
Journal of Dynamics and Differential Equations, Vol. 3, No. 3, 1991 

Apollonius Coordinates, the N-Body Problem, and 
Continuation of Periodic Solutions 

Kenneth R. Meyer I 

Received January 9, 1990 

This paper treats the N-body problem and its relation to various restricted 
problems. For each solution of the Kepler problem a generalization of the 
pulsating coordinates used to express the Hamiltonian of the elliptic restricted 
three-body problem is given. These coordinates are called Apollonius coor- 
dinates. The method of symplectic scaling is used to give a precise derivation of 
the elliptic restricted problem showing the precise asymptotic relationship 
between the restricted problem and the full three-body problem. This derivation 
obviates the proof of the fact that a nondegenerate periodic solution of the 
elliptic restricted three-body problem can be continued into the full three-body 
problem under mild nonresonance assumptions. Also, the method of symplectic 
scaling is used to give a precise derivation of the elliptic Hill lunar equation 
showing the precise relationship between the elliptic Hill lunar equation and the 
full three-body problem. A similar continuation theorem is established. 

KEY WORDS: N-body problem; elliptic restricted problem; continuation of 
periodic solutions; Hill's lunar problem. 
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I. I N T R O D U C T I O N  

This paper deals with the planar N-body problem of classical celestial 
mechanics, its relation to various restricted problems which are defined, a 
special coordinate system, and the continuation of periodic solutions. 

For each solution of the Kepler problem a generalization of the rotating- 
pulsating coordinates used to express the Hamiltonian of the elliptic 
restricted three-body problem is given. The Kepler problem is the central 
force problem with an attractive inverse square law force at the origin; see 
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Eq. (I.1) below. In particular, any solution of the Kepler problem (be it 
circular, elliptic, parabolic, or hyperbolic) will give rise to a coordinate 
system in which the Hamiltonian of the full planar, N-body problem is 
relatively simple. If the solution of the Kepler problem is circular, then this 
coordinate system is the standard rotating coordinates, and if the solution 
of the Kepler problem is elliptic, this coordinate system is the rotating- 
pulsating coordinates used in the elliptic restricted three-body problem. 
The derivation given below stresses the role of the Kepler problem, and so 
avoids some of the tedious trigonometry of the standard derivation. It 
would be tempting to call these coordinates "Kepler coordinates" but that 
name already has a well-established meaning in celestial mechanics, so 
these coordinates are called Apollonius coordinates after Apollonius of 
Perga (ca. 262-200 B.C.), who wrote the definitive book on conic sections. 
The origins of rotating-pulsating coordinates and the elliptic restricted 
three-body problem goes back to the work of Scheibner (1866) and was 
rediscovered by Nechvile (1926) and others. The rotating-pulsating coor- 
dinates were used to put the three-body problem in a simple form by 
Waldvogel (1973) for a different goal. The notes of Szebehely (1967) have 
more information on the historical works. 

A central configuration of the N-body problem is an equilibrium point 
in these coordinates, so it is called a relative equilibrium also. Given 
any central configuration of the N-body problem and any solution of 
the Kepler problem, then there is a restricted (N+l ) -body  problem 
where N of the bodies move on the solution of the Kepler problem while 
maintaining their relative position similar to the central configuration and 
there is an infinitesimal body moving under their gravitational attraction. 
For example, there is a restricted four-body problem where three bodies of 
arbitrary mass move on hyperbolic orbits of the Kepler problem such that 
at each instant they are at the vertices of an equilateral triangle and a 
fourth infinitesimal body moves under the gravitational attraction of the 
other three but does not in turn influence the motion of the three finite 
bodies. To my knowledge the only reference to something other than the 
circular or elliptic restricted problems is by Faintich (1972), who con- 
sidered the hyperbolic restricted three-body problem. 

The method of symplectic scaling is used to give a precise derivation 
of such a restricted problem showing the precise asymptotic relationship 
between the restricted problem and the full (N+  1)-body problem. This 
derivation obviates the proof of the fact that a nondegenerate periodic 
solution of the elliptic restricted (N + 1)-body problem can be continued 
into the full (N+  1)-body problem under mild nonresonance assumptions. 
A similar theorem was proved for the circular restricted (N+ 1)-body 
problem by Meyer (1981, 1984). 
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Jacobi coordinates are extremely useful coordinates in celestial 
mechanics and Apollonius coordinates work well with them. The 
Hamiltonian of the N-body problem is particularly nice in Jacobi-  
Apollonius coordinates. 

The method of symplectic scaling is used to give a precise derivation 
of an elliptic Hill lunar equation showing the precise relationship between 
the elliptic Hill lunar equation and the full three-body problem. This 
derivation obviates the proof of the fact that a nondegenerate periodic 
solution of the elliptic Hill's lunar equation can be continued into the full 
three-body problem. A similar theorem was proved for the (circular) HiU's 
lunar equation by Meyer and Schmidt (1982). 

II. A P O L L O N I U S  COORDINATES 

First, recall some basic formulas from the Kepler problem and its 
solution. Let ~b = (~b,, ~b2) be any solution of the planar Kepler problem, r 
the length of ~b, and c its angular momentum, so 

0 
&'= 11r r - - ~ + ~ b 2  2 , c--  q~t~2-r  (1) 

where the independent variables is t, time, and "= d/dt, "'= d 2 / d t  2. Rule out 
collinear solutions by assuming that c ~ 0 and then scale time so that c = 1. 
The units distance and mass have been chosen so that all other constants 
are one. In polar coordinates (r, 0), the equations become 

i: - -  rO 2 = - - 1 / r  2, d ( r 2 0 ) / d t  = dc/dt  = r'O + 2fO = 0 (2) 

Using the fact that c = 1 is a constant of motion yields 

r - - 1 / r  3= --1/r 2 (3) 

Equation (3) is reduced to a harmonic oscillator u ' +  u = 1 by letting 
u = 1/r and changing from time t to the true anomaly r by dt = r 2 & and 
' =  d /&.  The general solution is then 

r = r(z) = 1/(1 + e cos(r - co)) (4) 

where e and co are integration constants, e is the eccentricity, and ~o is the 
argument of the pericenter, e = 0 is a circle, 0 < e < 1 is an ellipse, ~ = 1 is 
a parabola, and e > 1 is a hyperbola. There is no harm in assuming that the 
argument of the pericenter is zero, so henceforth co = 0. 
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Define a matrix A by 

so A-I=(1/r2)A T and A-T=(AT)-I=(1/r2)A, where A T denotes the 
transpose of A. 

Consider the planar N-body problem given by the Hamiltonian 

mimj H= g N = II P'It----~2 - g(q), g(q) = ~ (6) 
i=1 2mi l~i<j<~ Ilqi-qjll 

The vectors qi, p ie  N2 are the position and momentum of the ith particle 
with mass m i > 0 where i = 1 ..... N. U is the negative of the potential and is 
called the self potential. 

Apollonius coordinates are the symplectic coordinates defined below 
by two symplectic coordinate changes. First, make the symplectic change of 
coordinates 

qi=AXi, pi=A-TY~=(1/r2)AY~, i=l, . . . ,N (7) 

Recall that if H(z) is a Hamiltonian and z = T(t)u is a linear, symplectic 
change of coordinates, then the Hamiltonian becomes H(u)+ 
(1/2) u'rw(t)u, where W is the symmetric matrix, W =  JT lj.. Compute 

0 A _ 2r_ 3~A)" ~) Wi=(-OI Oj\I~(r-2ATo AT)(O (r-aA 0 

= --r 2ATA 0 (8) 

(recall that Wis symmetric or use ATA = r2I to get the 1, 2 position). Now 

_r_2ATA=r_2( - r~  1 )  
- 1  - r t :  (9) 

Note that IIAXH = r HXII, so the Hamiltonian becomes 

XTyi _ ~l ~ x T j y  i (10) 1 ~-~N ilYill2 1 u(x)_i_ 
H = ~  ~.=1 2mi r r i= 1 i=1 

Change the independent variable from time, t, to the true anomaly of the 
Kepler problem, z, by dt = r 2 dr, '= d/dr, H--* r2H, so 

H =  II Yill 2 rU(X) r' X~Yi -  2 xTJyi (11) 
i = 1 2m-----~ -- -- r i---1 i = 1 
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The second symplectic change of variables changes only the momen- 
tum, by letting 

Xi~--Xi, Yi= yi+o~ixi (12) 

where the ~i = ~(~) are to be determined. This defines the Apollonius coor- 
dinates (x,, y~), i =  1,..., N. To compute the remainder term, consider 

0 0 
R i : ( 2 i  ~)(  I_ozii I)(o~ 3 ) : ( 0  ~ 3) (13) 

Thus the remainder term is (1/2)Z~;(z)x~xi and the Hamiltonian 
becomes 

/_/= llyell__ ~_ +UCx) + ~ - Z xTy+- Z xTJy+ 
i=t 2mi \ m i  r /  ,=t i=+ 

/=1 2mi r xTxi (14) 

Choose e; so that the third term on the right in (14) vanishes, i.e., take 
~ = mir'/r. To compute the coefficient of x**x~ in the last sum in (14), note 
that 

(r ' y _ ( r ' ] 2 = r r " - 2 r  '2 d ( r ' )  + 
r /  \ r /  r2 - r  dv\r2]=r--~+=r3i:=l-r (15) 

where the last equality comes from formula (3). Thus the Hamiltonian of 
the N-body problem in Apollonius coordinates is 

H =  IIy*II2 rU(x)-  Z x~JYi-+ ( l - r )  m,xTx~ (16) 
i=, 2m~---7- -- 2 i = I  i = 1  

and the equations of motion are 

, Yi 
X i = - -  __  J x  i 

m i  

0U 
y; = r ~ - JYi-  (1 - r) mix i vxi 

(17) 

These are particularly simple equations considering complexity of the 
coordinate change. 
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III. CENTRAL CONFIGURATIONS AND RELATIVE 
EQUILIBRIUM 

A central configuration of the N-body problem is a solution (xl ..... XN) 
of the system of nonlinear algebraic equations 

dU 
-~ixi+ 2mixi=O, i= 1 ..... N (1) 

for some scalar 2. By scaling the distance, 2 may be taken as 1. Thus a 
central configuration is a geometric configuration of the N particles so that 
the force on the ith is proportional to m~ times the position. This is the 
usual definition of a central configuration. Define a relative equilibrium as 
a critical point of the Hamiltonian of the N-body problem in Apollonius 
coordinates. This is slightly different from the usual definition of a relative 
equilibrium. 

Proposition 1. The relative equilibria are central configurations. 

Proof. The critical points of (II.16) satisfy 

OH/Oxi= - r O U / O x i + J Y i + ( 1 - r )  mixi=O, OH/~yi=yJmi--Jx~=O 

(2) 

From the second equation yi = mJx~. Plugging this into the first equation 
gives 

-r~U/Oxi-mixi+(1 - r )mix i :  -r{~3U/c~xi+mixi} =0 (3) 

Since r is positive (2) is satisfied if and only if QU/Ox~ + m~xi = O. 1 

Thi s  simple fact was observed already by Waldvogel (1973). 

IV. THE RESTRICTED PROBLEM 

Consider the (N+ 1)-body problem with particles indexed from 0 to 
N. Let HN+ 1 and UN+ , be the Hamiltonian and potential of the 
(N + 1)-body problem written in Apollonius coordinates. Also consider the 
N-body problem with particles indexed from 1 to N. Let HN and UN be the 
Hamiltonian and potential of the N-body problem written in Apollonius 
coordinates. 

i = o  2mi i = o  i = o  

-h[Y~ r F~ momj  x~Jyo+ mox~xo+gu (1) 
2mo j= ~ IlXo-- xjll 
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Assume that one mass is small by setting mo = v 2. It is known as the 
infinitesimal and the other N bodies are known as the primaries. Let Z be 
the 4N coordinate vector for the N-body problem, so Z =  (Xl ..... XN, 
Yl ..... YN), and let Z * =  (al,..., aN, bl,..., bN) be any central configuration 
for the N-body problem. By Proposition 1, grad HN(Z*)= 0. The Taylor 
expansion for HN is 

H N ( Z  ) --= H N ( Z *  ) + l ( z  = Z*)  T S ( ' c ) ( Z -  Z * )  + . . .  (2) 

where S(~) is the Hessian of H N at Z*. Forget the constant term H(Z*). 
Change coordinate by 

Xo=~, yo=v2tl, Z - Z * = v V  (3) 

This is a symplectic transformation with multiplier v -2. Making this 
change of coordinates in (1) yields 

O N +  1 = R + 21- vTs("c) V-J- O(•) (4) 

where R is the Hamiltonian of the conic (elliptic, parabolic, etc.) restricted 
(N + 1)-body problem given by 

R=~ [Itlll2-r ~ mi 

To zeroth order the equations of motion are 

~ m'(~-ai) J~ l - (1-r )~  (6) ~ ' = t / + J ~ ,  r / '= - r  i -~-  a--~- 5 + 
i=1 

V' = D(z) V, D(z) = JS(z) (7) 

The equations in (6) are the equations of the restricted problem and those 
in (7) are the linearized equations of motion about the relative equilibrium. 

When ~ = 0 both Eq. (6) and Eq. (7) are time independent and (5) is 
the Hamiltonian of the (circular) restricted N-body problem. In this case a 
periodic solution of (6) is called nondegenerate if exactly two of its multi- 
pliers are + 1. When 0 < e < 1 both Eq. (6) and Eq. (7) are 27z-periodic in 
z and (5) is the Hamiltonian of the elliptic, restricted N-body problem. In 
this case a 2krc-periodic solution of (6) is called nondegenerate if all four of 
its multipliers are different from + 1. 

In the classical, elliptic restricted three-body problem the masses of the 
primaries are m l = l - / z ,  m2=/~, and they are located at a l = ( - # , 0 ) ,  
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a2 = (1 - # ,  0). The parameter # is called the mass ratio parameter. Thus the 
Hamiltonian of the classical, elliptic three-body problem is 

where 

d1= {(~1+#) 2+y2~'1/2~2J , d 2 =  { (~1- -1" [ -# )2+~2}  1/2 

r = r ( r ) = l / ( l + e c o s z ) ,  O < e < l  
(9) 

V. SYMMETRIES AND R E D U C T I O N  

Henceforth, consider the elliptic case only. For the moment consider 
the N-body problem in the original rectilinear coordinates (q, p) in (II.6). 
This Hamiltonian is invariant under the symplectic extension of the group 
of Euclid motions of the plane, i.e., it is invariant under the action qi-~ 
Eqi + b, p~-~ Ep~ where E is a rotation matrix and b is a vector. This 
motion carries a periodic solution to a periodic solution and so periodic 
solutions are not isolated even in an energy level H =  constant. A theorem 
of Meyer (1973) states that due to this symmetry the algebraic multiplicity 
of the characteristic multiplier + 1 of a periodic solution of the N-body 
problem must be at least 8. Unless these degeneracies are eliminated the 
standard methods of perturbation analysis will fail. 

By a classical theorem of Noether the symmetry implies that the equa- 
tions of motion admits linear and angular momenta as integrals, a total of 
three integrals. Thus part, but not all, of the degeneracies can be eliminated 
by holding these integrals fixed. Holding these three integrals fixed reduces 
the dimension by three, but the total degeneracy can be eliminated by 
going to the reduced space, which reduces the dimension by 6. This reduc- 
tion is accomplished in several steps. First fix the center of mass at the 
origin and hold linear momentum to zero. These are four linear constraints 
and so defines a linear, invariant subspaee B 1 c ~4N of dimension 4 N -  4. 
Next hold angular momentum equal to a fixed nonzero number. This 
defines an invariant submanifold B 2 c B 1 of dimension 4n - 5. Finally, let 
B be the quotient space B = B2/_ where ~ is the equivalence relation 
(q, p)~ (qt, p*) where q~ = Eqf, Pi = Ep~, E a rotation matrix. B is called 
the reduced space for the N-body problem. 

By a theorem of Meyer (1973) the reduced space, B, is a symplectic 
manifold of dimension 4 N -  6 and the Hamiltonian H and the flow defined 
by this Hamiltonian naturally drop down to this quotient space. This is the 
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natural place to study the N-body problem because all the degeneracies 
due to the symmetries of the problem have been eliminated. In general a 
periodic solution would have the multiplier + 1 with multiplicity 2 on the 
reduced space which is the generic number; such a periodic solution is 
called a nondegenerate periodic solution. Now turn to the Hamiltonian of 
the N-body problem in Apollonius coordinates. 

Let C be the center of mass, L the total linear momentum, and F the 
total angular momentum in Apollonius coordinates, i.e., 

N N N 

C = Z m , x , ,  L = Z y , ,  F=-Ex~Sy ~ (1) 
l l 1 

From Eqs. (II.17) it follows that 

C' = - J C +  L 

L ' =  - (1  - r ) C - J L  (2) 

F ' = 0  

From these equations we see that C and L satisfy a time-varying, 
linear, homogeneous, Hamiltonian system of equations so the set C = L = 0 
is invariant. From the last equation angular momentum, F, is an integral. 
The Hamiltonian of the N-body problem in Apollonius coordinates (II.16) 
is still invariant under rotations and so the reduction can be carried out in 
these coordinates also. That is, the reduction can be accomplished by set- 
ting C = L = 0, F =  constant ~ 0, and identifying points by (x, y)_ (x t, y+) 
where xi = Ex~yi = Eye, E a rotation matrix. 

Let (Q, P) be rectangular coordinates in E2 x E2. If the Hamiltonian 
K =  (1/2) pTp is written in Apollonius coordinate (C, L), then K becomes 
K(C, L) = (1/2) L T L -  CTjL + ((1 - r)/2) CTC, which is the Hamiltonian 
for the first two equations in (2). Thus the first two equations in (2) are 
just the equations Q = P, P = 0, written in Apollonius coordinates and so 
the characteristic multipliers of this system are all + 1. Thus fixing the 
C = L = 0 decreases the multiplicity of the multiplier + 1 by 4. Holding F 
fixed and going to the quotient space decreases the multiplicity of the 
multiplier + 1 by another 2 by the same argument as given by Meyer 
(1981). Thus going to the reduced space decreases the multiplicity of + 1 
by 6. 

A relative equilibrium becomes an equilibrium for the Hamiltonian on 
the reduced space. The nontrivial multipliers of the relative equilibrium are 
defined in the following way. First, consider the linear variational equation 
about the relative equilibrium on the reduced spaces--this is a linear, 
2n-periodic system of dimension 4 N - 6 .  In general, the multiplier + 1 will 
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have multiplicity 2. The remaining 4 N - 8  multipliers are called the non- 
trivial multipliers o f  the relative equilibrium. 

A solution of the (N + 1)-body problem is called reduced periodic with 
period T if its projection on the reduced space is periodic of period T. 
A reduced periodic solution of the ( N +  1)-body problem is called non- 
degenerate if its projection onto the reduced space is a periodic solution 
with multiplier + 1 of multiplicity 2. 

VI. THE C O N T I N U A T I O N  T H E O R E M  

There are many theoretic and numeric investigations of periodic solu- 
tions in the elliptic three-body problem. See Brouke (1969, 1971), Moulton 
(1920), Schubart (1956a, 1966), Sergysels-Lamy (1975), Shelus (1972), 
Szebehely and Giacaglia (1964), and their references. Consider a system of 
2r~-periodic equations 4' = f ( r ,  3, v) depending on a parameter v and let 
Z(z) be a 2k~z-periodic solution when v = 0. The solution )~(z) can be con- 
tinued if there is a smooth one-parameter family of 2krc-periodic solutions 
Z*(r, v) defined for v small such that Z*(r, 0) = Z(r). 

Theorem 2. Let (O(z), ~(~)) be a nondegenerate 2kn-periodic solution 
of  the elliptic, restricted (N + 1)-body problem in (IV.6) with Hamiltonian 
(IV.5). Let the nontrivial multipliers of  the relative equilibrium not be kth 
roots of  unity. Then the 2kTt-periodic solution ~ = ~b(z), t /= ~p(z), V = 0  of  
(IV.6),  (IV.7) can be continued into the full  (N + 1)-body problem as a non- 
degenerate reduced periodic solution for small values of  m o = v 2. 

Proof. Consider the ( N +  1)-body problem using the notation in 
Section IV. Let V= (ul ..... UN, Vl,..., VN) SO Xi = ai-- vui, yi = b i -  vvi = 
-m~Jai -vv~ .  Since the center of mass of the relative equilibrium is fixed 
at the origin Z~ v m~ai = 0 and 

C=v2~ + v{mlUl + .. .  + mNUN} 

L =  v2rl + v{vl + ...-~-UN) (1) 

N 

A = v2r + ~ (a i -  vui) T J(bi-- vvi) 
l 

From these formulas it follows that the reduced space depends smoothly on 
the parameter v and the Hamiltonian on the reduced space also is smooth 
in v. ~ 

Remember that the ( N +  1)-body l~roblem is time independent and a 
periodic solution can be continued if the eigenvalue + 1 has multiplicity 2. 
[This is a simple consequence of the implicit function theorem applied to 
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the Poincar6 map in an energy level; see Abraham and Marsden (1967).] 
By the assumptions above the 2kTz-periodic solution r t /=~(z) ,  
V = 0 when v = 0 has the multiplier + 1 with multiplicity 2 on the reduced 
space. 1 

Corollary 3. Le t  (~b(z), ~b(z)) be a nondegenerate 2krc-periodic solution 
o f  the classical, elliptic, restricted three-body problem with Hamiltonian 
( IV.8) .  Then the 2krc-periodic solution ~ = (~(z), tl = ~b(z), V =  0 o f  ( IV .6) ,  
( IV .7)  can be continued into the fu l l  three-body problem as a nondegenerate 
reduced periodic solution fo r  small  values o f  m o = v 2. 

Proof. The two-body problem is eight dimensional and its reduced 
space is two dimensional. Therefore, there are no nontrivial multipliers of 
the relative equilibrium and so no restriction on them. I 

VII. JACOBI COORDINATES 

This presentation of Jacobi coordinates is taken from Meyer (1981); 
see that paper for more details. Consider the ( N +  1)-body problem with 
the index running from 0 to N. Define the Jacobi coordinates by a sequence 
of symplectic coordinate changes starting with go = Xo, Go = Yo, #o = mo, 
and henceforth 

Uk = Xk -- gk 1, Vk = (mk 1/#k) Yk- -  (mk/#k)  G k -  1 

g k = ( 1 / P k ) ( m k x k + p k - - ~ g k - - 1 ) ,  G k = Y k + G k  1 (1) 

# k  : m k  4-  #lc  - 1 

By Meyer (1981) it is shown that 

[lyill2 IIGNII2+ ~ Ilvill2 

i=0 2mi 2#u  .= -~m; 

N N 

Z = gNJGN 4- Z uTJvi (2) 
i = 0  i = l  

Mk = mkPk_ 1/#k 

In a like manner we can show that 

/zk_l Ilgk 1[124-mk Ilxkll2=#k Ilgk[le4-Mk Ilukll 2 (3) 

and so by induction 
N N 

~, mi Itxzll2=PN I lgull2+ F. Mi ]luelt 2 (4) 
i = 0  i - 1  
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Thus the Hamiltonian of the (N+l)-body problem in Jacobi- 
Apollonius coordinates is 

H N + I :  ]IGNH 2 "}-2/~N i=1 ~ ~ i  rg(u) -~  {gTJGN-~- i=l~UTiJ1)i} 

i=1 

The equations for gN and GN are 

g~N = G N / # N  - -  JgN, GN = --(1 + r) fiN gN - -  JGN (6) 

These linear equations are the same as the equations for C and L in (V.2), 
in particular, the set gN = G N  = 0 is invariant. In fact, gN and G N a r e  just 
scalar multiplies of C and L. We can set gN = G N  = 0 in (6) to get a simpler 
system. 

VIII. THE TWO-BODY PROBLEM 

Consider the two-body problem in Apollonius coordinates, i.e., 

2 ( l - r )  ~ mix-[xi (1) T = H 2 =  Ily'll-----~2-rg(x) - E x T j Y i - t - ~  - - -  
i=1 2mi i=1 i=l 

For this Section let m I + m 2 =  1,  M = m l m 2 ,  and introduce Jacobi coor- 
dinates by 

bl 1 = X 2 - - X l ,  

U 2 = m2x  2 -[- m l x l ,  

vi = m l  y 2 - - m 2 y l ,  

v2 = Y2 + Y~, 

The Hamiltonian becomes 

T=llvlll2 Iiv2112 
2~/ + - 5  

Xl ~ /'/2 -- m2btl 

X2 = b/2 -[- ml b/1 

yl  = m l v 2 - - v l  

y 2 = m 2 v 2 + v l  

M 
- - - r  ~ + {uTJv I + RTJu2} 

+ {M Ilu~ll + Ilu~ll } 

The equations for u2, v: are 

ur2=v2-- Ju2, 1)12--~ - -Jv2- - (1 - - r )  u 2 

(2) 

(3) 

(4) 
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a n d  s o  /,12 : / - ) 2  : 0 is  a n  i n v a r i a n t  se t .  Henceforth,  a s s u m e  t h a t  I,/2 : I)2 : 0,  

and let u = Ul ,  v = vl. Then the Hamil tonian  becomes 

[]vl122M M - -  T =  --rl-~+uZJv+ M [lull 2 (5) 

N o w  change to polar  coordinates by 

ul = p cos 0, vl = R cos 0 - (O/p) sin 0 
(6) 

u2 = p sin 0, v2 = R sin 0 - (O/p) cos 0 

so in these coordinates  the Hamil tonian  becomes 

T = ~--~ R 2 +  - - r - - + O +  Mp 2 (7) 
P 

and the equations of mot ion  are 

0 
0 ' =  + 1 ,  O ' = 0  Mp 2 

R 02 rM 
p ' =  R ' =  - -  (1--  r) Mp M'  Mp3 p2 

The critical points are at 

(8) 

0 = anything, O = - M ,  p = 1, R = 0 (9) 

and the linearized equat ions about  this critical point  are 

O 
0 ' = 2 p + ~ ,  O ' = 0  

R 

M 
R ' =  - 2 0 +  { 3 r - 4 }  Mp 

(lo) 

IX. H I L L ' S  L U N A R  E Q U A T I O N S  

Consider  the three-body problem in Jacobi-Apollonius coordinates 
with the center of  mass at the origin and linear m o m e n t u m  set to zero. 
Think of  mo, ml ,  and m2 as the mass of  the earth, moon,  and sun, respec- 
tively. The Hamil tonian  is 

H =  i=1  ~-~i--HiJ~)i --r ~]]-~lll-e [i.2__(~OUl[] - ~ I I H ~ T Z U l ] [  

(1 - -  r) X~ 
+ ~ ~ vi Ilu/]l 2 (1) 

i=1  
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where 

M1 m~ M 2 -  m2(mo + ml) 
( m o + m l ) '  (mo+ml +m2) 

mo m 1 
C~O=(m0+ml ), ~1 (mo+ml)  (2) 

1/1 =mlm0, v2 = m2(mo + ml) 

Assume that the masses of the earth and moon are small compared to 
the mass of the sun, but are of the same order of magnitude, by setting 

mo = 1/660, ml = 1/661 , rn 2 = 1 (3) 

and scale by vi ~ 1/6v i (symplectic with multiplier 1/6) to  get 

H = H 1 + H 2 + O(1/6) 

H1 I[vall2--uTJvl--v6r 6~ 1 /6 ( - - -1 -~6061  IlUllt 2 
= 2xl I~--~111 + 

H2 Ilvzll 2 uTjv 2 r61 r6o (4) 
2x2 Ilu2-- ~oulll I[u2--~luxll 

+ (1-~-r)(6o+ 61)Ilu21I 2 

60 61 6061 
/~0 = 60"..7_ 61 ' /~1 = 60 ..~. 61 ' NT1 = 6061 '  K2=6oq_61 

Note that the O(V 6) depends contains terms in the momenta only. Now 
assume that the distance between the earth and the moon, Ilulll = 
Ilxl-Xoll, is small by comparison to the distance from the earth-moon 
system to the sun by scaling ul ~ Vzul �9 This scaling is not symplectic but 
it is augmented later so that the total scaling is symplectic. Before this 
scaling is done the potential terms must be investigated. Following Hill we 
expand the two potential terms in H 2 in a Legendre series as follows: 

0(3 
61 6o (6o+61) I - - -  ~ bkpkPk(cosO) (5) 

Ilu2- ~ouxll ~- [lu2- ~lUlll Ilu211 I}u211 ~=2 

where p = IlUlll/llu21l, bk = 61fl~+ 60(--]~1) k, 0 is the angle between ul and 
u2, and Pk is the kth  Legendre polynomial. Thus (4) becomes 

r ~ bkpkPk(cos O) + O(v 6) H =  HI + H3 + II--~2H k=2 (6) 
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where 

H3 IIv21[ 2 uTjv  2 rl< 2 ( l - r )  
- 2~:~- -11-~2l{ + - - ~ - - x 2  Hu=[I 2 (7) 

H 3 is just the Hamiltonian of the Kepler problem in Apollonius coor- 
dinates where the fixed body of mass 1 is located at the origin and the 
moving body is of mass K2 = 50 + ~1- One can think of the fixed body as 
the sun and the moving body as the ear th-moon system. The latter 
assumption is that the ear th-moon system moves approximately on a solu- 
tion of the Kepler problem about the sun. As seen above, the Kepler 
problem in Apollonius coordinates has a critical point at a central con- 
figuration. Specifically, H3 has a critical point at u2 = a, v2 = b, where a is 
any constant vector satisfying [la[[ 3= 1 and b = tCzJa. Let 

,8, 
kV2/ 

SO H 3 is a function of Z, grad H 3 ( Z *  ) - - 0 ,  and H 3 has a Taylor expansion 
of the form 

H3(Z,z)=H3(Z*)+�89 S(z ) (Z-Z*)+ ... (9) 

where S(r) is the Hessian of H3 evaluated at Z*. Henceforth, drop the 
constant term in (9) since the equations of motion are independent of the 
constants in the Hamiltonian. 

Now complete the previous scaling, ul~v2u~, by Z - Z * ~ v 2 W ,  
vl --+ V2Vl, which is symplectic with multiplier v 4. The Hamiltonian becomes 

O = 9 4 ~- 1wTs(~7) W-~ O(I)) 

(~051 2 H4 ]lVlll2 uTJVl--r -rb2 Ilu~ll P2(cos 0) 
= 2 K ~ - - 7 - -  - 

(10) 

In order to reduce the number of parameters in the problem we make 
one further scaling. Recall that P2(x) = (1 - 3x2)/2 and let a = (1, 0) so that 
the abscissa points at the sun and make the symplectic change of coor- 
dinates 

Ul=(O0q-Ol)l /3 ~, U1=(~50-'{'-(~1)1/3 K'I/'], W=((~o--~(~l)l/3 K~/2V (11) 

so that the Hamiltonian becomes 

H = L +  �89 O(v 2) (12) 
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where 

L= I1~11~- ~TJ~ r 
2 - I I ~  +r(3~1- I1~11~) (13) 

L is the Hamil tonian  of Hill's lunar problem with the e a r t h - m o o n  
system moving on a Kepler orbit  about  the sun. It is called the conie Hill's 
lunar problem. In the classical Hill's lunar problem c = r = 1. If  we take an 
elliptic solution of  the Kepler problem with c = 1, then L is 27r-periodic and 
we call it the elliptic Hill's lunar problem. This problem was used via a 
s ingular-perturbat ion problem by Spirig and Waldvogel  (1985). 

As before we have the following. 

Theorem 4, Let  ( ~b( z ), ~ ( z ) ) be a nondeg enerate 2kTr-periodic solution 
o f  the elliptic Hill's lunar problem. Then the 2kTr-periodic solution ~ = (~(z), 
q : ~b(z), V =  0 o f  the equations defined by (12) and (13) when v = 0 can be 
eontinued into the ful l  three-body problem as a nondegenerate reduced 
periodic solution for  small values o f  v. 

Proof. The p roof  is a slight modification of the proof  of Theorem 2 
or  of the similar theorem of Meyer  and Schmidt (1982). I 
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