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The existence of two new families of periodic solutions to the spatial restricted
three-body problem is shown. These solutions are independent of the mass ratio of
the primaries, have large inclinations and are symmetric with respect to two coor-
dinate planes. In one family the infinitesimal particle is very far from the primaries
and in the other family the infinitesimal is very close to one of the primaries. � 2000
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1. INTRODUCTION

This paper establishes the existence of two new families of periodic solutions
to the spatial restricted three-body problem by Poincare� 's continuation
method. These families exist for all values of the mass ratio parameter +
and have large inclinations. In one family the infinitesimal particle is far
from the primaries in which case it will be called the comet and in the other
case the infinitesimal is very close to a primary in which case it will be
called the moon. These periodic solutions are perturbations of circular solu-
tions of the Kepler problem. By the Kepler problem we mean the spatial
central force problem with the inverse square law of attraction.

The small parameter = will be introduced as a scale parameter in both
cases. In the comet problem = small means the infinitesimal is near infinity
and for the lunar problem = small means the infinitesimal is close to one
of the primaries. The perturbation problem is very degenerate. First of all,
even to the second approximation the characteristic multipliers are all +1.
Second, the periodic solutions that we establish are undefined when ==0,
and third, for the comet problem the period of the solutions goes to infinity
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as = � 0. These difficulties are overcome by exploiting the symmetries of the
problem and using the implicit function theorem of Arenstorf [1].

In 1965 Jeffreys [5] showed that there exist doubly symmetric, periodic
solutions to the three dimensional restricted three-body problem. The method
of the proof used in this case depends heavily on a symmetry argument,
together with a standard perturbation method applied to the mass ratio +.
Since that time, various treatments of the problem have appeared (see,
for example [2, 3]), all involving either a perturbation of the mass ratio
parameter +, or a perturbation of a solution with a special inclination.

Very few nondegenerate periodic solutions of the spatial restricted problem
have been established rigorously, but there are interesting families of periodic
solutions which have been established using symmetry arguments. Jefferys
[5] used two time-reversing symmetries of the spatial restricted problem to
establish the existence of periodic solutions which are symmetric with
respect to two planes in phase space��hence the name doubly-symmetric
periodic solutions.

2. SYMMETRIES AND SPECIAL COORDINATES

The Hamiltonian of the three-dimensional circular restricted three-body
problem in rotating coordinates is

H=
1
2

( y2
1+ y2

2+ y2
3)&x1 y2+x2 y1

&{ +
[(x1&1++)2+x2

2+x2
3]1�2+

1&+
[(x1++)2+x2

2+x2
3]1�2= , (1)

(see [6]). This Hamiltonian is invariant under the two anti-symplectic
reflections:

R1 : (x1 , x2 , x3 , y1 , y2 , y3) � (x1 , &x2 , &x3 , &y1 , y2 , y3),
(2)

R2 : (x1 , x2 , x3 , y1 , y2 , y3) � (x1 , &x2 , x3 , &y1 , y2 , &y3).

These are time-reversing symmetries, so if (x1(t), x2(t), x3(t), y1(t), y2(t),
y3(t)) is a solution, then so are (x1(&t), &x2(&t), \x3(&t), & y1(&t),
y2(&t), �y3(&t)). The fixed set of these two symmetries are Lagrangian
subplanes, i.e.

L1=[(x1 , 0, 0, 0, y2 , y3)], L2=[(x1 , 0, x3 , 0, y2 , 0)],
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are fixed by the symmetries R1 , R2 . If a solution starts in one of these
Lagrangian planes at time t=0 and hits the other at a later time t=T then
the solution is 4T-periodic and the orbit of this solution is carried into itself
by both symmetries. We shall call such a periodic solution doubly-symmetric.
Geometrically, an orbit intersects L1 if it hits the x1 -axis perpendicularly
and it intersects L2 if it hits the x1 , x3 -plane perpendicularly.

To be more specific, let

(X1(t, :, ;, #), X2(t, :, ;, #), X3(t, :, ;, #),

Y1(t, :, ;, #), Y2(t, :, ;, #), Y3(t, :, ;, #)), (3)

be a solution which starts at (:, 0, 0, 0, ;, #) # L1 when t=0, i.e.

X1(0, :, ;, #)=:, X2(0, :, ;, #)=0, X3(0, :, ;, #)=0,
(4)

Y1(0, :, ;, #)=0, Y2(0, :, ;, #)=;, Y3(0, :, ;, #)=#.

The solution with :=:0 , ;=;0 , #=#0 will be doubly-symmetric periodic
with period 4T if it hits the L2 plane after a time T, i.e.

X2(T, :0 , ;0 , #0)=0, Y1(T, :0 , ;0 , #0)=0, Y3(T, :0 , ;0 , #0)=0.

(5)

This solution will be a nondegenerate doubly-symmetric periodic solution if
the Jacobian

�(X2 , Y1 , Y3)
�(t, :, ;, #)

(T, :0 , ;0 , #0) (6)

has rank three.
It follows from the Implicit Function Theorem that nondegenerate doubly-

symmetric periodic solutions can be continued in the parameter +. In general,
a nondegenerate doubly-symmetric periodic solution may not be non-
degenerate in the classical sense, i.e. a nondegenerate doubly-symmetric
periodic solution may have all its multipliers equal to one.

Jefferys [5] proved the existence of nondegenerate doubly-symmetric
periodic solutions of the spatial restricted three-body problem by first setting
the mass ratio parameter + equal to zero to get the Kepler problem in rotating
coordinates. He then showed that some of the circular solutions of the Kepler
problem where nondegenerate doubly symmetric periodic solutions. Thus,
by the above remarks these solutions can be continued into the restricted
problem for small +. The solutions we seek will exist for all +, but will not
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be nondegenerate in the above sense. This makes the analysis much more
delicate.

We follow Jefferys by using a variation of the Poincare� �Delaunay elements.
First, the Delaunay elements (l, g, k, L, G, K) are a coordinates on the elliptic
domain of the Kepler problem. The elliptic domain is the open set in R6 which
is filled with the elliptic solutions of the Kepler problem. The elements are:
l the mean anomaly measured from perigee, g the argument of the perigee
measured from the ascending node, k the longitude of the ascending node
measured from the x1 axis, L semi-major axis of the ellipse, G total angular
momentum, K the component of angular momentum about the x3-axis.
l, g, and k are angular variables defined modulo 2?, and L, G and K are
radial variables. If i is the inclination of the orbital plane to the x1 , x2

reference plane, then K=\G cos i, and so an orbit is in the x1 , x2-plane when
K=G. (Often, k and K are denoted by h and H, but we are Hamiltonophiles.)

An orbit hits L1 at time t=0 if it is perpendicular to the x1 -axis. So its
orbital plane must be through the x1 -axis or k#0 mod ?, its perigee must
be on the x1 -axis or g#0 mod ?, and it must be at perigee (apogee) or
l#0 mod ?. Thus, L1 in Delaunay elements is defined by l#g#k#
0 mod ?.

An orbit hits L2 at time t=T if it is perpendicular to the x1 , x3-plane. So
its orbital plane must be perpendicular to the x1 , x3-plane or k#?�2 mod ?,
its perigee must be in the x1 , x3 -plane or g#?�2 mod ?, and it must be at
perigee (apogee) or l#0 mod ?. Thus, L2 in Delaunay elements is defined
by l#0, g#k#?�2 mod ?.

Since these coordinates are not valid in a neighborhood of the circular
orbits of the Kepler problem, we change to Poincare� elements as follows:
first make the symplectic linear change of variables

q1=l+ g+k, p1=L&G+K,

q2=&k& g, p2=L&G,

q3=l+ g, p3=G&K,

and now apply the symplectic change of variables defined by the generating
function

W(q, P)=q1P1+
P2

2

2
tan q2+P3q3

so that P2=- 2p2 cos q2 and Q2=- 2p2 sin q2 . This combination of variable
changes gives the new variables:
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Q1=q1=l+ g+k, P1= p1=L&G+K,

Q2=&- 2(L&G) sin(k+ g), P2=- 2(L&G) cos(k+ g), (7)

Q3=q3=l+ g, P3= p3=G&K.

These variables are valid on circular orbits which occur at L=G (see [4,
8]). The circular orbits with L=G correspond to Q2=P2=0.

Thus, L1 in Poincare� elements is defined by Q2=0, Q1 #Q3 #0 mod ?, and
L2 in Poincare� elements is defined by Q2=0, Q1 #0 mod ?, Q3 #?�2 mod ?.

3. APPROXIMATE SOLUTIONS TO THE COMET PROBLEM

To consider orbits close to infinity, scale the variables by x � =&2x, y � =y,
which is symplectic with multiplier =. Thus, with H � =H the Hamiltonian
(1) becomes

H==3 1
2 ( y2

1+ y2
2+ y2

3)&x1y2+x2 y1&U (8)

with potential

U==3 { +
[(x1&=2(1&+))2+x2

2+x2
3]1�2+

1&+
[(x1+=2+)2+x2

2+x2
3]1�2= .

(9)

By expanding U in terms of =2, we can write

H==3 \ | y|2

2
&

1
|x|+&x1 y2+x2 y1+=7H-(x, =, +) (10)

where H- is order 1 in = and meromorphic in x. In Delaunay elements, this
becomes

H=
&=3

2L2 &K+=7H -(l, g, k, L, G, K, =, +). (11)

Since these coordinates are not valid in a neighborhood of the circular
orbits, we change to Poincare� elements (7) and the Hamiltonian becomes

H=
&=3

2(P1+P3)2&P1+
1
2

(P2
2+Q2

2)+=7H-(Q1 , Q2 , Q3 , P1 , P2 , P3 , =, +)

(12)
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and the equations of motion are

Q4 1=
=3

(P1+P3)3&1+=7f1 , P4 1=0+=7f4 ,

Q4 2=P2+=7f2 , P4 2=&Q2+=7f5 , (13)

Q4 3=
=3

(P1+P3)3+=7f3 , P4 3=0+=7f6 .

where the fi are the appropriate partials of H-.
The problem is essentially independent of the mass ratio +, so we can

consider it a fixed parameter for what follows. The parameter = is inversely
proportional to the square root of the distance of the third body from the
primaries. Thus, as = � 0, this distance goes to infinity and the form of the
differential equation (13) degenerates. We cannot, therefore, use perturba-
tion methods which rely on solving the differential equation when ==0.
Instead, we need to obtain solutions for = in a deleted neighborhood of
==0, and to do this we need approximate solutions to this system of dif-
ferential equations and good estimates. Also, since we are looking for
periodic solutions far from the primaries and therefore of long period, we
need these approximate solutions for large values of t and small values
of =.

For now let us define the equations of the first approximation by dropping
the =7 terms, i.e. consider the equations

Q4 1=
=3

(P1+P3)3&1, P4 1=0,

Q4 2=P2 , P4 2=&Q2 , (14)

Q4 3=
=3

(P1+P3)3 , P4 3=0.

These are of course, the equations of motion for the Kepler problem in the
scaled, rotating Poincare� elements.

Consider a solution of (14) which starts on L1 at t=0 with initial condi-
tions Q1=i?, Q2=0, Q3= j?, P1= p1 , P2= p2 , P3= p3 , where p1 , p2 , p3

are constants to be determined and i and j can be either 0 or 1. This solution
is of the form

Q1(t)=\ =3

( p1+ p3)3&1+ t+i?,

Q2(t)=p2 sin t, (15)

Q3(t)=\ =3

( p1+ p3)3+ t+ j?.
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To satisfy the conditions that at time t=T this solution is in L2 it is
sufficient to solve the set of three equations in four unknowns:

Q1(T )=\ =3

( p1+ p3)3&1+ T+i?=(i+k) ?,

Q2(T )=p2 sin T=0, (16)

Q3(T )=\ =3

( p1+ p3)3+ T+ j?=( j+m+1�2) ?.

The second equation is easy to solve by taking p2=0, thus selecting a
circular orbit of the Kepler problem. The difference between the first and
third equation has a solution with T=(m&k+1�2) ? and arbitrary p1 and
p3 . It remains only to solve either the first or the third equations, say the
third. With this choice of T the third equation becomes

\ =3

( p1+ p3)3&1+\m&k+
1
2+ ?=\m+

1
2+ ?

or (17)

( p1+ p3)3=
=3 \m&k+

1
2+

\m+
1
2+

.

Recall that P1+P3=L which is the semi-major axis in the Kepler problem.
Thus we seek a solution which is order 1 in p1+ p3 . (If we take p1+ p3 of
order =3 then in the original unscaled variables the solutions are order 1
which would just give us back Jefferys' solutions.) In order to solve Eq. (17)
with p1+ p3=1 we will fix m and make k a large integer by choosing

k=&
\m+

1
2+

=3 +m+
1
2

. (18)

With the above choices p3 is arbitrary. Recall, that P3=G&K, K=\G cos i
where G is the total angular momentum, K is the x3 -component of angular
momentum, and i is the inclination. So, with this selection the inclination
i is arbitrary.

We shall show in Section 5 that these solutions of the approximate
equations (14) are actually approximations of actual doubly-symmetric
periodic solutions of the true equations (13). Thus, our first theorem is
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Theorem 3.1. There exist doubly-symmetric periodic solutions of the spatial
restricted three-body problems for all values of the mass ratio parameter +
with large inclination which are arbitrarily far away from the primaries.

The reader can now see the complexity of the problem. The period of the
solutions is of order =&3 and the solutions are undefined when ==0. The
details of the estimates and the complete proof will be give in Section 5.

4. APPROXIMATE SOLUTIONS TO THE LUNAR PROBLEM

To consider lunar problem, move one of the primaries to the origin by
making the change of variable x1 � x1&+, y2 � y2&+ in the Hamiltonian
(1). Now to move the third mass close to the origin, scale the variables by
x � =2x(1&+)1�3, y � =&1(1&+)1�3 y, which is symplectic with multiplier
=&1(1&+)&2�3. Letting H � =&1(1&+)&2�3 H, expanding the potential in =,
and by dropping the constant terms, the Hamiltonian becomes

H==&3 { | y|2

2
&

1
|x|=&(x1 y2&x2 y1)+O(=3). (19)

As in the comet problem use the Poincare� elements (7) so that

H=
&=&3

2(P1+P3)2&P1+
1
2

(P2
2+Q2

2)+=3H -(Q1 , Q2 , Q3 , P1 , P2 , P3 , =, +),

(20)

where H- is order 1 in =. Thus the equations of motion are Q4 =HP ,
P4 =&HQ or

Q4 1=
=&3

(P1+P3)3&1+=3f1 , P4 1=0+=3f4 ,

Q4 2=P2+=3f2 , P4 2=&Q2+=3f5 , (21)

Q4 3=
=&3

(P1+P3)3+=3f3 , P4 3=0+=3f6 ,

where the fi are the appropriate partials of H-.
As in the previous section let us consider the approximate equations first

in order to find the correct approximate periodic solutions. Consider the
approximate equations
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Q4 1=
=&3

(P1+P3)3&1, P4 1=0,

Q4 2=P2 , P4 2=&Q2 , (22)

Q4 3=
=&3

(P1+P3)3 , P4 3=0.

The solution of Eq. (22) are

Q1(t)=\ =&3

( p1+ p3)3&1+ t+q1 , P1(t)= p1 ,

Q2(t)=q2 cos t+ p2 sin t, P2(t)=&q2 sin t+ p2 cos t, (23)

Q3(t)=\ =&3

( p1+ p3)3+ t+q3 , P3(t)= p3 ,

for initial conditions (q1 , q2 , q3 , p1 , p2 , p3) at t=0.
The periodicity conditions are the same as those in the Section 2. That

is, at t=0; Q1=i?, Q2=0, Q3= j? and at t=T; Q1=(i+k) ?, Q2=0,
Q3=( j+m+1�2) ? where i and j are 0 or 1, and k, and m are arbitrary
integers. To satisfy these symmetry condition at t=0 and at t=T we have
so solve the equations

Q1(T )=\ =&3

( p1+ p3)3&1+ T+i?=(i+k) ?,

Q2(T )= p2 sin T=0, (24)

Q3(T )=\ =&3

( p1+ p3)3+ T+ j?=( j+m+1�2) ?,

The second equation is solved by taking p2=0, thus selecting a circular
orbit of the Kepler problem. The difference between the first and third
equation has a solution with T=(m&k+1�2) ?. It remains to solve the
third equation. With this choice of T it becomes

( p1+ p3)3=
=&3 \m&k+

1
2+

\m+
1
2+

. (25)

Again with the above choices p3 is arbitrary and so as with the comet
problem the inclination is arbitrary.
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Again we seek solutions which are order 1 in the sum p1+ p3 . Let n be
a fixed small integer. To solve (25) set m+1�2==&3, k=m&n, and ( p1+ p3)3

=(n+1�2). With this choice the period becomes T=n+1�2
We shall show in Section 6 that these solutions of the approximate

equations (22) are actually approximations of actual doubly-symmetric
periodic solutions of the true equations (21). Thus, our second theorem is

Theorem 4.1. There exist doubly-symmetric periodic solutions of the spatial
restricted three-body problems for all values of the mass ratio parameter +
with large inclination which are arbitrarily close to one of the primaries.

5. PROOF FOR THE COMET PROBLEM

In order to prove Theorem 3.1 we need good long term estimates on the
solutions of Eq. (13). From time to time, we shall write Eq. (13) in the
form

z* =F(z, =)+=7f9 (z, =) (26)

where z=(Q1 , Q2 , Q3 , P1 , P2 , P3), F=(=3�(P1+P3)3&1, P2 , =3�(P1+P3)3,
0, &Q2 , 0) and f9 =( f1 , f2 , f3 , f4 , f5 , f6).

Lemma 5.1. Let (q1 , q2 , q3 , p1 , p2 , p3) be initial conditions such that for
the equations of the first approximation (14) the solutions remain bounded
and bounded away from singularities. Let .� (t)=(.1(t), .2(t), .3(t), .4(t),
.5(t), .6(t)) be the solution to (13) with ={0, and (.1(0), .2(0), .3(0),
.4(0), .5(0), .6(0))=(q1 , q2 , q3 , p1 , p2 , p3). Then this solution is of the
form

.1(t)=\ =3

( p1+ p3)3&1+ t+q1+=4g1 , .4(t)= p1+=4g4 ,

.2(t)=q2 cos t+ p2 sin t+=4g2 , .5(t)=&q2 sin t+ p2 cos t+=4g5 ,

.3(t)=\ =3

( p1+ p3)3+ t+q3+=4g3 , .6(t)= p3+=4g6 , (27)

for 0�t�#=&3, where # is a constant independent of =, and where the gi=
gi (t, q1 , q2 , q3 , p1 , p2 , p3 , =) are uniformly bounded as = approaches zero for
t # [0, #=&3].
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Proof. To show this, we will compare the solution of Eqs. (13) and
(14). Let �9 (t)=(�1(t), �2(t), �3(t), �4(t), �5(t), �6(t)) be the solution to
(14), with �9 (0)=(q1 , q2 , q3 , p1 , p2 , p3) and let C�R6 be a compact
neighborhood of this solution. In particular �9 (t) is the solution in (27) with
gi #0.

Let M>0 be such that the solution to (13) exist in C for all 0�t�M
and all 0�=�1. We first show that &.� &�9 & is O(=7), for 0�t�M. In
order to do this we must group the equations into two sets (the equations
for (Q1 , Q3 , P1 , P3) and the equations for (Q2 , P2)), so we define .� =
(.1 , .3 , .4 , .6), .~ =(.2 , .5). Define �� , �� etc. in a similar manner.

Consider the non-homogeneous system given by

Q4 1=
=3

(P1+P3)3&1+=7f1 , P4 1=0+=7f4 ,

(28)

Q4 3=
=3

(P1+P3)3+=7f3 , P4 3=0+=7f6 ,

with (Q1(0), Q3(0), P1(0), P3(0))=(q1 , q3 , p1 , p3), and the fi are as in (13),
except that f i= fi (Q1 , .2(t), Q3 , P1 , .5(t), P3). Thus, .� (t) is a solution of
(28) for t # [0, M].

Now

.�* =F� (.4(t), .6(t), =)+=7f� (.� (t), =),

�� * =F� (�4(t), �6(t), =).

Let c be a constant such that & f9 &�c on C for 0�=�1. From the form of
the equations it is clear that F� has Lipschitz constant =3;, for some real
;>0 on C for 0�=�1. Then

&.� (t)&�� (t)&�|
t

0
&F� (.4(s), .6(s), =)&F� (�4(s), �6(s), =)&+=7 & f� (.� (s), =)& ds

�|
t

0
=3; &.� (s)&�� (s)&+(=7c) ds

==7ct+|
t

0
=3; &.� (s)&�� (s)& ds.
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So by Gronwall's inequality, we have

&.� (t)&�� (t)&�=7ct+c=10; |
t

0
se;=3 (t&s) ds

==7ct&
c=4

;
(;=3t+1&e;=3 t)

=
c=4

;
(e;= 3t&1),

for t # [0, M].
The remaining solution components are bounded in similar way. Note

that (.2(t), .5(t)) is the solution to the non-homogeneous system

Q4 2=P2+=7f2(.1(t), Q2 , , .3(t), .4(t), P2 , .6(t), =),

P4 2=&Q2+=7f5(.1(t), Q2 , , .3(t), .4(t), P2 , .6(t), =),

with (.2(0), .5(0))=(q2 , p2). Then by variation of parameters formula we
have

.~ (t)=,� (t)+h� (t)

where

h� (t)=\h2(t)
h5(t)+=\ cos t

&sin t
sin t
cos t+ |

t

0 \
cos s
sin s

&sin s
cos s +\

=7f2(.� (s), =)
=7f5(.� (s), =)+ ds

Thus, &h� (t)&=&.~ (t)&�� (t)&�c=7t for 0�t�M.
Combining the two results above, we have &.� (t)&�9 (t)&=O(=7) as long

as the solutions remain in O. Actually we have &.� (t)&�9 (t)&�k=4 for 0�t
�#=&3 where k is a constant as long as the solutions remain in C. But,
since C is compact this estimate insures that the solution remains in C for
0�t�#=&3 provided = is sufficiently small. K

Lemma 5.2. Let the .i (t; q1 , q2 , q3 , p1 , p2 , p3 , =) and gi be as in Lemma
5.1. Then for any fixed t # [0, #=&3], the �g i��pj are uniformly bounded as =
approaches zero.

Proof. As in Lemma 5.1, we let �9 (t; p� , q� ) be the solution to (26) with
==0 and let .� (t; p� , q� ) be the solution to (26) for ={0. Thus, from Lemma
5.1, we know that =4g� (t; p� , q� )=.� (t; p� , q� )&�9 (t; p� , q� ), where g� =(g1 , g2 ,
g3 , g4 , g5 , g6). Omitting the vector notation, the variational equation for
g is:
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d
dt _=4 �

�p
g(t; p, q)&=

�
�p

(.* (t; p, q)&�* (t; p, q))

=
�
�p

[F(.(t; p, q))&F(�(t; p, q))+=7f (.(t; p, q))]

=DF(.)
�.
�p

&DF(�)
��
�p

+=7 Df (.)
�.
�p

=DF(.)
�(�+=4g)

�p
&DF(�)

��
�p

+=7 Df (.)
�(�+=4g)

�p

=[DF(.)&DF(�)]
��
�p

+=7 Df (.)
��
�p

+DF(.) =4 �g
�p

+=7 Df (.) =4 �g
�p

.

Then, letting z==4 �g��p, we consider the system of differential equations

z* =DF(.) z+=7 Df (.) z+[DF(.)&DF(�)]
��
�p

+=7 Df (.)
��
�p

, (29)

which we can also write as

z* =DF(.) z+=7 Df (.) z+K(t)

since the last two terms of (29) do not depend on z. Applying the variation
of constants formula to this equation, we get that

z(t)=Y(t) _Y &1(0) z(0)+|
t

0
Y&1(s)(=7 Df (.(s)) z(s)+K(s)) ds& , (30)

where Y(t) is the fundamental solutions matrix for the linear equation
z* =DF(.(t)) z.

Since z(t)==4 �g(t)��p=�.(t)��p&��(t)��p, and since �.(0)��p=
��(0)��p=1, we note that z(0)=0, and (30) becomes

z(t)=Y(t) |
t

0
Y&1(s)(=7 Df (.(s)) z(s)+K(s)) ds. (31)

Now, since .(t; p, q) is known from Lemma 5.1 and DF can be calculated,
we can find Y(t; p, q) explicitly since it is the solution to the differential
equation
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z* 1=
&3=3

( p1+=4g4+ p3+=4g6)4 } (z4+z6), z* 4=0,

z* 2=z5 , z* 5=&z2 ,

z* 3=
&3=3

( p1+=4g4+ p3+=4g6)4 } (z4+z6), z* 5=0.

That is, this equation decouples so, letting v(t)==3 �t
0&3( p1+=4g4(s)+ p3

+=4g6(s))&4 ds, we can obtain by direct computation that Y(t) is

_
1 0 0 v(t) 0 v(t)

& .

0 cos t 0 0 sin t 0

0 0 1 v(t) 0 v(t)

0 0 0 1 0 0

0 &sin t 0 0 cot t 0

0 0 0 0 0 1

Let c1=sup[&Df ( p, q)&: ( p, q) # C], so by Lemma 5.1 we know &Df (.(t))&
�c1 for t # [0, M] where M=#=&3.

Next, since K=[DF(.)&DF(�)] ����p+=7 Df (.) ����p, we calculate
the term DF(.)&DF(�) to be

_
0 0 0 w(t, q, p) 0 w(t, q, p)

& ,

0 0 0 0 0 0

0 0 0 w(t, q, p) 0 w(t, q, p)

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

where

w(t, p, q)=
3=3

( p1+ p3)4&
3=3

( p1+=4g4+ p3+=4g6)4 .

Since 3�x4 is Lipschitz for x bounded away from zero, and since | p1+ p3 |
�:>0 in a solution bounded away from collision, we have |w(t, p, q)|�
=3; |=4g4(t, p, q)+=4g6(t, p, q)| where ; is the appropriate Lipschitz constant.
But of course, from Lemma 5.1 we know that the gi are uniformly bounded,
and letting c2 be this bound, we have that |w(t, p, q)|�=7;c2 , and thus that
&DF(.)&DF(�)&�=7;c2c3 for some positive constant c3 . Then, by direct
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calculation, we find that &����p&�maxt # [0, M] c4 max[3=3t�( p1+ p3)4, 1]
for some positive constant c4 . We can assume, without loss of generality,
that max[3=3t�( p1+ p3)4, 1]=1 for t # [0, M]. Thus, all together we
obtain that

&K&=&[DF(.)&DF(�)] ����p+=7Df (.) ����p&

�&DF(.)&DF(�)& &����p&+=7 &Df (.)& &����p&

�=7;c2 c3c4+=7c1c4

==7c4(;c2c3+c1),

for t # [0, M].
Since the gi are bounded by Lemma 5.1, we can let b=maxt # [0, M](3�( p1

+=4g4+ p3+=4g6)4) so that &Y(t)&1&=&Y(t)&�c5 maxt # [0, M] [=3bt, 1].
Again, without loss of generality, we can assume that maxt # [0, M] [=3bt, 1]=1.

Finally, we can bound z(t) as follows:

&z(t)&="Y(t) |
t

0
Y&1(s)(=7 Df (.(s)) z(s)+K(s)) ds"

�=7 &Y(t)& |
t

0
&Y&1(s)& &Df (.(s))& &z(s)& ds

+&Y(t)& |
t

0
&Y &1(s)& &K(s)& ds

�=7c5 |
t

0
c5 c1 &z(s)& ds+c5 |

t

0
c5=7c4(;c2c3+c1) ds

==7c2
5 c1 |

t

0
&z(s)& ds+=7c2

5c4(;c2c3+c1) t

==7k1 |
t

0
&z(s)& ds+=7k2 t,

where the last step is merely simplifying the constants. Then, by Gronwall's
inequality we have:

&z(t)&�=7k2 t+|
t

0
=7k2s=7k1e(t&s) =7k1 ds

==7k2 t&k2

t=7k1+1&et= 7k1

k1

=
k2

k1

(et= 7k1&1).
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Now, recalling that z(t)==4 �g��p, we have proved that

"�g
�p"�k2

et=7k1&1
=4k1

for t # [0, M]=[0, #=&3]. That is, of course,

"�g
�p"�k2

et=7k1&1
=4k1

�k2 #
e#= 4k1&1

#=4k1

,

and the right hand side is uniformly bounded as = approaches zero. K

Now return to the proof of Theorem 3.1. The conditions which prescribe
the doubly-periodic trajectories are, in the Poincare� elements, t=0; Q1=i?,
Q2=0, Q3= j? and at t=T; Q1=(i+k) ?, Q2=0, Q3=( j+m+1�2) ?.

Letting ( p1, p2 , p3) be initial conditions to be determined, the functions

Q1(t)=\ =3

( p1+ p3)3&1+ t+=4g1+i?,

Q2(t)=p2 sin t+=4g2 ,

Q3(t)=\ =3

( p1+ p3)3+ t+=4g3+ j?,

are of the correct form and satisfy the initial conditions at t=0. Here the
gi , which are functions of the initial conditions, have been evaluated at the
three initial conditions q1=i?, q2=0, q3= j?, but the pi are still free.
To satisfy the conditions at t=T, it is sufficient to solve the set of three
equations in four unknowns:

Q1(t)=\ =3

( p1+ p3)3&1+ t+=4g1(t, p1 , p2 , p3 , =)+i?=(i+k) ?,

Q2(t)=p2 sin t+=4g2(t, p1 , p2 , p3 , =)=0,

Q3(t)=\ =3

( p1+ p3)3+ t+=4g3(t, p1 , p2 , p3 , =)+ j?=\ j+m+
1
2+ ?.

This is done by applying the Implicit Function Theorem twice. First, fix
m=m0�1 and let

R(t, p1 , p2 , p3)=Q3(t)&(m0+ 1
2+ j) ?&Q1(t)+(i+k) ?
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and consider the system of equations

0=R=t&(m0+ 1
2&k) ?+=4g3(t, p1 , p2 , p3 , =)&=4g1(t, p1 , p2 , p3 , =),

0=Q2(t)= p2 sin t+=4g2(t, p1 , p2 , p3 , =).

Then for ==0, ( p1, p3) arbitrary, we have solution t=(m0+1�2&k) ?,
p2=0.

Lemma 5.2 means that =4 �g i��pi ((m0+1�2&k) ?, q1 , q2 , q3 , p1 , p2 ,
p3 , =)| ==0=0 as long as (m0+1�2&k) ? # [0, #=&3]. Thus

�(R, Q2)
�(t, p2)

= } 10
0

sin((m0+1�2&k) ?) }=\1{0.

Then by the Implicit Function Theorem, there exists a neighborhood N of
0 and functions T( p1 , p3 , =) near (m0+1�2&k) ? and p2( p1 , p3 , =) near 0
such that

T( p1 , p3 , =)&(m0+ 1
2&k) ?+=4g3&=4g1=0,

p2( p1 , p3 , =) sin T( p1 , p3 , =)+=4g2=0,

for = # N and ( p1 , p3) arbitrary.
Now k was arbitrary, so we can let k=&2m0 �=3. Then for each

= # N&[0] such that =3=1�n, for any integer n, we have

T( p1 , p3 , =)=\m0+
1
2

+
2?m0

=3 + ?&=4g3(T, p1 , p2 , p3 , =)

+=4g1(T, p1 , p2 , p3 , =)

or

T( p1 , p3 , =)=(m0+ 1
2+2?m0 n) ?&=4g3+=4g1 .

Now substituting this T into the original equation for Q3(T )=
( j+m0+1�2) ? we need to solve:

=3

( p1+ p3)3 _\m0+
1
2

&k+ ?&=4g3(T, p1 , p3 , =)+=4g1(T, p1 , p3 , =)&
&\m0+

1
2+ ?+=4g3(T, p1 , p3 , =)=0

for = # N&[0].
Since the solution will be in a neighborhood of p1+ p3=

[4m0 �(2m0+1)]1�3, we fix p3 arbitrarily and, if necessary, take N smaller
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so that =4g3(T, p1 , p3 , =){(m0+1�2) ? in some open neighborhood V of
p1*=[4m0 �(2m0+1)]1�3& p3 . Now to solve:

( p1+ p3)3=
=3 _\m0+

1
2

&k+ ?&=4g3+=4g1&
\m0+

1
2+ ?&=4g3

,

recall that on N&[0], k=&2m0�=3 and let

S( p1 , =)=
=3 _\m0+

1
2

+
2m0

=3 + ?&=4g3+=4g1&
\m0+

1
2+ ?&=4g3

&( p1+ p3)3

==3+
2m0 ?+=4g1

(m0+1�2) ?&=4g3

&( p1+ p3)3,

where T is defined implicitly as above. It is important to note that T is not
defined at ==0, but only that the gi (T, p1 , p3 , =) and �gi��pi (T, p1 , p3 , =)
are order 1 in = by Lemmas 5.1 and 5.2, so that we cannot use the Implicit
Function Theorem here directly. Instead, we must use Arenstorf 's Implicit
Function Theorem, since we do have that S( p1 , 0)=4m0 �(2m0+1)&
( p1+ p3)3. Arenstorf 's Theorem [1] is as follows:

Theorem 5.1. Let P and Y be Banach spaces with elements p and y. Let
f be a mapping from the product space P_Y into P, given by ( p, y) �
f ( p, y)/P, and defined for p in a ball B* around some p* # P and y in a
region B of Y containing y=0, with f ( p*, 0)= p*, and

B*: &p& p*&�:, :>0.

If, for every y in B, f is differentiable with respect to p in B* and

& fp( p, y)&�'� 1
2 on B*_B,

(where fp denotes the partial derivative of f with respect to p, and the norm
is the sup norm of the linear operator from P to itself ) and if

& f ( p*, y)& p*&� 1
2 : on B,

then there exists a function p( y) with

f ( p( y), y)= p( y), p( y)/B* for y/B, p(0)= p*.
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Now we can show, with the help of Lemmas 5.1 and 5.2, that the function
S( p1 , =)+ p1 , which has a fixed point at p1* when we let p1*=[4m0 �
(2m0+1)]1�3& p3 , satisfies the hypotheses of Arenstorf 's Implicit Function
Theorem.

Lemma 5.3. Let the function S( p1 , =) be given as above. Then the function
(1�5) S( p1 , =)+ p1 satisfies the hypotheses of Arenstorf 's Implicit Function
Theorem. Thus, there exists an =-neighborhood of 0, B, and a function p1(=) with
S( p1(=), =)=0, p1(=) contained in a neighborhood P of [4m0 �(2m0+1)]1�3

& p3 , for all = # B.

Proof. To prove this lemma, we first let H( p1 , =)=(1�5) S( p1 , =)+ p1 .
Thus,

H( p1 , =)=
1
5 \=3+

2m0?+=4g1

(m0+1�2) ?&=4g3

&( p1+ p3)3++ p1 ,

Then if we let p1*=[2m0 �(m0+1�2)]1�3& p3 , we have

H( p1* , 0)= 1
5 S( p1*, 0)+ p1*=0+ p1*= p1*.

since we can define the =4gi (T, p1 , =) to be continuous at ==0 by letting it
take on the value of its limit, which is zero (from Lemma 5.1). In this way,
H is defined on V_N.

Now, for m0�1, we have that p1*+ p3�21�3, so that the expression
|1&(3�5)( p1*+ p3)2|<1�8. Since this is a function continuous in p1*, let
;>0 be chosen so that | p1& p1* |<; implies that | |1&(3�5)( p1+ p3)2|&
|1&(3�5)( p1*+ p3)2| |<1�8. Choose 0<:<; and let

B*=[ p1 : | p1& p1* |�:<;] & V

Each term of =4gi (T, p1 , =) is differentiable at ==0 if we let the derivative
be the zero operator for any p1 . While the derivative is not continuous, the
partial �(=4gi)��p1 exists and is equal to zero by Lemma 5.2, and this is
sufficient for fulfilling the hypotheses of the theorem. That is, we have that
H is differentiable with respect to p1 in B* for every = # N. K

For ={0, we calculate that

�H
�p1

=
1
5

[=4J&3( p1+ p3)2]+1
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where J is uniformly bounded as = approaches zero by Lemmas 5.1 and 5.2.
Thus, we can choose neighborhood N*N of zero such that (1�5) =4 |J |�1�4.
Then p1 # B* implies that

|1&(3�5)( p1+ p3)2|&|1&(3�5)( p1*+ p3)2|
�| |1&(3�5)( p1+ p3)2|& |1&(3�5)( p1*+ p3)2| |<1�8

so that

|1&(3�5)( p1+ p3)2|<1�8+|1&(3�5)( p1*+ p3)2|�1�4.

Thus,

} �H
�p1 }= } 15 [=4J&3( p1+ p3)2]+1 }

� }15 (=4J)}+|1&(3�5)( p1+ p3)2|

�
1
2

on the neighborhood B*_N*.
Next,

H( p1* , =)& p1*=
1
5 \=3+

2m0?+=4g1

(m0+1�2) ?&=4g3

&( p1*+ p3)3+
=

1
5 \=3+

2m0?+=4g1

(m0+1�2) ?&=4g3

&
2m0

m0+1�2+ ,

and since the function (2m0?+=4g1)�((m0+1�2) ?&=4g3) is continuous in
= at ==0, we can find a neighborhood B� of zero such that, for all = # B� we
have that

|H( p1*, =)& p1* |�
1
5

=3+
1
5 }

2m0?+=4g1

(m0+1�2) ?&=4g3

&
2m0

m0+1�2 }<
:
2

.

Letting B=B� & N*, we have both of the last two inequalities on the
neighborhood B.

Finally, what remains is only to note that if W=[= # (B&[0]) : =3=
1�n, for n # Z*], then for = # W and p3 arbitrary we can find functions
T� (=, p3)$2?(2m0+1)+8m0?�=3, p2(=, p3)$0, and p1(=) such that ( p1+ p3)3

$4m0�(2m0+1) and such that
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\ =3

( p1(=)+ p3)3&1+ T� (=, p3)&
2m0?

=3 +=4g1=0,

p2(=, p3) sin T� (=, p3)+=4g2=0,

\ =3

( p1(=)+ p3)3+ T� (=, p3)&\m0+
1
2+ ?+=4g3=0.

So for each = # W, since =3=1�n so that 2m0 ?�=3=k? for k an integer, we
obtain the necessary period and initial conditions.

Since Q2 is close to 0 for 0�t�T� and thus for all time by the symmetry
of the orbit, and P2 $p2 which is also close to 0, these periodic solutions
are nearly circular (in the fixed frame of reference). Choosing the free initial
condition p3 is like choosing angular momentum, or total energy for the
system. This completes the proof of Theorem 3.1.

6. PROOF FOR THE LUNAR PROBLEM

Consider the equations (21). The periodicity conditions remain: at t=0;
Q1=i?, Q2=0, Q3= j? and at t=T; Q1=(i+k) ?, Q2=0, Q3=( j+m+1

2) ?
where i, j, are 0 or 1 and k, and m are arbitrary integers. By an argument
similar to the proof of Lemma 5.1 of the previous section, the solution to
this system of differential equations (21) is of the form:

Q1(t)=\ =&3

( p1+ p3)3&1+ t+q1+=3g1 , P1(t)= p1+=3g4 ,

Q2(t)=q2 cos t+ p2 sin t+=3g2 , P2(t)= p2 cos t&q2 sin t+=3g5 ,

Q3(t)=\ =&3

( p1+ p3)3+ t+q3+=3g3 , P3(t)= p3+=3g6 ,

for initial conditions (q1 , q2 , q3 , p1 , p2 , p3) and for time t=[0, #=], where
gi= gi (t, q1 , q2 , q3 , p1 , p2 , p3).

To satisfy the symmetry condition at t=0 we have the solution

Q1(t)=\ =&3

( p1+ p3)3&1+ t+i?+=3g1 ,

Q2(t)= p2 sin t+=3g2 ,

Q3(t)=\ =&3

( p1+ p3)3+ t+ j?+=3g3 .
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Next we need to solve this for the symmetry condition at t=T which are
now:

Q1(t)=\ =&3

( p1+ p3)3&1+ t+i?+=3g1=(i+k) ?,

Q2(t)= p2 sin t+=3g2=0,

Q3(t)=\ =&3

( p1+ p3)3+ t+ j?+=3g3=\ j+m+
1
2+ ?,

or

\ =&3

( p1+ p3)3&1+ t&k?+=3g1=0,

p2 sin t+=3g2=0,

\ =&3

(P1+P3)3&1+ t&\m+
1
2+ ?+=3g3=0.

This is done, as in Section 5, by applying the Implicit Function Theorem
twice. First we consider the difference of the first and third equation,
together with the second equation. This is the system of equations

t+(k&m& 1
2) ?+=3g3&=3g1=0,

p2 sin t+=3g2=0.

This has solution t=(m+1�2&k) ?, p2=0 at ==0. Along this solution,
the determinant of the derivative of the system with respect to t and p2 is
given by

}10
0

sin(m+1�2&k) ?) }=\1{0.

Thus by the Implicit Function Theorem, there exists a neighborhood N

of 0 and functions T( p1 , p3 , =) near (m+1�2&k) ? and p2( p1 , p3 , =) near
0 for = # N and ( p1 , p3) arbitrary such that

T( p1 , p3 , =)&(m+ 1
2&k) ?+=3g3&=3g1=0,

p2( p1 , p3 , =) sin T( p1 , p3 , =)+=3g2=0.
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Putting this solution for T into the third equation, we need to solve
Q3(T )&(m+ 1

2) ?=0, or

=&3

( p1+ p3)3 _\m+
1
2

&k+ ?&=3g3+=3g1&&\m+
1
2+ ?+=3g3=0,

which is equivalent to solving

\m+
1
2

&k+ ?&=3g3+=3g1&\=3 \m+
1
2+ ?&=6g3+ ( p1+ p3)3=0

for ( p1+ p3)3 whenever = # N&[0]. Now the solution for T left both m
and k arbitrary, so for the moment regard m and k as free variables. Then
letting m+ 1

2==&3 and letting k=m&n for n a small integer, we seek to
solve

R=(n+ 1
2) ?&=3g3+=3g1&(?&=6g3)( p1+ p3)3=0.

By this choice of m and k, T becomes T( p1 , p3 , =)=(n+1�2) ?+=3g3&
=3g1 which is uniformly bounded as = approaches zero and, by part 2 of the
Implicit Function Theorem, �T��p1 along solutions at ==0 is given by
&4 �(=3g6&=3g2)��p1 where the partials of the g i are evaluated along solu-
tions; t=(n+ 1

2) ?, p2=0, ==0, ( p1 , p3) arbitrary. By the argument in the
Section 5, the partials of the gi with respect to initial conditions are also
uniformly bounded as = approaches zero. Thus we can differentiate R along
the solution ( p1+ p3)3=n+1�2, ==0 to get �R��p1=&3?(n+1�2)2�3{0.

Thus we have shown that there exists a deleted neighborhood N&[0]
of 0 such whenever = # N&[0] and = is of the form (m+1�2)&1�3 for m an
integer, the system has a periodic solution with period near (4n+2) ? for
n a small integer. These solutions are doubly symmetric, and approximately
small circular orbits of the Kepler problem.
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