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We prove that a stable adding machine invariant set for a homeomorphism of 
the plane is the limit of periodic points and also that a stable solenoid minimal 
invariant set for a three dimensional flow is the limit of periodic orbits. We give 
an example to show that a similar result is false in higher dimensions. 
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1. I N T R O D U C T I O N  

Consider a flow depending on a parameter /~. Imagine that as the 
parameter g varies a sequence of bifurcations of periodic solutions occurs 
at the parameter values g~,/~2,.... At the parameter value/~l a new periodic 
solution bifurcates from the old with period pj times the old period (pi ~ Z, 
Pi/> 2). It may happen that as gt ~ / ~ o  < oo this sequence of periodic solu- 
tions converges uniformly to an almost periodic function. Such an almost 
periodic solution is called a limit periodic function and its hull is a solenoid 
minimal set. In a dissipative system usually Pe = 2 for all i so only one type 
of solenoid occurs, but for a Hamiltonian system the p~ are unrestricted in 
general, so an uncountable number of possible solenoids may occur. 
Indeed, in Markus and Meyer (1980), it was shown that generically a C ~ 
Hamiltonian on a compact symplectic manifold has solenoid minimal sets 
of every possible type. Solenoid minimal sets admit a cross section which 
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is a Cantor set and the section map is a generalized additig machine. So 
adding machines occur naturally in Hamiltonian systems. 

Professor George Sell asked if an adding machine and solenoid mini- 
mal set are always the limit of periodic orbits. In low dimensions the 
answer is yes. In this note we will show that a stable adding machine mini- 
mal set for a homeomorphism of the plane is the limit of periodic points 
and also a flow on a thr~Mimensional manifold which has a stable 
solenoid minimal set is the limit of periodic solutions. Buescu and Stewart 
(preprint) show that for continuous maps of the interval, stable adding 
machines are limits of periodic orbits. Finally, we give a homeomorphism 
of R 3 which has a stable adding machines as an invariant set, but which 
has no periodic points. 

2. LIMIT PERIODIC FUNCTIONS, SOLENOIDS AND ADDING 
MACHINES 

In this section we will recall some basic definitions and their interconnec- 
tions. A continuous function f :  R I --. R m is called limit periodic if it is the 
uniform limit of continuous periodic functions, but not periodic itself. It is a 
special kind of almost periodic function. We use the term "almost periodic" in 
the sense df the founder of the subject Bohr (1951). As an example consider 

-f. F(t) - a k c o s  2 r g t / 2  k 

o 

where the ake R m, ak # 0  and are chosen to that the series converges 
uniformly. The nth partial sum is periodic with period 2" but the limit is 
clearly not periodic. 

Let ~g = ~f(R, W") be the space of continuous functions from R into R" 
with the topology of uniform convergence on compact sets. Given f r  
and ~ r  define the translate o f f  by �9 to be f ,  where f , ( t )  ffi f ( t  + r). The 
map/7:  R x~g-, ~g: (~, f ) - - , f ,  defines a flow on ~f. For a n y f r  the hull 
o f  f is H ( f )  = Cl{f ,:  v r R} i.e. the hull is the orbit closure of the trajectory 
through f For example the hull of F(t) is all the functions of the form 

G( t ) = Y'. a k cos 2g(t - C~ k )/2 k 
o 

where ~k is an angle defined modulo 2 k and ~bk--~bk+l mod2  k. If f is an 
almost periodic function, then the restr ict ion/7[H(f)  is a compact mini- 
mal set, each element of H ( f )  is almost periodic, / /[  H ( f )  is equicon- 
tinuous, and H ( f )  can be given a compact, connected, Abelian group 
structure. See Nemytskii and Stepanov (1960). If f is limit periodic then 
H ( f )  is a solenoid minimal set, Pontryagin (1966). 
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Topologically a solenoid is the inverse limit system 

zPl S I zP2 ~ I zP3 S: S l ~ ~ ~ "-" 

where S 1 is the unit circle in the complex plane, the Pk ~> 2 are integers, and 
S 1 ( zp~ S 1 denotes the mapping of the circle into itself by z --, z pk. A point 

_ pk In the case when z ~ S  is of the form zffi(Zo, Zl,Z2,...) where Zk_I - -Z  k . 
Pk -- 2 an element of S is of the form 

( e i0o, e lot ' e~~ ) 

where Ok----27~k/2 k and ~k is an angle defined modulo 2 k and 
~k -= ~k+l rood 2 k. This is the point in the inverse limit system corre- 
sponding to G~ H(F)  given earlier. This corresponds to the usual torus 
inside a torus description of a solenoid as shown in Fig. 1. 

The solenoid minimal flow, Ut: S---, S, is defined by 

Ti t :  ( .... Zk , . . ' )  -'~ ( '" ,  Zke(i2nt/r "'') 

where q0=1 ,  and qk----Pl""Pk for k ~ l .  An elementary discussion of 
the case where Pk-----2 and additional references can be found in Meyer 
and Seller (1989) [pp. 68-74]. This flow admits a cross section 
C = { z ~ S: Zo -- I } with first return time T = 1 and Poincar6 map P -- / /1 .  

Fig. 1. A solenoid in 3-space. 
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A point z r  is o f the  form z f ( 1 ,  z l ,z2, . . . )  where zl is a p l  root of  unity, 
z2 is a P2 root of pl etc. 

Since all the nth roots of unity are of the form exp(i27r~/n) where 
a r  Zn we see that C is equivalent to the inverse limit system 

D: Zq, ~ Za~ ~ ' Zq3 c -L-" .  

where z is the map z: 7/qk-'*ZCk_t:Ot-~otmOdqk_l. So i f a f ( a l , a 2 , . . . ) r  
then ak_ 1 =- 0% rood qk-  t- The map P on D is 

P:  D---,D: ( .... ak,...) -* (..., al, + 1,...) 

Clearly D is a Cantor set and P is a homeomorphism. This is not the 
usual definition of the generalized adding machine, but it is conjugate to 
the usual adding machine. The usual definition is defined on the set 

oo 

E =  1-I Z,, 
1 - - 1  

with the product topology and the adding machine operator, A: E ~ E, is 
defined by A: ( .... ak,...) -* ( .... ?k,...) where Yk = 0 for all k ff ak = Pk -- 1 for 
a l l / r  or if the first index where ak < Pk -- 1 is r then ?k = 0 for 1 ~< k < r, 
? r f f ia ,+  1; and ?k=ak  for k > r .  

The conjugacy map is defined by H: D--* E: (..., ak,...) - .  ( .... ilk,...) 
where akf f ipkqk_l  +ak-- l .  It is easy to see that H is a homeomorphism 
and the map P becomes A - - H  o P o H - i  which is the generalized addition 
operator defined before. 

This addition algorithm will be familiar to anyone who knew the old 
British coinage: four farthings makes a penny, twelve pence makes a 
shilling, and twentyshillings makes a pound. (How much is 2/19/11 3/4 
and 1/4?, answer: s One can see a picture of a turn of the century 
adding machine, a comptometer, [Horsburgh (1914) p. xi] which was built 
especially for the British market. On the far fight the is a column of  three 
keys marked, 1/4, 1/2, 3/4 for farthings; to its left is a column of eleven keys 
marked 1, 2, .... 11 for pence; to the left are two column of keys the first 
marked 1,..., 9 and the second column with one key marked I0 for shillings; 
and to the far left there are several columns of keys marked 1 ..... 9 for 
pounds. 

To realize the adding machine with P k - 2  as an invariant set of a 
plane homeomorphism we~ follow Buescu and Stewart (preprint), who treat 
the general case. Consider Fig. 2 which illustrates a flow on a closed disk 
with boundary C1 and three fixed points, a saddle and two sinks, which are 
the co-limit sets of all the trajectories. Figure 2 is symmetric about the 
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Fig. 2. A flow on the disk. 

413 

Fig. 3. The homoomorphism of the disk with two disks excised. 
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0 \ / 1 

Fig. 4. The pattern of how the disks are labeled and mapped. 

origin. Excise from this disk two equal small disks about the two sinks with 
boundary circles C2 and C3. Slow the flow down so that the three circles 
C1, C2, C3 are fixed under the flow and let H~ be the time one map of this 
flow composed with a rotation by 180 ~ Thus HI maps C~ into itself and 
interchanges C2 and C3. Now enclose C1 in a slightly larger circle Co and 
extend H~ out to Co by mapping concentric circles into themselves 
and adjusting the rotation on these circles so that H~ is the identity on Co. 
Let this disk with two holes be Do. See Fig. 3. 

Paste two copies of Do, called Do, o and Do, ~ onto Do one in each of 
the excised circles as shown in Fig. 4 giving a disk with four circles excised. 
Paste four copies of Do onto these boundary circles denoting the disk 
D0.o,o, Do, o,2, Do.~.~, Do,~.3 etc. Extend H~ at each step and repeat the 
process until a homeomorphism of the plane is obtained. 

In Fig. 4 only the last digit in the numbering of the disks is shown, so 
the disk marked 5 is inside the disk marked 3 which is inside 1 which is 
inside 0 and so is disk Do. ~, ~, 5. The smallest disks marked 0-7 are mapped 
into each other by adding I mo t  8. Thus the resulting homeomorphism 
maps the disk into itself and has an adding machine as an invariant set-- 
note that this adding machine is stable and is the limit of hyperbolic 



Limit Periodic Functions, Adding Machines, and Solenoids 415 

periodic points. It can be extended to all of R 2 by making it the identity 
outside Co. 

The suspension of this homeomorphism is a flow on S ~ x S 3 which has 
a solenoid minimal set. 

3. PERIODIC POINTS AND ADDING MACHINES 

The basic references for the material of this section are Bell (1976, 
1977) and the references therein. Let f :  R 2--, R 2 be a homeomorphism. 

Definitions: 

(1) A continuum is a nonempty, compact, connected set. 

�9 (2) Let A c R 2 then the topological hull of A, T(A), is the union of 
A and all of its bounded complementary domains. 

(3) Let A c R z then the co-limit set of A (under f )  is 

co(A) = cl fk(A)  
j =  1 \ k  = y  / 

where cl is the closure operator. 

(4) An invariant set A for f is stable if for every neighborhood U of 
A there is a neighborhood V of A such that fk(V) = U for all k t> 0. Note 
that by replacing V by U~.0fk(V) if necessary one can assume that 

fk(V) = V c  U 

1.emma 1. Let A ~ 2 .  I f  A is a continuum then T(A) is a non- 
separating plane continuum. I f  A is connected, A c~ f ( A )  ~ ~ ,  and fk (A)  is 
contained in acompact set for k >>. 0 then CO(A) is an invariant continuum and 
T( co( A ) ) is a nonseparating, invariant continuum. 

See Nemytskii and Stepanov (1960) and Bell (1977) for details. 

Theorem 1. (The Bell-Cartwright-Littlewood Theorem) I f  B is a 
nonseparating, invariant continuum for the homeomorphism f :  R2 ~ R 2, then 
f has a fixed point in B. 

See Cartwright and Littlewood (1951); and Bell (1976, 1977). 

Theorem 2. I f  A is a stable invariant set for the homeomorphism 
f :  R 2 ~ R 2, such that f l  A is conjugate to the adding machine then A is the 
limit o f  periodic points o f f  
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This theorem follows at once from the following theorem which is not 
surprising since Buescu and Stewart (preprint) show that stable Cantor sets 
are adding machines in general. 

Theorem 3. I f  A is a stable, totally disconnected, transitive, invariant 
set for the homeomorphism f :  R 2 --* R 2, then A is the limit o f  periodic points. 

Proof. Let p cA and P any neighborhood of p--without loss of 
generality we may take P to be a closed disk, so P is compact and convex. 
A is totally disconnected so there exist open sets A and B such that (i) 
U--- A u B is a neighborhood of A, (ii) clA n clB ffi 0 ,  (iii) clA ~ P. 

Since A is stable there is a neighborhood V of A such that 
i f (V)  c Vc  U for all k:~> 0. Let Q be the connected component of V which 
contains p, so Q c A. 

Since f is transitive on A there is an s > 0 and an r r Q such that 
q = f S ( r ) r  Let F = f f .  Since Q is a component of IF; F ( V ) = V ;  and 
r , q = F ( r ) r  it follows that F ( Q ) c A  and z l=[J , ; ,oFn(Q)cA .  Since 
Q ~ P  and P is compact co(Q) is a continuum in P. Then T(co(Q) )cP  
since P is convex. T(co(Q)) is an F-invariant, nonseparating continuum and 
so by the Bell-Cartwright-Littlewood theorem F has a fixed point in 
T(co(Q)) and hence in P. This fixed point of F is a periodic point o f f  [] 

4. PERIOD ORBITS AND SOLENOIDS 

Let ~t be a smooth flow on a m-dimensional manifold M with dis- 
tance function d, so ~t: M--* M is a diifeomorphism for all t ~ R. 

Definitions. 

(I) An invariant set A for O, is stable if for every neighborhood U 
of A there is a neighborhood V of A such that O,(V) ~ U for all t I> 0. Note 
that by replacing V by (Jt~o Or(V) if necessary one can assume that 
Ot(V)~ Vc  Ufor all t>~0. 

(2) A flow box at p r M is a coordinate chart ( W, 00 at p where W 
is a neighborhood ofp in M, ~: W--, [ - 1, 1 ]m c R '~ is a homeomorphism, 
~(p)ffi0, and the flow in this chart is ( t , ( y l , y2 , . . . , ym) ) - , ( y l+co t  , 
Y2,..., Ym) where (y! ..... Ym) are coordinates in R ~' and co>0. A flow box 
exist at each noncritical point of a smooth flow Meyer and Hall (1992). 

Theorem 2. Let Of be a smooth flow on a 3-manifold M. I f  A ~ M is 
a stable invariant set conjugate to the solenoid minimal flow, then A is the 
limit o f  periodic orbits. 
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Proof. As discussed earlier the solenoid minimal flow admits a cross 
section. Once we show that this cross section can be extended to a nice 
neighborhood and that the section map is continuous the proof follows the 
proof given here. This is true because the BeU-Cartwright-Littlewood 
Theorem does not require that the homeomorphism be defined in the 
whole plane but only in a simply connected neighborhood of the invariant 
continuum. 

Pick any point p ~ A and an arbitrarily small neighborhood o fp  which 
we may take as a flow box (W,~) a tp .  Then F = g - l ( { y ~ = O } ) ~ M i s  a 
cross section to the flow on M at p. Since a solenoid is locally the product 
of an interval and a Cantor set the intersection A' = A c~ F is totally discon- 
nected. Let .4 be an open neighborhood of p in F totally contained in F 
such that O A n A ' = ~ .  Let 6 = A r i A '  and e = d ( 6 , a A ) > 0 .  Make e 
smaller if necessary so that an e-neighborhood of zi is contained in W. 

Since the flow on A is ahnost periodic there is a ~ > 0 such that 
d(O,(q), q ) < e  for all q~6 .  But this implies that O~(q)~ W. Since any tra- 
jectory which hits W must cross F there is a small change in z to ~(q) such 
that O,c~)(q ) ~ F. But O~cq~(q) ~'4 so O~Cq)(q) ~ 6. Clearly z(q) is continuous. 
Thus the section map 

P(q) = O~<q)(q): 6 ~ 6 

is continuous. Since the flow on the solenoid is minimal every orbit is 
dense, this implies that the map P I6 is transitive. 

The flow is smooth, so for each q r  the section map P can be 
continuously extended to an open neighborhood of q and so the section 
map P can be extended to an open neighborhood X of 6. Since 6 is totally 
disconnected we may decrease X if necessary so that X is simply 
connected--see Lemma 2. The solenoid is stable so there is an open neigh- 
borhood V of 6 such that P: V ~  V c  X. Since P is defined on X and a 
homeomorphism where defined, P can be extended to T(V) so by replacing 
V by T(IF) if necessary we may assume that V is simply connected. Let Z 
be a component of V so Z is connected and simply connected. Let z ~ Z. 
There is a k > 0 such that Pk(z)r Z so pk: Z ~ Z. Now follow the argu- 
ment given before, but applied to pk restricted to Z. 0 

Lemma 2. Let A be nonseparating, compact set in the plane and X any 
neighborhood of  6. Then there is a simply connected neighborhood X'  of  d 
with X'  c_ X. 

Proof. For each positive integer n let 6 ~ = 6  u {[c, d ] :  c, d ~ A  and 
p(c, d)<I/n}  where [c, d] denotes the line segment joining c and d and p 
is the distance function. Since 6 is compact, 6 ,  is compact also. 
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Since d does not separate, for each x r A there is an arc C joining x 
to infinity which does not meet A. Since A is compact, p(d, C) is positive 
and thus there is an n such that 1/n < p(d, C) or p(d,,, C)> O. Thus x is 
in the unbounded domain of the complement of d . ,  i.e. xCT(d . ) .  Tiffs 
proves that A = N~ T(A.). 

Choose one point of A in each component of An. The distance between 
two such points must be greater than l/n, and so the set of such points has 
no limit point. But all these points lie in the compact set A and so this set 
must be finite. Thus A, has only a finite number of components. Each com- 
ponent of T(A,) contains a component of J , ,  so T(An) has only a finite 
number of components. 

We may assume that X is an open neighborhood of A. Since { T(A,)} 
is a decreasing sequence of compact sets whose intersection is A, there is a 
k such that T(Ak) c X. 

T(Ak) is a finite union of nonseparating plane continua. A non- 
separating plane continuum, P, can be written as P ffi N ~. B. where each B. 
is a closed topological ball, int(B.)~ P, and int B.  ~ B.+ ~, see Bell (1977). 
For each component of T(Ak) choose one of these closed balls which 
contains the component in its interior and is interior to X and such that 
the balls" are pairwise disjoint. The union of these halls is the desired 
neigfiborhood X'. [] 

This lemma is false in three space as Antoine's necklace shows 
[ Hocking and Young (1961)]. 

5. A COUNTER EXAMPLE IN R 3 

In this section we show that there is a homeomorphism of  R 3 into itself 
which admits a stable adding machine invariant set, but which has no periodic 
points. 

Consider a standardly embedded solid torus, S f f i So~R  3, as 
illustrated in Fig. 5 with total coordinates r, radius, 0, meridian, and ~b, 
longitude. Let the angles 0, 0 be defined mod2~t, and let r be measured 
from the central longitude with 0 ~< r ~< 2. The desired homeomorphism will 
be defined in steps. The first homeomorphism, F: (r, 0, 0) --, (r', 0', ~'), is 

r' =r{1 +e(r-  l)(r-2)} 
o'=o (1) 
q~ ' - -d?+~{I -r (2-r )}  + {~ +e sin2 ~b} r(2-r) 

where e is a small positive number and ~ is a small positive number such 
that ~/x is irrational. Note that F does not depend on 0. 
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Fig. 5. Coordinates on the solid torus. 

Denote t h e  boundary torus where r = 2  by 7"2, the internal torus 
where r = I. by TI and the central circle where r = 0 by To. Denote the two 
meridian circles on T~ where r =  1, ~ffi0, 7r by Co, C1 respectively. See 
Fig. 6. 

Note  that the boundary torus, 7"2, the internal torus Tt, and the cen- 
tral circle, To are all mapped into themselves because r' = r when r = 2, 1, 0. 
On the boundary torus, 72, and on the central circle, To, the map is 

0 ' = 0 ,  , f  =,~+~t 

T, 

c, To 

C, 

Fig. 6. Set labels. 
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Fig. 7. Mapping of the r, 0 disk. 

which is periodic point free since ~/,t is irrational. On the internal toms, T~ 
the maps is 

0'--0, ~'- -~ + n + e  sin2 ~b 

Thus 2"1 is rotated by rc plus a small correction. The correction is positive 
except at ~=0 ,  n. Thus the meridian circles Co, C1 are made up periodic 
points of period two. All other points on T~ tend asymptotically to Co, C1 
under iteration by F. Between T2, T~, To points are mapped radially 
toward T~ since 

r ' - -r{ 1 + t ( r -  1)(r-2)} 

See Fig. 7. 
Thus, the only periodic points of  F are on the two meridian circles 

Co, C1 which are all periodic points of  period two. 
In the first step the homeomorphism F did not depend on 0. Now we 

will modify the map in a neighborhood of the meridian circles Co, C1 to 
eliminate all the periodic points. Choose total coordinates (P0, ~/o, 0) in a 
neighborhood of Co as illustrated in Fig. 8. Here 0 ~< P0 ~< 1, and the angles 
r 0 are defined mod2~. Note that 0 is the same angle as before, but in 
this new coordinate system it is the longitude whereas before it was the 
meridian. In a like manner choose toral coordinates (p~, ~ , 0 )  in a 
neighborhood of C1. The map F takes a neighborhood, N, where 0 ~< 
p~ < 2/3 of Cl into a neighborhood of Co, in these coordinates let it be 

F: (p,,  r 0) -* (Ro, 0) 

(recall that F leaves 0 fixed), Let b: R ~ R be a continuous bump function 
which is I for 0~<x~<l/3, positive for 1/3<x<2/3 and 0 for x>~2/3. 
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Co 

Fig. 8. Coordinates about Co. 
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Denote the second map of the solid torus by He where He = F outside the 
neighborhood N and on N it is 

He: (Pl, ~kl, 0)-'~ (Re, ~//o, O+b(Pl) r 

Thus He is just like F except the 0 variable is augmented near Cx. He maps 
Co onto Cl as before (identity) but maps 6"1 onto Co with the extra 
twist ~. Thus H ~ : C o ~ C o : O ~ O + o c  and similarly on Cl. Since 0c/lr 
was irrational He has no periodic points on Co or Cl. 

In summary, H o is a homeomorphism of  the solid torus So into itself 
which is periodic point free. On. the boundary torus, 2"2, H o maps the 
longitude ~ ~ ~ + ~ and on the two meridian circles Co, Cl, H~ : 0 --* 0 + ~. 

Now proceed as with the planar example to define the 
homeomorphism iteratively. Blow up the circles Co, C1 into two boundary 
toil, such that H~ still maps these boundary toil by 0--* 0 + 0~. Fill in the 
two toil so that they are solid toil, denoted by Sol, SH and extend let H l 
be the extension of He to the interior by mapping the solid tori S0o to Sol 
by the identity and Sol to S0o by the old H0. 

Now HI is a homeomorphism of S = So which is periodic point free 
except on four circles each point of which is a point of period four. Blow 
up the circles to boundary toil, extend Hi to their interior etc. In the limit, 
we have a homeomorphism H: S - ,  S which is periodic point free. But H 
has a stable invariant Cantor set with a dense orbit, which is an adding 
machine, see Buescu and Stewart (1994). 
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It is easy to extend H to the exterior of  S in R 3 so that it is still peri- 
odic point free, or since S 3 is the union of two solid torus H can be 
extended to a periodic point free homeomorphism of S 3 with two stable 
adding machines. 
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