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Abstract

A planar central configuration of theN-body problem gives rise to a solution where each
particle moves on a specific Keplerian orbit while the totality of the particles move on a
homothety motion. If the Keplerian orbit is elliptic then the solution is an equilibrium in
pulsating coordinates so we call this solution anelliptic relative equilibrium.

The totality of such solutions forms a four-dimensional symplectic subspace and we give a
symplectic coordinate system which is adapted to this subspace and its symplectic complement.
In our coordinate system, the linear variational equations of such a solution decouple into three
subsystems. One subsystem simply gives the motion of the center of mass, another is Kepler’s
problem and the third determines the nontrivial characteristic multipliers.

Using these coordinates we study the linear stability of the elliptic relative equilibrium defined
by the equilateral triangular central configuration of the three-body problem. We reproduce the
analytic studies of G. Roberts. We also study the linear stability of the four- and five-body
problem where three or four bodies of unit mass are at the vertices of a equilateral triangle or
square and the remaining body is at the center with arbitrary mass�.
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1. Introduction

Let q1, . . . , qN ∈ R2 be the position vectors,p1, . . . , pN ∈ R2 the momentum vectors
of N particles of massesm1, . . . , mN in an inertial (sidereal) frame. Let the distance
between thejth andkth particles be denoted bydjk =‖ qj − qk ‖. In these coordinates
the Hamiltonian, H, and theself-potential, S, for theN-body problem are

H =
N∑
j=1

‖ pj ‖2

2mj

− S(q1, . . . , qN), S =
∑

1� j<k�N

mjmk

djk
(1)

and the equations of motion are

q̇j = pj/mj , ṗj = �S
�qj

, j = 1, . . . , N. (2)

A central configurationis a solutionq1 = a1, . . . , qN = aN of the algebraic equations

−�mjqj = �S
�qj

(q1, . . . , qN) (3)

for some constant�. One shows that� = S(a)/2I (a) > 0 whereI = 1
2

∑
mj‖aj‖2 is

the moment of inertia.
Only the planarN-body problem is considered here and so sometimes we will think

of vectors inR2 as complex numbers, i.e. we will identifyR2 andC in the usual way.
A classical and elementary result[10,12,15,20]is

Proposition 1.1. Let a1, . . . , aN , ai ∈ C be a central configuration with constant�.
Let (z(t), Z(t)) ∈ C2 be a solution of the Kepler problem(central force problem) with
Hamiltonian

HK = 1

2
‖Z‖2− �/‖z‖, z, Z ∈ R2. (4)

Then

qi = z(t)ai, pi = miZ(t)ai, i = 1, . . . , N

is a solution of the N-body problem.
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Given a central configuration the totality of points inR4N swept out by such solutions
is a four-dimensional, invariant, symplectic subspace[9,10]. We give a symplectic
coordinate system which is adapted to this subspace and its complement. This improves
and extends the coordinates discussed in[10, Section 4.6].

If (z(t), Z(t)) is a circular orbit of the Kepler problem with frequency�, then
it would be an equilibrium solution in a coordinates system which rotates uniformly
about the center of mass with frequency�. Such a solution is often called arelative
equilibrium. We are interested in the case when the solution(z(t), Z(t)) of the Kepler
problem is an elliptic orbit in which case the solution is an equilibrium solution in
pulsating coordinates (see Section3.2), and so, we call such a solution anelliptic
relative equilibriumas in the title of this paper.

We are interested in the linear stability of circular and elliptic relative equilibria,
i.e. the characteristic multipliers of these solutions. To that end, we study the linear
variational equations. In our coordinate system, the variational equations are block
diagonal with one block corresponding to the translational invariance of the problem and
one block being the variational equation for the Kepler problem. The first two blocks
integrate to give the characteristic multiplier +1 a multiplicity of 8. The last block
contains all the information about the remaining (nontrivial) characteristic multipliers.

We study several examples in detail. First, we study the elliptic relative equilibrium
when the central configuration is the Lagrange equilateral triangle configuration. In that
case, the stability depends on two parameterse the eccentricity of the Kepler solution
and the mass parameter

�2 = m1m2+m2m3+m3m1

(m1+m2+m3)2
.

We obtain the variational equations in a very simple form and study the stability
domains in thee,� parameter space using perturbation methods.

Gascheau[8] in 1843 showed that (circular) Lagrange relative equilibrium solution
of the three-body problem is linearly stable if�2 < 1

27 (also see[23, p. 113ff]). This
inequality is also found in Routh’s 1875 paper[19].

Next, Danby[5] using numeric methods and Schmidt[22] using analytic methods
study the stability of the corresponding LagrangeL4 equilibrium in the elliptic restricted
problem. They find the stability domains in thee,� plane, where� is the mass ratio
parameter corresponding to�. See[22] for further references on the elliptic restricted
problem.

The first to study the elliptic Lagrange relative equilibrium solution in the three-
body problem with general masses was Danby[6]. Danby’s analysis was incomplete
and was completed in the elegant paper by Roberts[18]. Danby and Roberts uses the
integrals and symmetries of the three-body problem to reduce the dimension from 12
to 4, whereas, we use a linear symplectic change of variables to isolate the important
four-dimensional system. Roberts studies the stability regions in thee,� parameter
space usinge as a small parameter and by numerical methods for largee. We use
normal form theory to reproduce the small parameter expansions of Roberts, but do
not study the problem for largee by numerical methods.
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Another class of central configurations of the(N +1)-body problem hasN-bodies of
mass 1 at the vertices of a regularN-agon and another body of arbitrary mass� at the
center. The variational equations are 4N + 4 dimensional which by our linear change
of coordinates can be reduced to a 4N − 4-dimensional system. We explicitly derive
the variational equations for alle,� when N = 3,4, and we completely analyze the
characteristic exponents whene = 0 (the circular case).

2. Central configuration coordinates

Vectors will be column vectors, but written as row vectors in the text. LetQ =
(q1, . . . , qN) andP = (p1, . . . , pN). Let

J =
[

0 1
−1 0

]
, J = diag(J, J, . . . , J ), J =

[
O I

−I O

]
,

where I and O are the identity and zero matrix, respectively.J will always be 2× 2,
but the dimensions ofJ, I and J will depend on the context. With this notation the
integral of angular momentumis

C =
N∑
j=1

qTj Jpj = QT JP.

If (a1, . . . , aN) is a central configuration then so is(�Aa1, . . . , �AaN) where� is a
nonzero scalar andA ∈ SO(2,R) is any 2×2 rotation matrix. Also

∑
mjaj = 0. Thus,

a central configuration begets the set of central configurations{(�Aa1, . . . , �AaN) : � ∈
R, A ∈ SO(2,R)} which is a two-dimensional linear subspace ofR2N . (The origin is
included for completeness.)

Let a = (a1, . . . , aN) be a fixed central configuration which is scaled so that
∑

mj ‖
aj ‖2 = 1. We will define three subspaces:A which reflects the translational
invariance of the problem,B the space swept out by all rotations and dilation of
the central configuration, andC the complement of the first two spaces. Specifically,
define

A = {(b, b, . . . , b;m1c,m2c, . . . , mNc) ∈ R4N : b, c ∈ R2},

B = {(�Aa1, . . . , �AaN ;�Bm1a1, . . . ,�BmNaN) : �,� ∈ R, A, B ∈ SO(2,R)},

C = {x ∈ R4N : {x,A} = {x,B} = 0}.

(5)

Here {·, ·} is the usual Poisson bracket defined by{x, y} = xT Jy.



260 K.R. Meyer, D.S. Schmidt / J. Differential Equations 214 (2005) 256–298

Proposition 2.1. A, B, and C are all symplectic linear subspace ofR4N . A ⊕ B, B
andB⊕C are invariant. A andB are four dimensional, and C is 4N −8 dimensional.
R4N = A⊕ B ⊕ C. {A,B} = {B, C} = {C,A} = 0.

Proof. Without loss of generality we normalize the masses so that
∑

mj = 1. A
symplectic basis forA is

�1 =




1
0
...

1
0
0
0
...

0
0




, �2 =




0
1
...

0
1
0
0
...

0
0




, �1 =




0
0
...

0
0
m1
0
...

mN

0




, �2 =




0
0
...

0
0
0
m1
...

0
mN




(6)

and soA is a four-dimensional symplectic subspace.
A symplectic basis forB is

�3 =




a1
...

aN
0
...

0



, �4 =




Ja1
...

J aN
0
...

0



, �3 =




0
...

0
m1a1
...

mNaN



, �4 =




0
...

0
m1Ja1

...

mNJaN




(7)

and soB is a four-dimensional symplectic subspace. One sees that{A,B} = 0 by
checking on the basis vectors given above and recalling that

∑
mjaj = 0.

Since C is the symplectic complement of the eight-dimensional symplectic space
A ⊕ B, it is a symplectic subspace of dimension 4N − 8 by Proposition 4, p. 43 of
[12]. This proposition also shows thatR4N = A⊕ B ⊕ C.

For the moment, think of the vectorsqj , pj , etc. as complex numbers. Then the set
B is the same as

B = {(za1, . . . , zaN ;Zm1a1, . . . , ZmNaN) : z, Z ∈ C}. (8)

Let (z0a1, . . . , z0aN ;Z0m1a1, . . . , Z0mNaN), z0, Z0 ∈ C, z0 �= 0 be any point inB
and let z(t), Z(t) be the solution of the Kepler problem (4) starting atz0, Z0 when
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t = 0. Then a direct substitution verifies that

V (t) = (Q(t), P (t)) = (z(t)a1, . . . , z(t)aN ;Z(t)m1a1, . . . , Z(t)mNaN)

is a solution of the equations of motion of theN-body problem (2) and clearlyV (t) ∈ B
for all t. This shows thatB is invariant.

In a like manner

A⊕ B = {(g + za1, . . . , g + zaN,

m1G+m1Za1, . . . , mNG+mNZaN) : g,G, z, Z ∈ C}.

Consider the Hamiltonian

H+ = 1
2‖G‖2+ 1

2‖Z‖2− �/‖z‖,

the corresponding equations of motion

ġ = G, Ġ = 0, ż = Z, Ż = −�z/‖z‖3 (9)

(H+ is the Hamiltonian of the two-body problem in Jacobi coordinates.) Let(g0 +
z0a1, . . . , g0+ z0aN ;m1G0+Z0m1a1, . . . , mNG0+Z0mNaN) be any point inA⊕ B
and(g(t), z(t),G(t), Z(t)) the solution of (9) through that point att = 0. Then a direct
substitution verifies that

V (t) = (g(t)+ z(t)a1, . . . , g(t)+ z(t)aN ;m1G(t)

+Z(t)m1a1, . . . , mNG(t)+ Z(t)mNaN)

is a solution of theN-body problem and thatV (t) ∈ A⊕ B, so A⊕ B is invariant.
Now

B ⊕ C = A⊥
= {(q, p) : bp1+ · · · + bpn − (cm1q1+ · · · + cmNqN) = 0 for all b, c ∈ C}
= {(q, p) : p1+ · · · + pn = 0,m1q1+ · · · +mNqN = 0}.

In other wordsB⊕C is the set where the center of mass of the system is at the origin
and total linear momentum is zero. This is a well-known invariant space.�

Theorem 2.1. There exists a linear symplectic transformation from the old coordinates
(Q, P ) to the new coordinates(g, z, w,G,Z,W) with (g,G) symplectic coordinates
for A, (z, Z) symplectic coordinates forB and (w,W) symplectic coordinates forC.
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The change of coordinates has the following properties:

• Kinetic energy is:

N∑
j=1

‖ pj ‖2

2mj

= 1

2


‖ G ‖2 + ‖ Z ‖2 +

N−4∑
j=1

‖ Wj ‖2


 .

• Angular momentum is preserved, i.e.

C =
N∑
j=1

qTj Jpj = gT JG+ zT JZ + wT JW.

• The self-potential is independent of g, i.e.

S(Q) = S(z,w).

• The spaceB is invariant and the Hamiltonian on that space is the Hamiltonian of
the Kepler problem, i.e.

�H(0, z,0;0, Z,0)/�g = 0, �H(0, z,0;0, Z,0)/�G = 0,

�H(0, z,0;0, Z,0)/�w = 0, �H(0, z,0;0, Z,0)/�W = 0,

H(0, z,0;0, Z,0) = HK (z, Z) = 1
2 ‖ Z ‖2 −�/ ‖ z ‖,

(10)

where

� =
∑

1� j<k�N

mjmk

‖aj − ak‖ . (11)

Remark.

• Since S and henceH is independent ofg (the center of mass of the system), its
conjugate momentumG (total linear momentum) is an integral. As is customary we
will set g = G = 0 and forget these variables in the subsequent analysis.

• HK is the Hamiltonian of the Kepler problem (the central force problem), and (10)
says thatB = {g = G = w = W = 0} is invariant and the motion on this invariant
subspace is Keplerian.

Let z(t), Z(t) be any solution of the Kepler problem, then(g ≡ 0, z(t), w ≡
0;G ≡ 0, Z(t),W ≡ 0) is a solution of theN-body problem. Think of the vectors
in R2 as complex numbers. In this solution theith particle follows the trajectory
qi(t) = z(t)ai, pi(t) = Z(t)ai . Thus, each particle moves on a trajectory of the Kepler



K.R. Meyer, D.S. Schmidt / J. Differential Equations 214 (2005) 256–298 263

problem and the configuration of theN particles remains similar to the original central
configuration.

• Since the change of variables preserves angular momentum it works well with rotating
coordinates also. Thus, ifq, p are rotating coordinates so that the Hamiltonian is

H =
N∑
j=1

{‖ pj ‖2

2mj

− qTj Jpj

}
− S(Q),

then after this change of coordinates

H = 1

2


‖ G ‖2 + ‖ Z ‖2 +

N−2∑
j=1

‖ Wj ‖2




−{gT JG+ zT JZ + wT JW } − S(z,w).

• A slightly different change of coordinates can be given such that kinetic energy is
preserved, i.e.

N∑
j=1

‖ pj ‖2

2mj

= ‖ G ‖2

2m1
+ ‖ Z ‖

2

2m2
+

N−2∑
j=1

‖ Wj ‖2

2mj+2

and

HK = ‖Z‖2

2m2
− �̂
‖z‖ ,

where �̂ has the same form as�, but theaj ’s are normalized so that
∑

mj‖aj‖2 =
1/m2.

Proof. As beforeQ = (q1, . . . , qN) ∈ R2N , P = (p1, . . . , pN) ∈ R2N and
∑

mj = 1.
Let X = (g, z, w) ∈ R2×R2×R2N−4, Y = (G,Z,W) ∈ R2×R2×R2N−4. Q,P,X, Y

are to be considered as column vectors. The linear symplectic change of variables will
be of the form

Q = AX, P = A−T Y, (12)

whereA is a 2N × 2N nonsingular matrix with the following properties

A−1JA = J, ATMA = I (13)
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andM is the 2N×2N diagonal matrixM = diag(m1,m1,m2,m2, . . . , mN,mN). Here
A−T = (AT )−1 = (A−1)T .

The form of the change of variables in (12) insures the transformation is symplectic.
Kinetic energy is

N∑
j=1

‖ pj ‖2

2mj

= 1
2P

TM−1P = 1
2Y

T A−1M−1A−T Y

= 1

2
YT IY = 1

2


‖ G ‖2 + ‖ Z ‖2 +

N−2∑
j=1

‖ Wj ‖2


 .

(Remark. If we replaceA by Ã = AM1/2 then ÃT MÃ = M and kinetic energy would
be preserved as stated in the remark given above.)

Angular momentum is preserved because

N∑
j=1

qTj Jpj = QT JP = XTAT JA−T Y

= XT JY = gT JG+ zT JZ + wT JW.

The matrixA will be constructed by a modified Gram–Schmidt method to insure that
A satisfiesATMA = I, which by an abuse of terminology we will callM-orthogonal.
Think of A as a block matrix made up of 2× 2 matrices, that is

A =




A11 A12 · · · A1N
A21 A22 · · · A2N
· · · · · · · · · · · ·
AN1 AN2 · · · ANN


 ,

where Aij is a 2× 2 matrix. Each of these submatrices will have the special form
Aij = [b,−Jb] where b is any 2-column vector. A direct computation shows that if
Aij has this special form thenJAij = AijJ , and if each of the submatrices inA have
this special form thenA−1JA = J.

Let A = [c1, c2, . . . , c2N ] werecj is the jth column ofA. The first four columns are

c1 =




1
0
1
0
...

1
0



, c2 =




0
1
0
1
...

0
1



, c3 =




a1
a2
...

aN


 , c4 =



−Ja1
−Ja2

...

−JaN


 .



K.R. Meyer, D.S. Schmidt / J. Differential Equations 214 (2005) 256–298 265

By recalling that
∑

mi =∑mi‖ai‖2 = 1,
∑

miai = 0 one sees that these four vectors
are M-orthogonal, and the special form of the 2× 2 submatrices holds. Moreover,
cT1 Mc1 = cT2 Mc2 = CT

3 Mc3 = cT4 Mc4 = 1.
If ATMA = I then A−1 = ATM. By the definition of c1 and c2 this implies

X = (g, z, w) = (m1q1 + · · · + mNqN, ·, ·) or g,= m1q1 + · · · + mNqN is the center
of mass of the system. ThusS is independent ofg. In a like mannerG is total linear
momentum.

We now use induction to construct the remaining column vectors by pairs. The general
step is the same as the first. Letd be any vector independent ofc1, c2, c3, c4 ande the
M-projection ofd onto the span of the first four, sod−e isM-orthogonal to the first four.
Let � be the scale constant so thatc5 = �(d−e) satisfiescT5 Mc5 = 1. The construction
of c5 is just the same as the Gram–Schmidt procedure. Letc5 =

[
�1, �2, . . . , �N

]
where

each�j is a 2-column vector. Definec6 =
[−J�1,−J�2, . . . ,−J�N

]
. By construction

cT6 Mc6 = 1 andcT6 Mc5 = 0.
We claim thatc6 is M-orthogonal to the first four also, since if it were not thenc5

would not beM-orthogonal to one of the first four. Say for example thatcT6 Mc4 �= 0
then since

cT5 Mc3 =
∑

mi�iai =
∑

mi(−J�i )
T (−Jai) = cT6 Mc4

this would imply thatc5 is not M-orthogonal to the first four which contradicts the
construction ofc5. The other cases are similar.

By (13) A−T = MA and so the first 4 columns ofA−T are

d1 =




m1
0
m2
0
...

mN

0



, d2 =




0
m1
0
m2
...

0
mN



, d3 =




m1a1
m2a2
...

mNaN


 , d4 =



−m1Ja1
−m2Ja2

...

−mNJaN


 .

The spaceA is spanned by�1, �2, �1, �2 in (6) which is the same as the space given
by Q = g1c1 + g2c2, P = G1d1 + G2d2 where g1, g2,G1,G2 ∈ R. Similarly, the
spaceB is spanned by�3, �4, �3, �4 in (7) which is the same as the space given by
Q = z1c3+ z2c4, P = Z1d3+ Z2d4 wherez1, z2, Z1, Z2 ∈ R.

Again think of the various vectors as complex numbers. The spaceB has coordinates
z, Z see (8) and the constructed change of coordinates isqj = zaj , pj = Zmjaj .
Substituting these into the Hamiltonian (1) gives

H |B =
N∑
j=1

‖ Zmjaj ‖2

2mj

−
∑

1� j<k�N

mjmk

‖zaj − zak‖
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=
N∑
j=1

{
mj ‖ aj ‖2

} ‖Z‖2

2
−



∑
1� j<k�N

mjmk

‖aj − ak‖


 1

‖z‖

= ‖Z‖2

2
− �
‖z‖ = HK . �

Corollary 2.1. Let (z(t), Z(t)) be a T-periodic elliptic solution of the Kepler prob-
lem, i.e. of the system whose Hamiltonian isHK in (10). Then (g, z, w,G,Z,W) =
(0, z(t),0,0, Z(t),0) is a T-periodic solution of the N-body problem. The linear vari-
ational equation of this periodic solution is of the form




ġ

Ġ

ż

Ż

ẇ

Ẇ



= V (t)




g

G

z

Z

w

W



,

whereV (t) is the block-diagonal, T-periodic, 4N×4N matrix V (t) = diag(V1(t), V2(t),

V3(t)) with

V1(t) =




0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


 , V2(t) =




0 0 1 0
0 0 0 1

�
2z2

1 − z2
2

r5
�

3z1z2

r5
0 0

�
3z1z2

r5
�

2z2
2 − z2

1

r5
0 0


 ,

r(t) =
√
z2

1 + z2
2. V3(T ) is a T-periodic, (4N − 8) × (4N − 8) matrix which depends

on the particular central configuration.

Proof. This is a straight forward computation, see for example Lemma3.1. �

Corollary 2.2. The characteristic multiplier+1 of an elliptic central configuration so-
lution has algebraic multiplicity at least8.

Proof. This is known in various special cases[10,18,23]. By Corollary 2.1 the varia-
tional equation decouples into three parts. The first part with coefficient matrixV1 is
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autonomous and

eV1T =




1 0 T 0
0 1 0 T

0 0 1 0
0 0 0 1


 .

Thus, eV1T has +1 as an eigenvalue of multiplicity 4.
The second part with coefficient matrixV2 is the variational equation of the Kepler

problem which is a Hamiltonian system with two integrals (energy and angular mo-
mentum) in involution. The characteristic multiplier +1 of a periodic solution of such
a system has multiplicity 4, see[7,11,17]. �

3. Lagrangian triangular configuration

Consider the three-body problem with general masses normalized bym1+m2+m3 =
1. The Hamiltonian of the three-body problem with coordinatesqj , pj ∈ R2 j = 1,2,3
is

H3 =
3∑

j=1

‖pj‖2

2mj

− S3(q), S3(q) =
∑

1� j<k�3

mimj

‖qj − qk‖ .

An equilateral triangular central configuration is given by

a1 = (1,0)− cm, a2 = (−1/2,
√

3/2)− cm, a3 = (−1/2,−√3/2)− cm,

where the vector

cm = (1/2)(2m1−m2−m3,
√

3m2−
√

3m3)

is chosen so that the center of mass is at the origin. It is possible to scale all distances
by dividing by a common factor. If we choose the factor to be

√
3� with

�2 = m1m2+m2m3+m1m3

thenm1‖a1‖2+m2‖a2‖2+m3‖a3‖2 = 1 and the position coordinates for the triangular
configuration are given by

a1 =
(√

3(m2+m3)

2�
,
m3−m2

2�

)
, a2 =

(
−
√

3m1

2�
,
m1+ 2m3

2�

)
,
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a3 =
(
−
√

3m1

2�
,
−m1− 2m2

2�

)
.

The three masses have to rotate with angular velocity� = �3 around the origin, that
is the center of mass, so that their configuration remains at a relative equilibrium.

Let Q = (q1, q2, q3), P = (p1, p2, p3) ∈ R6 and correspondinglyX = (g, z, w),
Y = (G,Z,W) ∈ R6 (all considered as column vectors). Make the symplectic change
of coordinates of the form

Q = AX, P = A−T Y,

where A is a 6× 6 matrix. This was the first example we constructed, but not by
the general Gram–Schmidt procedure given in Theorem2.1. If you were given two
orthonormal vectors inR3 and asked to find a third to form an orthonormal triple and
hence an orthogonal matrix you would simply take the cross product. This example
was constructed by analogy to the above. Think ofA as a block matrix made up of
2× 2 matrices, i.e.

A =

A11 A12 A13
A21 A22 A23
A31 A32 A33


 ,

where eachAij is a 2× 2 matrix. The first two columns are

A11 = A21 = A31 =
[

1 0
0 1

]
.

Let

Ai2 = [ai, −Jai ] , i = 1,2,3

that is, the first column ofAi2 is ai and the second column is−Jai . Lastly,

A13 =
√
m2m3

m1
(A21A32− A31A22)

T , A23 = −
√
m1m3

m2
(A11A32− A31A12)

T ,

A33 =
√
m1m2

m3
(A11A22− A21A12)

T .

These last three definitions are given in symmetric form and are inspired by the cross
product formulas. They can be simplified by remembering thatAi1 is the identity
matrix.
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Specifically,

A =




1 0
√

3(m2+m3)
2�

m2−m3
2� 0 −√m2m3

�
√
m1

0 1 −m2−m3
2�

√
3(m2+m3)

2�

√
m2m3

�
√
m1

0

1 0 −
√

3m1
2� −m1+2m3

2�

√
3
√
m1m3

2�
√
m2

√
m1m3

2�
√
m2

0 1 m1+2m3
2� −

√
3m1
2� −

√
m1m3

2�
√
m2

√
3
√
m1m3

2�
√
m2

1 0 −
√

3m1
2�

2m2+m1
2� −

√
3
√
m1m2

2�
√
m3

√
m1m2

2�
√
m3

0 1 −2m2+m1
2� −

√
3m1
2� −

√
m1m2

2�
√
m3

−
√

3
√
m1m2

2�
√
m3




.

One can verify directly thatATMA = I and A−1JA = J, and so total angular
momentum is preserved. Kinetic energy in these coordinates is

K = 1
2(‖G‖2+ ‖Z‖2+ ‖W‖2),

angular momentum is

C = gT JG+ zT JZ + wT JW

and the self-potential is independent ofg, and is

S(z,w) =
∑

1� i<j �3

mimj

dij
,

where

�2d2
12 = z2

1 + z2
2 +

m3(m
2
1+m1m2+m2

2)

m1m2
(w2

1 + w2
2)+

√
3m2m3√
m1

(z2w1− z1w2)

−
√
m3(2m1+m2)√

m1m2
(z1w1+ z2w2),

�2d2
23 = z2

1+z2
2+

m1(m
2
2+m2m3+m2

3)

m2m3
(w2

1+w2
2)−

√
3m1(m2+m3)√

m2m3
(z2w1−z1w2)

+
√
m1(m2−m3)√

m2m3
(z1w1+ z2w2),
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�2d2
31 = z2

1 + z2
2 +

m2(m
2
1+m1m3+m2

3)

m1m3
(w2

1 + w2
2)+

√
3m2m3√
m1

(z2w1− z1w2)

+
√
m2(2m1+m3)√

m1m3
(z1w1+ z2w2).

3.1. Kepler’s problem

The invariant subspaceB is given byg = w = G = W = 0. The Hamiltonian in the
variablesz andZ is then the Kepler problem with� = �3

HK = 1

2
‖Z‖2− �

‖z‖ .

Among the solutions of the corresponding differential equations

z̈+ �z
‖z‖3 = 0,

we consider elliptic orbits with semi-major axisa and eccentricitye, and whose
perigee lies on the positivez1-axis. In terms of the true anomalyf these solutions are
given by

z1 = r cosf, z2 = r sinf,

where

r = ‖z‖ = p

1+ e cosf
(14)

andp = a(1−e2) is the latus rectum. The mean motion isn = √�/a3. The Lagrangian
triangular configuration rotates with angular velocity�. Since the two mean motions
have to be the same we can find from� = n the value of the semi-major axis
a = 1/�.

In what follows we will use the true anomaly as the new independent variable and
we go to pulsating coordinates. Thus, we do not use the above result directly, but use
instead the following relationships for the Kepler problem

r2ḟ = √�p =
√

�a(1− e2), r̈ = �
(
p

r3 −
1

r2

)
. (15)
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3.2. Equations in rotating and pulsating coordinates

Settingg = G = 0 fixes the center of mass at the origin and we can restrict ourselves
to consider the Hamiltonian

H = 1
2(Z

2
1 + Z2

2 +W2
1 +W2

2 )− S(z,w).

The three bodies move on elliptic orbits around the origin in such a way that they
always form a central configuration. This motion takes place in the invariant subspace
B and it was described in the previous section. We now change to nonuniformly rotating
and pulsating coordinates, so that the configuration appears to be stationary.

Lemma 3.1. There exist symplectic coordinates	 = (z̄1, z̄2, w̄1, w̄2, Z̄1, Z̄2, W̄1, W̄2)

such that the variational equations for the Lagrangian triangular configuration depend
on the true anomaly f and are given byd	/df = 
	 with


 =




0 1 0 0 1 0 0 0
−1 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0
0 0 −1 0 0 0 0 1

2−cosf
1+e cosf 0 0 0 0 1 0 0

0 −1 0 0 −1 0 0 0

0 0 8m1−m2−m3−4e cosf
4(1+cosf )

3
√

3(m2−m3)
4(1+e cosf ) 0 0 0 1

0 0 3
√

3(m2−m3)
4(1+e cosf )

−4m1+5(m2+m3)−4e cosf
4(1+e cosf ) 0 0 −1 0



.

Proof. We first change to coordinatesz̃ and w̃ which rotate with the speed of the true
anomaly. The transformation matrix is given by

A =
[

cosf − sinf
sinf cosf

]
.

The transformation can be generated by the function

F(Z,W, z̃, w̃) = −ZT Az̃−WTAw̃

and is given by

z = −�F
�Z

= Az̃, Z̃ = −�F
�z̃
= AT Z,

w = − �F
�W

= Aw̃, W̃ = −�F
�w̃

= ATW.
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Since the transformation is time dependent we have to add to the transformed Hamil-
tonian

�F
�t
= −ZT Ȧz̃−WT Ȧw̃ = −Z̃T AT Ȧz̃− W̃T AT Ȧw̃,

so that the Hamiltonian in the coordinates rotating with the true anomaly is given by

H = 1
2(Z̃

2
1 + Z̃2

2 + W̃2
1 + W̃2

2 )+ (z̃2Z̃1− z̃1Z̃2+ w̃2W̃1− w̃1W̃2)ḟ − S(z̃, w̃).

The next step is to introduce coordinatesẑ and ŵ which pulsate withr as given in
(14). The position coordinates are transformed by

z̃ = rẑ, w̃ = rŵ.

It would suffice to scale the momenta by 1/r in order to make the transformation
symplectic but it turns out that the resulting Hamiltonian is simpler if instead the
transformation

Z̃ = 1

r
Ẑ + ṙ ẑ, W̃ = 1

r
Ŵ + ṙŵ

is used. This transformation can be generated by the function

F(z̃, w̃, Ẑ, Ŵ ) = 1

r
(z̃1Ẑ1+ z̃2Ẑ2+ w̃1Ŵ1+ w̃2Ŵ2)+ ṙ

2r
(z̃2

1 + z̃2
2 + w̃2

1 + w̃2
2)

via

ẑ = �F
�Ẑ

, Z̃ = �F
�z̃

, ŵ = �F
�Ŵ

, W̃ = �F
�w̃

.

With

�F
�t
= − ṙ

r
(ẑ1Ẑ1+ ẑ2Ẑ2+ ŵ1Ŵ1+ ŵ2Ŵ2)+ r̈r − ṙ2

2
(ẑ2

1 + ẑ2
2 + ŵ2

1 + ŵ2
2)

the transformed Hamiltonian is

H = 1

2r2 (Ẑ
2
1 + Ẑ2

2 + Ŵ2
1 + Ŵ2

2 )+ (ẑ2Ẑ1− ẑ1Ẑ2+ ŵ2Ŵ1− ŵ1Ŵ2)ḟ

+ rr̈

2
(ẑ2

1 + ẑ2
2 + ŵ2

1 + ŵ2
2)−

1

r
S(ẑ, ŵ).
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The third step is to introduce the true anomaly as the new independent variable. We
achieve this by dividing the Hamiltonian bẏf . We also use the relationships (15) and
arrive at

H = 1

2
√
p�

(Ẑ2
1 + Ẑ2

2 + Ŵ2
1 + Ŵ2

2 )+ ẑ2Ẑ1− ẑ1Ẑ2+ ŵ2Ŵ1− ŵ1Ŵ2

+�(p − r)

2
√
p�

(ẑ2
1 + ẑ2

2 + ŵ2
1 + ŵ2

2)−
r√
p�

S(ẑ, ŵ).

The last step uses the scalinĝZ → √
p�Ẑ and Ŵ → √

p�Ŵ . This is a symplectic
transformation with multiplier 1/

√
p�, so that finally the Hamiltonian is given by

H = 1

2
(Ẑ2

1 + Ẑ2
2 + Ŵ2

1 + Ŵ2
2 )+ ẑ2Ẑ1− ẑ1Ẑ2+ ŵ2Ŵ1− ŵ1Ŵ2

+p − r

2p
(ẑ2

1 + ẑ2
2 + ŵ2

1 + ŵ2
2)−

r

p�
S(ẑ, ŵ).

With � = �3 the corresponding system of differential equations has a stationary solution
for ẑ1 = Ẑ2 = 1, ẑ2 = Ẑ1 = ŵ1 = ŵ2 = Ŵ1 = Ŵ2 = 0. In order to study what happens
to solutions nearby we look at the variational equations. We set

ẑ1 = 1+ z̄1, ẑ2 = z̄2, Ẑ1 = Z̄1, Ẑ2 = 1+ Z̄2,

ŵ1 = w̄1, ŵ2 = w̄2, Ŵ1 = W̄1, Ŵ2 = W̄2,

and determine the second-order terms of the HamiltonianH:

H2 = 1

2
(Z̄2

1 + Z̄2
2)+ Z̄1z̄2− Z̄2z̄1− 2− e cosf

2(1+ e cosf )
z̄2

1 +
1

2
z̄2

2

+1

2
(W̄2

1 + W̄2
2 )+ W̄1w̄2− W̄2w̄1

+ 1

8(1+ e cosf )
((−8+ 9m2+ 9m3+ 4e cosf )w̄2

1

−6
√

3(m2−m3)w1w2+ (4− 9m2− 9m3+ 4e cosf )w̄2
2).

The matrix
 for the variational equations follows from this Hamiltonian.�
As expected the variational equations split into two components. The part corre-

sponding to the first line inH2 gives the variational equations for elliptic orbits in the
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two body problem. The four characteristic multipliers in this case are all 1. Thus we
can concentrate on the second part inH2. With the vectorw̄ = (w̄1, w̄2, W̄1, W̄2) the
variational equations in matrix form are

dw̄

dt
=




0 1 1 0
−1 0 0 1

8−9m2−9m3−4e cosf
4(1+e cosf )

3
√

3(m2−m3)
4(1+e cosf ) 0 1

3
√

3(m2−m3)
4(1+e cosf )

−4+9m2+9m3−4e cosf
4(1+e cosf ) −1 0


 w̄. (16)

It is advisable to bring the 2× 2 submatrix in the lower left corner of the matrix in
(16) into diagonal form, as then the matrix will only depend on the parameter�. This
diagonalization can be accomplished by a rotation in the position and in the momenta
space.

Since the sum of the three masses is equal to 1, given� we can then determine the
massesm1 andm2 in terms ofm3 and � by

m1 = 1
2(1−m3−

√
(1−m3)(1+ 3m3)− 4�2),

m2 = 1
2(1−m3+

√
(1−m3)(1+ 3m3)− 4�2).

Since the above square root will appear frequently in the matrix for the rotation

we abbreviate byS =
√
(1−m3)(1+ 3m3)− 4�2. The rotation matrix for the position

variables and also for the momenta is given by the orthonormal
matrix

T =




−1+3m3+3S−4
√

1−3�2

2
√

2
√

4(1−3�2)+(1−3m3−3S)
√

1−3�2

−1+3m3+3S+4
√

1−3�2

2
√

2
√

4(1−3�2)−(1−3m3−3S)
√

1−3�2

√
3(−1+3m3−S)

2
√

2
√

4(1−3�2)+(1−3m3−3S)
√

1−3�2

√
3(−1+3m3+S)

2
√

2
√

4(1−3�2)−(1−3m3−3S)
√

1−3�2


 .

We thus have the following result, which can be verified by carrying out the transfor-
mation.

Proposition 3.1. The transformed variational equations only depend on� or on a
related parameter

� = √27�
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and the variational equations are given by

dw

dt
=




0 1 1 0
−1 0 0 1

1+√9−�2−2e cosf
2(1+e cosf ) 0 0 1

0 1−√9−�2−2e cosf
2(1+e cosf ) −1 0


w. (17)

For the coordinates in the rotated frame we have reused the vectorw=(w1, w2,W1,W2).
The variational equations can also represented by the Hamiltonian

H = (1− 2e cosf )(w2
1 + w2

2)−
√

9− �2(w2
1 − w2

2)

4(1+ e cosf )

+1

2
(W2

1 +W2
2 )+ w2W1− w1W2. (18)

3.3. Versal normal form

The change of coordinates and the resulting equations are very similar to those
of the elliptic restricted three-body problem near the Lagrangian pointL4. Thus, it
is not surprising, that the methods used in[22] are also applicable here. It appears
impossible to integrate the Eq. (17) in closed form. Instead we treate as a small
parameter and work with series expansion ine. We can bring these series into normal
form with the help of the Lie transformation of Deprit[12]. Before this can be done
the matrix (17) has to be put into normal form whene = 0. The matrix in (17)
is then

A =




0 1 1 0
−1 0 0 1

1
2(1+

√
9− �2) 0 0 1

0 1
2(1−

√
9− �2) −1 0


 . (19)

It has the eigenvalues±
√
(−1±√1− �2)/2 = ±i(

√
1+ � ± √1− �)/2. Since the

stability changes at� = 1 (or � = 1/
√

27) we will use a versal normal form near
� = 1. With complex coordinates the versal for (17) is given by

� =




i
2

√
1+ � 0 0 1−�

4
0 − i

2

√
1+ � 1−�

4 0
0 −1 − i

2

√
1+ � 0

−1 0 0 i
2

√
1+ �


 . (20)
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The transformation matrixT = (�1, �2, �3, �4) has complex valued column vectors with
�2 = �1 and �3 = �4. The conditionT� = AT results in the set of equations

(A− i
√

1− �2 I)�1 = �4, (21)

(A− i
√

1− �2 I)�4 = 1− �
4

�1. (22)

By substituting (22) into (21) we obtain the system of equations

(
(A− i

√
1− �2 I)2− 1− �

4
I

)
�1 = 0

for �1. The system of equations has two linearly independent solutions, given here with
the two arbitrary parametersr1 and r2

�1 = r1




−2(3+ �)
−i
√

1+ �(3+ �+√9− �2)

0
(2+ �)

√
9− �2


+ r2




i
√

1+ �(3+ �−√9− �2)

−2(3+ �)
(2+ �)

√
9− �2

0


 .

The vector�4 is found from (21) to be

�4 = r1




i
√

1+ �
√

9− �2

−1
2(3+ �)(3− �+√9− �2)

3+ �+√9− �2

i
2

√
1+ �(�+ 3)(�− 2)


+ r2



−1

2(3+ �)(−3+ �+√9− �2)

−i
√

1+ �
√

9− �2

− i
2

√
1+ �(3+ �)(�− 2)

3+ �−√9− �2


 .

The parametersr1 and r2 can now be chosen so that the transformation is symplectic.
This results in the two equations

0 = (3+ �+
√

9− �2)r2
1 − (3+ �−

√
9− �2)r2

2,

1

(�− 2)(�+ 3)(�+ 1)
= (3+ �+

√
9− �2)r2

1 + (3+ �−
√

9− �2)r2
2,

which corresponds to the intersection of two lines through the origin with an ellipse.
A solution is given by

r1 = 1√
2(�+ 1)(�+ 3)(�− 2)(3+ �+√9− �2)

,

r2 = 1√
2(�+ 1)(�+ 3)(�− 2)(3+ �−√9− �2)

.
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We have thus shown how to construct a symplectic transformation to the versal
normal form, which is summarized in the following lemma.

Lemma 3.2. Let 	 = (
1, 
2, �1, �2)
T be the coordinates for the complex normal form

(20), that is 	 = Tw, where
1 and 
2 are the position coordinates and�1 and �2 are
the momenta. Real solutions are given when
1 = 
2 and �1 = �2. The Hamiltonian
corresponding to(20) is

K0,0 = i�(
1�1− 
2�2)+ 
1
2+ ε�1�2

with ε = (1− �)/4 and � = 1
2

√
1+ �. Values of interest are those of� near 1.

Remark. If the real versal normal form of (19) is desired then it is given by




0 −
√

1+�
2

1−�
4 0√

1+�
2 0 0 1−�

4

−1 0 0 −
√

1+�
2

0 −1
√

1+�
2 0




and the transformation to it is given by the matrix
√

2(Re(�1), Im(�1),−Re(�4),

−Im(�4)).

3.4. Lie transformation to normal form whene �= 0

Lemma 3.3. For e �= 0 the normal form of the Hamiltonian for the variational problem
near � = 1 is given by

K∗ = i�(
1�1− 
2�2)+ 
1
2+ ε�1�2

+
∑
n=1

e2n

(2n)! (ip2n(
1
2− �1�2)+ q2n�1�2), (23)

wherep2n and q2n are numerical constants, which can be considered to be corrections
to � and ε whene �= 0 and � �= 1.

Proof. When the eccentricitye is not zero the Hamiltonian for the variational equations
has the form

K = K0,0 +
∑
n=1

en

n!K0,n.
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The terms inK0,n have the form

�eikf 
i11 
i22 �j1
1 �j2

2 with i1+ i2+ j1+ j2 = 2 and |k|�n.

The Lie transformation uses a near identity transformation, which is generated by

W =
∑
n=0

en

n!Wn+1,

where the functionsWn+1 are constructed order-by-order so that the transformed Hamil-
tonian

K∗ = K0,0 +
∑
n=1

en

n!Kn,0

is as simple as possible. Since our Hamiltonian is nonautonomous thenth order terms
are determined by

Kn,0 = P + {K0,0;Wn

}− �Wn

�f
,

whereP depends only on known terms and{ · ; · } denotes the usual Poisson bracket.
All terms in the range of the operator

{
K0,0; ·

}− �
�f

(24)

can be eliminated. Since there are only 10 quadratic monomials in the four variables of
	 we can determine the kernel of the adjoint operator of (24) directly. Representation
theory of sl(2, R) shows that the space of quadratic monomials splits into four invariant
subspaces for (24), see[4]. Bases for these subspaces are

{�2
1,2
2�1,2
2

2}, {�1�2, 
1�1+ 
2�2,2
1
2}, {�2
2,2
1�2,2
2

1}, {i(
1�1− 
2�2)}. (25)

Consider the first subspace given in (25) and let

�1(f )�2
1+ 2�1(f )
2�1+ 2�1(f )


2
2
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be the term inP which lies in this subspace. We try to find the coefficientsa1(f ),
b1(f ) and c1(f ) for the corresponding terms inWn so that the terms inKn,0 are zero.
In matrix form this condition reads

d

df


 a1
b1
c1


−


 2i� −2ε 0

1 2i� −2ε
0 1 2i�




 a1
b1
c1


 =


 �1

�1
�1


 .

The right-hand side contains various powers of eif , but with � near
√

2/2 there is no
problem with resonances and all these terms inKn,0 can be eliminated by selecting
the appropriate functionsa1(f ), b1(f ) and c1(f ).

For the second subspace in (25) we obtain the condition

d

df


 a2
b2
c2


−


 0 −2ε 0

1 0 −2ε
0 1 0




 a2
b2
c2


 =


 �2

�2
�2


 .

Again for a periodic right-hand side a solution fora2(f ), b2(f ) and c2(f ) exists
provided that�2(f ) does not contain a constant term. It means that all terms inK0,n
can be eliminated with the exception ofqn�1�2 with qn being a constant term.

For the third subspace in (25) we obtain the condition

d

df


 a3
b3
c3


−


−2i� −2ε 0

1 −2i� −2ε
0 1 −2i�




 a3
b3
c3


 =


 �3

�3
�3


 .

For all possible right-hand sides there exists a solution fora3(f ), b3(f ) and c3(f )

so that all corresponding terms inK0,n can be eliminated. Finally for the last, one-
dimensional subspace in (25) the normalizing condition reads

da4

df
= �4(f )

so that all terms except ipn(
1
2 − �1�2) with pn constant can be eliminated. Due to
the way in which the true anomaly enters into the Hamiltonian,pn andqn will be zero
for odd n and real for evenn. Thus the normal form of the Hamiltonian is

K∗ = i�(
1�1− 
2�2)+ 
1
2+ ε�1�2

+
∑
n=1

e2n

(2n)! (ip2n(
1
2− �1�2)+ q2n�1�2). �
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Since the higher-order terms are thus simply corrections toε and �, we set

w = �+
∑
n=1

e2n

(2n)!p2n and � = ε +
∑
n=1

e2n

(2n)!q2n

and get

K∗ = iw(
1�1− 
2�2)+ 
1
2+ ��1�2.

From this we derive the differential equations


′1 = iw
1+ ��2,


′2 = −iw
2+ ��1,

�′1 = −iw�1− 
2,

�′2 = iw�2− 
1.

Due to the reality conditions we only have to consider the first and last of these
equations. They are easily solved by setting


1 = eiwf x and �2 = eiwf y

which gives

x′ = �y and y′ = −x.

Therefore, the change in stability occurs when� = 0 that is for

ε = −
∑
n=1

e2n

(2n)!q2n.

3.5. Direct computation of the stability boundary

Unfortunately, the computational effort is substantial when the method of Lie trans-
formation is used. Nevertheless, the knowledge obtained in the previous section allows
us to determine the stability boundary more easily by finding it directly from (16) or
from the equivalent system of second-order differential equations

Q′′1 − 2Q′2− g(1+ h)Q1 = 0,

Q′′2 + 2Q′1− g(1− h)Q2 = 0



K.R. Meyer, D.S. Schmidt / J. Differential Equations 214 (2005) 256–298 281

with

g = 3

2(1+ e cosf )
and h =

√
1− �2/9.

The system can be written with complex position coordinatesz = Q1+ iQ2 as

z′′ + 2iz′ − gz− ghz = 0. (26)

We will look for solutions of the form

z = ueiwf + ve−iwf .

The resulting differential equations are then

u′′ + 2i(w + 1)u′ − (w2+ 2w + g)u− ghv = 0,

v′′ − 2i(w − 1)v′ − (w2− 2w + g)v − ghu = 0.

The solution will be found as a series ine order-by-order, that is, we set

u =
∑
n=0

une
n,

v =
∑
n=0

vne
n,

w =
√

2

2
+
∑
n=1

wne
n,

� = 1

4

(
1− �+

∑
n=1

�ne
n

)
.

Since we want to determine the stability boundary and we know that it occurs for
� = 0 the series to be used for� is

� = 1+
∑
n=1

�ne
n.

The functiong is given by

g = 3r

2p
= 3

2
+
∑
n=1

gne
n with gn = 3(−1)n

2n+1

n∑
k=0

(
n

k

)
ei(n−2k)f . (27)
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Since

h =
√

1− �2/9= 2
√

2

3
+
∑
n=1

hne
n

it can also be found as a series ine.
The differential equations foru0 and v0 read

u′′0 + i(
√

2+ 2)u′0 − (
√

2+ 2)u0 −
√

2 v0 = 0,

v′′0 − i(
√

2− 2)v′0 + (
√

2− 2)v0 −
√

2 u0 = 0.

These equations have the constant solution

u0 = 1−√2/2, v0 = −
√

2/2

and a linear solution inf, which is of no interest at the moment. The differential
equations forun and vn have the form

u′′n + i(
√

2+ 2)u′n − (
√

2+ 2)un −
√

2 vn = �, (28)

v′′n − i(
√

2− 2)v′n + (
√

2− 2)vn −
√

2 un = �. (29)

Due to (27) the functions� and � have the form

� =
n∑

k=−n
�keikf , � =

n∑
k=−n

�ke
ikf ,

where all coefficients depend on terms which have already been calculated. There is
one exception, since�0 and �0 containwn and �n in a linear manner. At each order
n > 0 we set

un =
n∑

k=−n
Ake

ikf , vn =
n∑

k=−n
Bke

ikf .

By substituting into (28) and (29) and comparing coefficients we obtain fork �= 0

−(k2+ (
√

2+ 2)k + 2+√2)Ak −
√

2B−k = �k,

−√2Ak − (k2− (2−√2)k + 2−√2)B−k = �−k.
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The system of equations has the solution

Ak = (−k2+ (2−√2)(k − 1))�k +
√

2�−k
k2(k +√2)2

,

B−k =
√

2�k − (k2+ (2+√2)(k + 1))�−k
k2(k +√2)2

.

For k = 0 the equations from (28) and (29) are

−(√2+ 2)A0 −
√

2B0 = �0,

−√2A0 + (
√

2− 2)B0 = �0.

At all orders n > 0 we are free to choose the initial conditions for the solution and
we can selectA0 = B0 = 0. We then solve�0 = 0 and �0 = 0 for �n and wn. The
boundary curve for the change in stability is then� = 1+∑n=1 �ne

n. By performing
these computations we obtain the following result:

Theorem 3.1. The curve where two nontrivial multipliers of the variational equations
are 1, is given by

� = 1+ e2− 17

16
e4+ 803

256
e6− 2 416 719

229 376
e8+ 20 166 411 233

51 380 224
e10± · · · . (30)

To the left of the curve the multipliers are on the unit circle, but to the right they are
on the real axis, resulting in linear instability.

3.6. Normal form for the short and long period families

For the moment consider zero eccentricity, that ise = 0 in (17). Then for 0�� < 1,
that is 0< � < 1/

√
27, the eigenvalues of the matrix in (17) are purely imaginary.

They are of the form±i�s, ±i�l with 0 < �l <
1√
2
< �s < 1. The frequencies are

given by

�l =
√

1

2
(1−

√
1− �2), �s =

√
1

2
(1+

√
1− �2).

The indices were chosen to remind of the families of long and short periodic orbits, as
the situation is very similar to the one near the Lagrangian pointL4 in the restricted
problem of three bodies.
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Lemma 3.4.With action angle variables(�1,�2,�1,�2) the Hamiltonian of the vari-
ational equations(17) has the normal form

H = �s�1− �l�2

for 0 < � < 1 and e = 0.

Proof. For e = 0 the matrix in (17) can be brought into real normal form by the transfor-
mationw = T x, with the column vector as used previously andx = (x1, x2, X1, X2)

T .
The transformation matrix is

T =



−4−√1−�2+√9−�2

c1

4−√1−�2−√9−�2

c2
0 0

0 0 −4�s
c1

−4�l
c2

0 0 (
√

9−�2−√1−�2)�s
c1

(
√

9−�2+√1−�2)�l
c2

−2+√1−�2+√9−�2

c1

2+√1−�2−√9−�2

c2
0 0


 .

The factorsc1 and c2 are chosen such thatT is symplectic and they are given by

c2
1 =

√
1− �2(4+

√
1− �2−

√
9− �2)�s/2,

c2
2 =

√
1− �2(4−

√
1− �2−

√
9− �2)�l/2.

In Cartesian coordinates the Hamiltonian is therefore

H = �s

2
(x2

1 +X2
1)−

�l

2
(x2

2 +X2
2)

from which the normal form in action angle variables follows.�
For e �= 0 the above transformation produces many additional terms. As before we

expand the transformed Hamiltonian (18) into a series ine and obtain

H = �s�1− �l�2+
∑
n�1

∑
Ai0i1i2 cos(i1�1+ i2�2+ i0f ). (31)

The indices for the inner sum are restricted by

|i1| + |i2|�2 and |i0|�n, (32)

and the coefficientsAi0i1i2 are homogeneous polynomials of degree 2 in
√

�1 and
√

�2.
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Via a Lie transformation all terms in (3.6) can be eliminated except those that are
in the kernel of the operator

�s
�

��1
− �l

�
��2

− �
�f

. (33)

Due to the restriction (32) on the indices, resonances between�l and�s do not play a
role at this order, but when�l = 1

2 a resonance with the forcing function is possible.

This happens when� =
√

3
2 . The characteristic multipliers are at−1 then and can leave

the unit circle.

Lemma 3.5. For 0 < � < 1 but � �= √3/2 the normal form of the Hamiltonian(3.6)
is that of two harmonic oscillators. For� = √3/2+∑ en�n the normal form is

H = �1�1− �2�2+ eA�2 cos(2�2− f ) (34)

where�1 =
√

3/2+ e�̃1, �2 = 1
2 + e�̃2. The functions�̃1, �̃2 and A depend on e

and on�n, n = 1,2, . . ..

Proof. Roberts has already shown in[18] the existence of this exceptional value
and that it gives rise to an interval of instability whene �= 0, a feature which was
missed by Danby in[6]. That (34) is the normal form of (3.6) follows from the kernel
(33). �

Lemma 3.6. For |�̃2| > |A| the origin in the Hamiltonian(34) is stable, and unstable
when |�̃2| < |A|.

Proof. With the new variable�2 = �2 − 1
2f and without the ignorable variable�1

the Hamiltonian (34) becomesH = e�2(−�̃2 + A cos 2�2). By looking at the level
curves of this function the result follows. Therefore, change of stability occurs when
|�̃2| = |A|, that is at solutions with twice the period of the forcing function.�

3.7. Direct computation of the period doubling curves

The series expansion for the period doubling curve� = √3/2+∑n>0 �ne
n is found

more easily by solving (26) directly. The functiong is given in (27), but this time

h =
√

1− �2

9
=
√

33

4
+
∑

hne
n
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and we are looking for solutions of the form

z =
∑
n�0

zne
n with zn =

2n+1∑
k=−2n−1

zn,ke
ikf/2.

For n = 0 a nonzero�-periodic solution of (26) is

z0 =
√

3eif/2−√11e−if/2.

For n > 0 the differential equations (26) leads to the algebraic equations

(
−k2

4
− k − 3

2

)
zn,k −

√
33

4
zn,−k = �n,k, (35)

−
√

33

4
zn,k +

(
−k2

4
+ k − 3

2

)
zn,−k = �n,−k, (36)

with k = 1, . . . ,2n + 1 and where�n,k and �n,−k depend only on known terms from
previous orders. One exception is�n,1 and �n,−1, which depend linearly on�n.

The determinant for (35,36) is (k2 − 1)(k2 − 3)/16, so that he coefficientszn,k can
be found uniquely fork�2. Whenk = 1, Eq. (35) can be used to determine also�n.
In order to make the solution unique an additional condition likezn,1 = zn,−1 can be
imposed. Finally, settingzn,0 = 0 at all orders will satisfy (35) when k = 0.

Theorem 3.2. A period doubling curve starts at� = √3/2, that is at� = 1
6. A series

expansion for this period doubling curve is given by

� =
√

3

2
+
√

11

4
e − 25

64
√

3
e2− 483

1024
√

11
e3− 2113

49 152
√

3
e4

− 565 461

2 883 584
√

11
e5− · · · . (37)

Proof. A computer algebra program was used to calculate the series by the method
outlined above to an order much higher than what is listed. The perigee of an elliptic
orbit can shift by 180 degrees when the eccentricity goes through zero. Negative values
for the eccentricity can be interpreted in this way and therefore the series (37) is valid
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Fig. 1. Curves in thee–� plane, where the stability Lagrangian triangular configuration changes. The
curves are plotted from series expansions ine.

for positive and negative values ofe. Nevertheless, the period doubling curve is drawn
only in the first quadrant of thee–� plane in Fig.1 in order to visualize the region
of instability starting on the�-axis at� = √3/2. The curve to the right of� = √3/2
belongs toe > 0 and the one to the left toe < 0.

Since the coefficients in the series (37) appear to be bounded we can plot� as
a function of e for |e|�1. On the other hand, the coefficients of the series in (30)
increase in magnitude when higher-order terms are computed. When graphing this curve
it becomes apparent that the series (30) converges for about|e| < 0.4.

Fig. 1 is in agreement with the numerical work of Roberts in[18]. He finds that the
stability curve starting at� = 1 and the one starting at� = √3/2 become tangent to
each other. Roberts also finds that the period doubling curve is tangent to thee-axis at
e = 1. That it does not show up in our figure is not surprising, since we have computed
series, which are only accurate for small values ofe. �

4. Regular polygon configurations

For regular polygon configurations with a central mass it is inconvenient to normalize
the masses so that their sum is equal to one. Instead the transformation matrixA, which
was constructed in Theorem2.1, can be modified in order to accommodate this case.
For arbitrary masses the first two columns ofA, that is c1 and c2, have to be divided

by
√∑n

i=1mi and the next two columns by
√∑n

i=1 |ai |2mi .
For regular polygon configurations circulant matrices are useful. They are defined as

follows:
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Definition 4.1. Let � = e2�i/n be an nth root of unity. A circulant matrix has the
following form:




1 1 1 · · · 1
1 � �2 · · · �n−1

1 �2 �2 · · · �2(n−1)

...
...

...
...

1 �n−1 �2(n−1) · · · �(n−1)2


 .

For properties of circulant matrices see for example[3]. Here, it suffices to state that
each complex number�k corresponds to a 2×2 submatrix ofAij of our transformation
matrix since it has the special form as required by Theorem2.1:

[
cos 2�k/n − sin 2�k/n
sin 2�k/n cos 2�k/n

]
.

When considering a configuration withn unit masses at the vertices of a regular polygon
and a mass of size� at the center of the polygon we can use circulant matrices to
determine the first 2n columns of the transformation matrix. The columnc2n+1 can be
set up likec1 except that the last nonzero component inc2n+1 will be given a different
value, so thatc1 and c2n+1 are orthogonal to each other.

As the easiest example we consider first the regular triangular configuration with
a central mass. The three unit masses will be unit distance away from the mass�
at the origin. When the three bodies move on circular orbits they appear to be at
a relative equilibrium in a coordinate system, which rotates uniformly with angular

velocity � =
√√

3/3+ � around the origin. In order to consider the case where the
three bodies move on elliptic orbits we first carry out the transformation as outlined
above.

Proposition 4.1. Letm1 = m2 = m3 = 1 andm4 = � denote the masses in a four body
problem. A solution of(3) is the central configurationa1 = (1,0), a2 = (−1/2,

√
3/2),

a3 = (−1/2,−√3/2), and a4 = (0,0). It represents an equilateral triangular solution
with equal masses and another mass at the origin. LetX = (g, z, w1, w2) ∈ R8 be
the transformed position vector andQ = (q1, q2, q3, q4) the original position vector.
With the transformationQ = AX for the position coordinates andP = A−T Y for the
momenta the transformed Hamiltonian is given by

H = 1
2(‖ G ‖2 + ‖ Z ‖2 + ‖ W1 ‖2 + ‖ W2 ‖2)− S(z,w1, w2,�).
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In the subspaceB, where g = w1 = w2 = G = W1 = W2 = 0, the Hamiltonian
represents the Kepler problem

HK = 1

2
‖ Z ‖2 −3(1+√3�)

‖ z ‖ .

Proof. The transformation matrix is constructed as outlined above and given by

A =




1√
3+� 0

√
3

3 0
√

3
3 0

−√�√
3(3+�)

0

0 1√
3+� 0

√
3

3 0
√

3
3 0

−√�√
3(3+�)

1√
3+� 0 −

√
3

6 −1
2 −

√
3

6
1
2

−√�√
3(3+�)

0

0 1√
3+�

1
2 −

√
3

6 −1
2 −

√
3

6 0
−√�√
3(3+�)

1√
3+� 0 −

√
3

6
1
2 −

√
3

6 −1
2

−√�√
3(3+�)

0

0 1√
3+� −1

2 −
√

3
6

1
2 −

√
3

6 0
−√�√
3(3+�)

1√
3+� 0 0 0 0 0

√
3√

�(3+�)
0

0 1√
3+� 0 0 0 0 0

√
3√

�(3+�)




.

Since the Hamiltonian does not depend ong we will ignore it and its conjugate
variable by settingg = G = 0. It should be noted thatA becomes singular for
� = 0. (The case� = 0 reduces to the equilateral triangle central configuration
treated above.) Although negative masses are physically meaningless, we can consider
them mathematically. The transformation matrixA requires that� > −√3, but � > 0
in the Kepler problem of the proposition gives the more restrictive condition
� > −√3/3. �

In order to consider elliptic orbits of the Kepler problem, we again go to pulsating
coordinates which rotate nonuniformly with the true anomaly of the Kepler problem.
The change of coordinates are the same as those for Lemma3.1 so that in these
coordinates the Hamiltonian is given by

H = 1

2
(‖ Z̄ ‖2 + ‖ W̄1 ‖2 + ‖ W̄2 ‖2)− z̄T J Z̄ − w̄T

1 JW̄1− w̄2JW̄2

+ e cosf

2(1+ e cosf )
(‖ z̄ ‖2 + ‖ w̄1 ‖2 + ‖ w̄2 ‖2)

− S(z̄, w̄1, w̄2,�)

3(1+√3�)(1+ e cosf )
. (38)
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Proposition 4.2. The Hamiltonian(38) has a stationary point atz1 = Z2 = 1, z2 =
w1 = w2 = w3 = w4 = Z1 = W1 = W2 = W3 = W4 = 0. The Hamiltonian for the
variational equations in the subspaceC is given by the quadratic terms of(38). For
these terms we use the notationw̄1 = (w1, w2), w̄2 = (w3, w4), W̄1 = (W1,W2), and
W̄2 = (W3,W4) and find

H2 = 1

2
(W2

1 +W2
2 +W2

3 +W2
4 )+ w2W1− w1W2+ w4W3− w3W4

− 1

4(1+ e cosf )

(
w2

1 + w2
2 +

√
3(3+√�)

1+√3�
(w2

3 + w2
4)

−6
√

3�(3+ �)

1+√3�
(w1w3− w2w4)

)
.

Proof. Due to the rotational symmetry of elliptic relative equilibrium the entire
unit circle in thez1–z2 plane consists of stationary points. We have selected a represen-
tative. �

We restricted our discussion to the casee = 0. In this case the variational equations
are given bydw/df = 
w with the column vectorw = (w1, w2, w3, w4,W1,W2,

W3,W4). The matrixA is then independent of the true anomaly and is given by


 =




0 1 0 0 1 0 0 0
−1 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0
0 0 −1 0 0 0 0 1
1
2 0 −3

√
3�(3+�)

2
√

1+√3�
0 0 1 0 0

0 1
2 0

3
√

3�(3+�)

2
√

1+√3�
−1 0 0 0

−3
√

3�(3+�)

2
√

1+√3�
0

√
3(3+�)

2(1+√3�)
0 0 0 0 1

0
3
√

3�(3+�)

2
√

1+√3�
0

√
3(3+�)

2(1+√3�)
0 0 −1 0




. (39)

Proposition 4.3. Consider an equilateral triangular configuration with three equal
masses of1 and a central body of mass�. The bodies rotate on circles(e = 0)
around the center of mass. This configuration is unstable for any mass�.
More precisely, for 0 < � < 0.274423all eight eigenvalues of the matrix A given

in (39) are in the complex plane. For� > 0.274423 four eigenvalues will be on
the imaginary axis, but the other four will remain in the complex plane. At� =
(81+ 64

√
3)/249 two eigenvalues are zero, when bifurcations to new configurations

occur. The two eigenvalues of A will remain on the imaginary axis when� increases
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Fig. 2. Location of the eight eigenvalues of the matrix in (39) as � varies. For−√3/3 < � < 0 the
eigenvalues come from∞ and are indicated by individual dots. For 0< � < 0.274423 all eigenvalues
are complex and they lie on the thin solid lines. For 0.274423< � the location of the eigenvalues is
indicated by thicker gray level lines. Four eigenvalues are on the imaginary axis. The darker dots indicate
the locations of the eigenvalues when� = (81+ 64

√
3)/249 and thus two eigenvalues are zero.

further. When� becomes large the eigenvalues on the imaginary axis tend to±√−1,
whereas those in the complex plane tend towards zero as shown in Fig.2.

Proof. The characteristic polynomial ofA can be written in a special form, see[16,21],

(�4+ ��2+ �)2+ ��2 = 0 (40)

with

� = 3− 3
√

3+ 2
√

3�

2(1+√3�)
,

� = 3(2+ 3
√

3+ (−18+ 5
√

3)�)

4(1+√3�)2
,

� = 2(14− 3
√

3)

(1+√3�)2
.
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Although a configuration with a negative mass at the origin has no physical significance

the eigenvalues ofA can be computed as soon as the rate of rotation� =
√√

3/3+ �

is real. For−√3/3 < � < 0 the solutions of (40) are in the complex plane and come
from complex infinity.

With � > 0 the discriminant

� = 16�(�2− 4�)2+ 4�(4�2− 36�)�− 27�2 = 0 (41)

can be used to determine when there are repeated roots of (40), see[16,21]. It results in
a fourth-order polynomial equation for�. Unfortunately, the solutions of this polynomial
are too complicated in closed form. Two solutions are complex valued, one is negative
and another one is positive. The numerical value for the positive solution is� =
0.274423. At this value two pairs of eigenvalues ofA move onto the imaginary axis
at 0.813956i and−0.813956i, respectively. Of these four eigenvalues two will move
towards the origin and the other two away from it, as� increases. When� = 0, that
is for

� = (81+ 64
√

3)/249≈ 0.770487,

two eigenvalues on the imaginary axis will pass each other at the origin. The other
two eigenvalues on the imaginary axis are at±1.24362i and appear to have reached
their maximum distance from the origin. The above value of� is consistent with what
is found in [14], as it allows bifurcations to new configurations.

As � increases further all four eigenvalues on the imaginary axis will tend to±i.
The other four eigenvalues stay for all� in the complex plane and they tend to zero
as �→∞. �

When investigating the stability of the configuration fore > 0 the values of�
will be of interest where (40) has repeated solutions, that is at� = 0.274423 and at
� = (81+ 64

√
3)/249.

As the final example we consider the five-body problem, where four bodies of unit
mass are at the corners of a square and a body of mass� is at the center.

Proposition 4.4. Let m1 = m2 = m3 = m4 = 1 and m5 = �. A central configuration
is given bya1 = (1,0), a2 = (0,1), a3 = (−1,0), a4 = (0,−1), and a5 = (0,0).
Let Q = (q1, q2, q3, q4, q5) ∈ R10 be the old position coordinates for the five bod-
ies andX = (g, z, w1, w2, w3) the new position. The transformationQ = AX and
the related one for the momenta gives the Hamiltonian for the five-body problem in
the form

H = 1
2(‖ G ‖2 + ‖ Z ‖2 + ‖ W1 ‖2 + ‖ W2 ‖2 + ‖ W3 ‖2)

−S(z,w1, w2, w3,�). (42)
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In the subspaceB, the Hamiltonian represents the Kepler problem

HK = 1

2
‖ Z ‖2 −2+ 4

√
2+ 8�

‖ z ‖ .

Proof. The transformation matrix is again constructed with the help of circulant matrices
and given by

A =




1√
4+� 0 1

2 0 1
2 0 1

2 0
−√�

2
√

4+� 0

0 1√
4+� 0 1

2 0 1
2 0 1

2 0
−√�

2
√

4+�
1√
4+� 0 0 −1

2 −1
2 0 0 1

2
−√�

2
√

4+� 0

0 1√
4+�

1
2 0 0 −1

2 −1
2 0 0

−√�
2
√

4+�
1√
4+� 0 −1

2 0 1
2 0 −1

2 0
−√�

2
√

4+� 0

0 1√
4+� 0 −1

2 0 1
2 0 −1

2 0
−√�

2
√

4+�
1√
4+� 0 0 1

2 −1
2 0 0 −1

2
−√�

2
√

4+� 0

0 1√
4+� −1

2 0 0 −1
2

1
2 0 0

−√�
2
√

4+�
1√
4+� 0 0 0 0 0 0 1

2
2√

�(4+�)
0

0 1√
4+� 0 0 0 0 0 0 1

2
2√

�(4+�)




. �

Proposition 4.5. In a nonuniformly rotating and pulsating coordinate system the Hamil-
tonian (42) becomes

H = 1

2
(‖ Z̄ ‖2 + ‖ W̄1 ‖2 + ‖ W̄2 ‖2 + ‖ W̄3 ‖2)− z̄T J Z̄ − w̄T

1 JW̄1− w̄2JW̄2

−w̄3JW̄3+ e cosf

2(1+ e cosf )
(‖ z̄ ‖2 + ‖ w̄1 ‖2 + ‖ w̄2 ‖2 + ‖ w̄3 ‖2)

− S(z̄, w̄1, w̄2, w̄3,�)

(2+ 4
√

2+ 8�)(1+ e cosf )
.

The Hamiltonian has a stationary point atz̄ = (1,0), Z̄ = (0,1) with all other two-
dimensional vectors set to zero. Usēwi = (w2i−1, w2i ) for i = 1,2,3 and use a
similar notation for the momenta. Then the Hamiltonian for the nontrivial part of the
variational problem can be written as the sum of two separate Hamiltonian functions,
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that is,

H2 = H
(1)
2 +H

(2)
2

with

H
(1)
2 = 1

2
(W2

1 +W2
2 +W2

5 +W2
6 )+W1w2−W2w1+W5w6−W5w6

− 1

(1+ 2
√

2+ 4�)(1+ e cosf )
{(√2+ �)(w2

1 + w2
2)

−6
√

�(4+ �)(w1w5− w2w6)

+(4+ �)(w2
5 + w2

6)} (43)

and

H
(2)
2 = 1

2
(W2

3 +W2
4 )+W3w4−W4w3− 1

(1+ 2
√

2+ 4�)(1+ e cosf )

×
{
(1−√2+ 4�)w2

3 −
(

1

2
− 2
√

2+ 4�
)
w2

4

}
. (44)

Proof. The coordinate transformation and the change to the true anomaly as new in-
dependent variable has been carried out as described in Lemma3.1. With it stationary
solutions are always found at the same place that is for‖ z̄ ‖= 1. Using circulant ma-
trices decomposes the variational equations into two parts one with variables from the
set of indices {1,2,5,6} the other one with indices from {3,4}. This has been observed
previously, see[13], and it is known that for anyN + 1-gon configuration moving on
circular orbits, the variational equations can be considered in eight-dimensional sub-
spaces, and whenN is even in an additional four-dimensional subspace. The proposition
shows that the same holds true for elliptic central configurations.

Let w = (w1, w2, w5, w6,W1,W2,W5,W6) be an eight-dimensional column vector,
or the four-dimensional column vectorw = (w3, w4,W3,W4). Then the variational
equation in the appropriate subspace is

dw

df
= 
w with 
 =

[
J I

� J

]
(45)

with J a standard four- or two-dimensional symplectic matrix,I a four or two-
dimensional identity matrix and� the Hessian with respect to the position variables.
For otherN + 1-gon configurations the structure of the variational equations (45) will
remain. �
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We finish our discussion by analyzing the variational equations, which follow from
(43) and (44), when e = 0. For (43) the matrix� in (45) is

� = 2

1+ 2
√

2+ 4�




√
2+ � 0 −3

√
�(4+ �) 0

0
√

2+ � 0 3
√

�(4+ �)
−3
√

�(4+ �) 0 4+ � 0
0 3

√
�(4+ �) 0 4+ �


 .

The characteristic polynomial for
 is again of the form (40) with

� = −−6+ 2
√

2+ 4�

1+ 2
√

2+ 4�
,

� = 25+ 38
√

2− (84− 36
√

2)�

(1+ 2
√

2+ 4�)2
,

� = 32(9− 4
√

2)

(1+ 2
√

2+ 4�)2
.

The location of the eight eigenvalues is indicated in Fig.3. The value of� where two
pairs of eigenvalues meet on the imaginary axis is found by solving the discriminant
(41) numerically. The value where two eigenvalues cross each other at the origin comes
from � = 0 and gives� = (13+ 11

√
2)/12. It is the value where bifurcations to new

configurations is possible, see[14]. As � is increased further the eigenvalues on the
imaginary axis tend to±i, whereas the remaining four eigenvalues tend to zero.

For (44) the matrix� in (45) is

� =
1+ 2

√
2+ 4�

[
2(1−√2+ 4�) 0

0 −(1− 4
√

2+ 4�)

]

and the characteristic polynomial for
 is

�4+ �2+ 18
√

2(1+ 4�)

(1+ 2
√

2+ 4�)2
= 0.

It has the solutions

�2 = −1

2
±
√

16�2+ (8− 272
√

2)�+ 9− 68
√

2

2(1+ 2
√

2+ 4�)
.

The terms under the square root are negative for1
4(−49+34

√
2) < � < 1

4(47+34
√

2).
For this range, which is−0.229< � < 23.77, the eigenvalues� are in the complex
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Fig. 3. Location of the eight eigenvalues of the variational matrix for (43). For −(1+ 2
√

2)/4 < � < 0
the eigenvalues come from∞ and are indicated by individual dots. For 0< � < 1.00716 all eigenvalues
are complex and they lie on the thin solid lines. For 1.00716< � the location of the eigenvalues is
indicated by thicker gray lines. Four eigenvalues are on the imaginary axis. The darker dots indicate the
locations of the eigenvalues when� = (13+ 11

√
2)/12 and thus two eigenvalues are zero.

plane. In the plane for�2 it is obvious that the solutions lie on a line segment parallel
to the imaginary axis with real value−1

2. When� is at the left or right endpoint of the
above interval then� = ±i

√
2/2. With this comment the location of the eigenvalues in

Fig. 4 should become clear. It should be noted that two eigenvalues are at the origin
when � = −1

4. Also the eigenvalues move into the complex plane when� is still
negative. The location of these eigenvalues when� is negative are hidden by the gray
curves.

5. Conclusion

The change of coordinates introduced in Section 2 decouples the phase space into
three components. The first component is for the center of mass and the second one
for the Keplerian motion of the bodies. These two spaces yield the eight trivial mul-
tipliers of +1 arising from the integrals of the problem. The third space, which is the
compliment of the first two, gives the nontrivial multipliers of the problem.

We have shown that our approach reproduces the results of[18] for the Lagrangian
triangular configuration in a systematic fashion. We have started the analysis for the
N + 1 regular polygon configuration and we have presented some details forN = 3
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Fig. 4. Location of the four eigenvalues of the variational matrix for (44). For −(1+ 2
√

2)/4 < � the
eigenvalues come from∞ along the four axis and are indicated by individual dots. For� > 0 the
location of the eigenvalues is indicated by thicker gray lines. As� becomes large two eigenvalues tend
to zero and the other two to±i. The darker dots on the imaginary axis indicate the locations of the
four eigenvalues when� = − 1

4. The darker dots in the complex plane are those for� = 0.

and 4. ForN�6, we find that the relative equilibrium is unstable for all values�
of the central mass in the circular case,e = 0. This was already pointed out in[15]
and studied further in[21]. Unfortunately, for e �= 0 the variational equations are
nonautonomous and are complicated. Therefore, we have not yet analyzed them, and
have no conjecture, if the stability of a relative equilibria changes, as the eccentricity
e is varied.
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