvalues whan= (13+ 11./2)/12 and thus two eigenvalues are zero.

plane. In the plane foi? it is obvious that the solutions lie on a line segment parallel
to the imaginary axis with real value%. Wheny is at the left or right endpoint of the
above interval therk = +i+/2/2. With this comment the location of the eigenvalues in
Fig. 4 should become clear. It should be noted that two eigenvalues are at the origin
when u = —‘—11. Also the eigenvalues move into the complex plane wihers still
negative. The location of these eigenvalues wheis negative are hidden by the gray
curves.

5. Conclusion

The change of coordinates introduced in Section 2 decouples the phase space into
three components. The first component is for the center of mass and the second one
for the Keplerian motion of the bodies. These two spaces yield the eight trivial mul-
tipliers of +1 arising from the integrals of the problem. The third space, which is the
compliment of the first two, gives the nontrivial multipliers of the problem.

We have shown that our approach reproduces the resultE3pffor the Lagrangian
triangular configuration in a systematic fashion. We have started the analysis for the
N + 1 regular polygon configuration and we have presented some detail§ for3
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Fig. 4. Location of the four eigenvalues of the variational matrix f44)( For —(1+ 2+/2)/4 < u the
eigenvalues come fromo along the four axis and are indicated by individual dots. for O the
location of the eigenvalues is indicated by thicker gray lines./Abecomes large two eigenvalues tend
to zero and the other two te:i. The darker dots on the imaginary axis indicate the locations of the
four eigenvalues whem = —711. The darker dots in the complex plane are those /et 0.

and 4. ForN <6, we find that the relative equilibrium is unstable for all valyes

of the central mass in the circular cage= 0. This was already pointed out i5]

and studied further if21]. Unfortunately, fore # 0 the variational equations are
nonautonomous and are complicated. Therefore, we have not yet analyzed them, and
have no conjecture, if the stability of a relative equilibria changes, as the eccentricity
e is varied.
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