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Abstract The search for traveling wave solutions of a semilinear diffusion partial differen-
tial equation can be reduced to the search for heteroclinic solutions of the ordinary differential
equation ü − cu̇ + f (u) = 0, where c is a positive constant and f is a nonlinear function.
A heteroclinic orbit is a solution u(t) such that u(t) → γ1 as t → −∞ and u(t) → γ2 as
t → ∞ where γ1, γ2 are zeros of f . We study the existence of heteroclinic orbits under
various assumptions on the nonlinear function f and their bifurcations as c is varied. Our
arguments are geometric in nature and so we make only minimal smoothness assumptions.
We only assume that f is continuous and that the equation has a unique solution to the initial
value problem. Under these weaker smoothness conditions we reprove the classical result
that for large c there is a unique positive heteroclinic orbit from 0 to 1 when f (0) = f (1) = 0
and f (u) > 0 for 0 < u < 1. When there are more zeros of f , there is the possibility of
bifurcations of the heteroclinic orbit as c varies. We give a detailed analysis of the bifurcation
of the heteroclinic orbits when f is zero at the five points −1 < −θ < 0 < θ < 1 and f is
odd. The heteroclinic orbit that tends to 1 as t → ∞ starts at one of the three zeros, −θ, 0, θ
as t → −∞. It hops back and forth among these three zeros an infinite number of times in
a predictable sequence as c is varied.
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1 Introduction

We consider the equation

ü − cu̇ + f (u) = 0 (1)

where f : [a, b] ⊂ R → R is continuous and c is a real parameter. The independent variable
is t and dot denotes differentiation with respect to t , i.e.˙= d/dt . Rewrite Eq. 1 as a system
by introducing v = u̇, so that

u̇ = v, v̇ = cv − f (u). (2)

The equilibrium points of (2) are of the form (γ, 0) where f (γ ) = 0. A heteroclinic orbit of
(2) is a solution φ(t) = (u(t), v(t)) such that

lim
t→−∞(u(t), v(t)) = (γ1, 0), lim

t→+∞(u(t), v(t)) = (γ2, 0) (3)

where γ1 �= γ2 are zeros of f . We sometimes say the orbit is heteroclinic from (γ1, 0) to
(γ2, 0). A heteroclinic orbit φ(t) = (u(t), v(t)) is positive if u(t) > 0 for all −∞ < t < ∞
and is positive and negative if it takes both signs in the same interval. We are interested in the
existence of heteroclinic orbits of (2) and their evolution and bifurcations as the parameter c
is varied.

Our initial motivation came from the vast literature on traveling wave solutions of semi-
linear diffusion equations of the form

∂U

∂t
= ∂2U

∂x2 + f (U ). (4)

This is sometimes called a real Ginzburg-Landau equation [3] and is also known as the
Allen-Cahn equation in phase field theory [8]. Making the ansatz that U is of the form
U (t, x) = u(x + ct) yields Eq. 1 and a heteroclinic orbit of (1) gives a traveling wave
solution of (4) (see [1,4,5,7] and the references therein).

In much of this traveling wave literature the function f is defined for 0 ≤ u ≤ 1, is
positive for 0 < u < 1 and is zero at 0 and 1. In this case the only heteroclinic orbit would
be from the equilibrium point (0, 0) to the equilibrium point (0, 1). In [1], Aronson and
Weinberger introduce a genetics model of the form (4) where f has an addition zero between
0 and 1. In such a model there are two types of heteroclinic orbits that can occur and there is
the possibility that the heteroclinic orbit pops from one equilibrium point to the other as the
parameter c varies. Ultimately, our attention turned to the fascinating complexities of these
bifurcations and the extent this could be analyzed using only geometric arguments.

To emphasize the geometric nature of the arguments, we make minimal smoothness
assumptions. We only assume that f is continuous and that Eq. 2 have a unique solution
to the initial value problem

u = u0, v = v0 when t = 0.

This insures that the solutions of the initial value problem u(t, u0, v0, c), v(t, u0, v0, c) are
continuous in the displayed arguments [6, p. 94]. Since these solutions satisfy (2) the partials
ut (t, u0, v0, c), vt (t, u0, v0, c) are also continuous. This last remark allows one to use the
Implicit Function Theorem to define continuous cross section maps as found in [6,12].
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To be specific, we make the following standing assumptions:

(i) c > 0
(ii) f : [−1, 1] → R is continuous;

(iii) the Eq. 2 has a unique solution to the initial value problem;
(iv) f (−1) = f (0) = f (1) = 0;
(v) f (−u) = − f (u);

(vi)
∫ 1

0
f (u)du = F1 > 0.

This first assumption is for convenience. With f odd, the reversal of time t → −t together
with u → −u preserves (2), but changes the sign of c, so there is no loss of generality in this
assumption. Assuming f is odd allows us to use ideas from dynamical systems. For now we
make no assumptions about the sign of f beyond what is implied by assumption (vi).

In Sect. 2 we use a Liapunov function argument to find a region in phase space where
all solutions of interest tend to an equilibrium as t → −∞. In Sect. 3 we give the local
phase plane structure near an equilibrium using geometric methods. Section 4 is devoted
to establishing the existence of a positive heteroclinic orbit in the classical case when f is
positive on 0 < u < 1. Finally in Sect. 5 we study the intricate bifurcations of heteroclinic
orbits as the parameter c is varied when f has an additional zero in 0 < u < 1.

2 Global Stability

The standard Liapunov function for (2), is

V = 1

2
v2 + F(u), F(u) =

u∫

0

f (τ )dτ, (5)

whose derivative along the solutions of (2) is

V̇ = ∂V

∂v
v̇ + ∂V

∂u
u̇ = v(cv − f (u))+ f (u)v = cv2 ≥ 0. (6)

Lemma 2.1 Any solution of (2) which is bounded for t ≤ 0 approaches an equilibrium point
as t → −∞.

Proof The classical Liapunov type theorems deal with behavior as t → +∞. Therefore,
there will be sign shifts in the following arguments.

Since V̇ ≥ 0, it follows from LaSalle’s Theorem (Theorem 2, p. 282 of [9]) that a solution
which is bounded for t ≤ 0 tends to the largest invariant set in Z = {(u, v) : V̇ (u, v) = 0}
as t → −∞ (see also [10,11]). By (6) the set Z is defined by v = 0, since c > 0. On Z we
have v̇ = − f (u), so to remain in Z we must have f (u) = 0 and the largest invariant set is
the set of equilibria. �	

Let D = {(u, v) : −1 ≤ u ≤ 1, V ≤ F1}. Since F(±1) = F1, the only points of D with
u = ±1 are (±1, 0). Consequently, the boundary of D is contained in the level set V = F1.
Figure 1 is a representation of D in the case where F is increasing on 0 ≤ u ≤ 1 (i.e.,
f (u) ≥ 0). If F1 is not the maximum value of F on 0 ≤ u ≤ 1, then D will have multiple
components.

Proposition 2.1 Any solution of (2) which starts in the region D when t = 0 remains in D
for all t ≤ 0 and tends to an equilibrium point as t → −∞.
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Fig. 1 The region D

Proof Since V̇ ≥ 0, solutions cross level sets of V in the direction of larger values of V as t
increases. Consequently, a solution that starts in D remains in D for t ≤ 0 and, since D is a
bounded set, the Proposition follows from Lemma 2.1. �	

3 Local Analysis

In this section we look at the local phase portrait of Eq. (2) near an equilibrium point, which
we assume has been translated to the origin. Specifically, let x = u − γ, y = v where
f (γ ) = 0 and g(x) = f (x + γ ) so that Eq. 2 becomes

ẋ = y, ẏ = cy − g(x). (7)

The translate of V (up to a constant) is

W = 1

2
y2 + G(x), G(x) =

x∫

0

g(τ )dτ,

so Ẇ = cy2 ≥ 0. For the equilibrium of Eq. (2) at (1, 0), Eq. 7 is defined on only one side of
the origin. For simplicity we can make an odd extension of f across u = 1, so that g is also
odd. However, we will see that we can work equally well with g defined on only one side.

The form of these equations and the sign of g near the origin is enough to determine
the general nature of the orbit structure near the equilibrium without assuming that g′(0) is
nonzero or that it even exists. If g is odd, there are two main cases.

Case 1 Saddle point. We will call the equilibria a saddle point if there is an η > 0 with

xg(x) < 0 for 0 < |x | ≤ η. (8)

Thus we are assuming that locally the graph of g is in the second and fourth quadrant which
would certainly be true if g had a negative derivative at the origin.

Proposition 3.1 Under the assumption (8) the local phase portrait near the equilibrium of
equation (7) looks like a traditional saddle point. That is to say, there is a neighborhood N
of the equilibrium in phase space such that:

(1) [stable curves] there is a unique orbit in each of the second and fourth quadrants which
stays in N for t > 0 and tends to the equilibrium as t → +∞;
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(a) (b)

Fig. 2 The Region M

(2) [unstable curves] there is a unique orbit in each of the first and third quadrants which
stays in N for t < 0 and tends to the equilibrium as t → −∞;

(3) all other orbits leave N as t → ±∞.

If g is defined on only one side of the origin, then these conclusions still hold in the appropriate
half plane.

These curves are traditionally called separatrices [6,12] because they often form the
boundary between domains of attraction for sinks and domains of repulsion for sources, but
we shall call them stable and unstable curves or the asymptotic curves in general.

Proof Consider first the second quadrant. Let M be the region defined by

M = {(x, y) : −η ≤ x ≤ 0, y ≥ 0, W (x, y) ≤ 0}.
See Fig. 2a. The vectors defined by Eq. 7 point into M on the left boundary and point out
of M on the top and bottom boundaries. This region does not quite satisfy the hypothesis of
Ważewski’s theorem [6,14] since there are both ingress and egress points on the boundary.
This region is not quite an isolating block in the sense of Conley and Easton [2], since there
is an equilibrium point on the boundary. However, the ideas of these classic works readily
apply. The set of ingress points are the points on the boundary of M where the trajectories
enter M , i.e. the ingress points are I = {(−η, y) : y > 0,W (−η, y) < 0}. The set of ingress
points, I , is homeomorphic to an open interval.

The set of egress points are the points on the boundary of M where the trajectories exit
M , i.e. E = {(x, 0) : −η < x < 0} ∪ {(x, y) : −η < x < 0, y > 0,W (x, y) = 0} . The set
of egress points E is homeomorphic to the union of two open intervals. (The intervals are
separated by the equilibrium point (0, 0).)

Suppose that no trajectory starting on the ingress set I approaches (0, 0). Then all trajec-
tories enter at the ingress set and exit at the egress set. The ingress and egress sets are cross
sections to the flow and cross section maps define a homeomorphism. However, this is a
contradiction since the ingress set is connected and the egress set is disconnected. Therefore,
there is at least one trajectory in the second quadrant that approaches the origin.

Since ẋ = y > 0 in the interior of M , a solution which tends to the origin defines a graph of
a continuous function of x which is C1 on [−η, 0). Suppose there were two different solutions
tending to the origin given by the graphs y = ψ1(x) and y = ψ2(x)withψ1(−η) > ψ2(−η).
Since (ψ1 − ψ2)(−η) > 0 and (ψ1 − ψ2)(0) = 0, by the mean value theorem there must
be a ξ ∈ (−η, 0) such that (ψ1 − ψ2)

′(ξ) < 0. On the other hand, these are solution curves
which cannot cross, so ψ1(x) > ψ2(x) for −η ≤ x < 0. But dy/dx = c − g(x)/y by (7), so
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for fixed x = ξ the slope of solution curves increase with y, which implies ψ ′
1(ξ) > ψ ′

2(ξ).
This is a contradiction, so the solution is unique. Note that the argument was restricted to the
second quadrant, so the conclusion still holds if g is defined on only the left half-plane.

For the fourth quadrant we use M = {(x, y) : 0 ≤ x ≤ η, y ≤ 0, W (x, y) ≤ 0},
but the argument is the same. For the first and third quadrants the arguments are also sim-
ilar, but with time reversed. See Fig. 2b for the choice of M in the first quadrant. Here
M = {(x, y) : x ≥ 0, 0 ≤ y ≤ y0, W (x, y) ≥ 0}, where y0 > 0 is chosen sufficiently
small that x ≤ η on M . In this case the ingress set is homeomorphic to the union of two
disjoint open intervals and the egress set is connected. Following the flow backwards in time
we again get a homeomorphism from a connected set onto a disconnected set in the absence
of a solution curve emanating from the origin, which sets up the contradiction. �	
Proposition 3.2 Moreover, the local asymptotic curves are continuous in the parameter c
with those in the first and fourth quadrant strictly increasing in c and those in the second
and third quadrant strictly decreasing in c.

Pictorially, this proposition says that the positions of the asymptotic curves rotate strictly
counterclockwise as c increases while staying in their respective quadrants.

Proof Let 0 < d < c be two parameter values and the graphs y = ψc(x) and y = ψd(x) be
the corresponding asymptotic curves in the second quadrant. We now mimic the existence
proof. Let M ′ = {(x, y) : −η ≤ x ≤ 0, y ≥ 0, y ≤ ψd(x)}. The vector field defined by (7)
with parameter value c points into M ′ on the left boundary and points out of M ′ on the bottom
boundary. Since c > d , the vector field also points out of M ′ on the top boundary. By the
existence proof argument, the asymptotic curve y = ψc(x) lies in M ′ and soψc(x) < ψd(x)
for −η ≤ x < 0. The other quadrants are analogous.

To show continuity from below, let P = (−η,ψc(−η)) be the point where the stable curve
for parameter c crosses the line x = −η. Choose a point Q on x = −η above P which is
sufficiently close to P that the solution through Q for parameter c stays as close as we wish
to the stable curve before exiting the second quadrant along the positive y-axis. Continuity
of the solutions in the parameter guarantees that we can choose ε > 0 such that for any
d < c with c − d < ε, the d-solution through Q still exits the second quadrant along the
positive y-axis. We now make the following observations. Since d < c, the stable curve for
d is strictly above the stable curve for c. Since the d-solution through Q is above the origin at
x = 0, the stable curve for d must be strictly below the d-solution through Q. Moreover, as
the parameter decreases the tangent vectors rotate clockwise, which implies the d-solution
through Q sits below the c-solution through Q. Consequently, the stable curve for parameter
d sits strictly between the stable curve for c and the c-solution through Q, which were chosen
to be as close as we wished. There is a mirror image argument for continuity from above and
analogous arguments for the other asymptotic curves. �	

For our applications (1, 0) is a saddle, in which case we have the following.

Theorem 3.1 If f (u) > 0 on some interval 1 − ε < u < 1, then there is a unique hetero-
clinic orbit φ(t) tending to (1, 0) as t → +∞ and it tends to one of the equilibria in the
interior of D as t → −∞.

Proof From the proof of Proposition 3.1 the unique orbit that approaches (1, 0) from
the left lies in D and so it must approach one of the equilibria in D as t → −∞ by
Proposition 2.1. �	
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Case 2 Source points. Now assume that there is an η > 0 such that

xg(x) > 0 for 0 < |x | ≤ η. (9)

Thus we are assuming that locally the graph of g is in the first and third quadrant, which
would certainly be true if g had a positive derivative at the origin.

Proposition 3.3 Under the assumption (9) the equilibrium of (7) is asymptotically unstable,
i.e. it is a source.

In particular, it is either like a node, with orbits emanating from the origin only through
one of the two sectors making up S = {(x, y) : 0 < y/x ≤ c}, or a spiral, with orbits
winding around the origin infinity often in a counterclockwise direction as t → −∞.

Proof The assumption (9) implies that W has a local minimum at the origin. As before
Ẇ ≥ cy2. These facts and the same reasoning as given in Proposition 2.1 yield the first
assertion.

For this proof ‘enters’, ‘leaves’ and ‘approaches’ refers to backward time. The line y = cx
divides the interior of the first quadrant into two sectors with the lower sector constituting
one half of the set S. If an orbit meets this line it must enter the upper sector and remain there
before exiting through the positive y axis since the slope of the orbit, dy/dx = c − g(x)/y,
is less than the slope, c, of the line. Thus the orbit must enter the second quadrant.

Continue to trace the orbit backwards. Since g is odd, g(x) < 0 in the second quadrant.
Therefore, both ẏ and ẋ are positive and orbits have positive slope at all points in the second
quadrant. This implies the orbit cannot converge to (0, 0) through the second quadrant, since
convergence would require the orbit to have points with negative slope. Consequently, the
orbit must leave the second quadrant through the negative x-axis. The arguments for the
third and fourth quadrants repeat those of the first and second, respectively. From this we
can conclude that an orbit ultimately approaches the origin through one of the two sectors
making up S or spirals around the origin infinitely often. Since orbits cannot cross, all orbits
approaching the origin must behave in the same way. �	

4 Classic Case

In this section we will assume that

f (u) > 0 for 0 < u < 1. (10)

Since f is odd we have f (u) < 0 for −1 < u < 0 and f is zero only at −1, 0, 1. The
equilibria at (±1, 0) are saddle points in the sense of Proposition 3.1 and the equilibrium at
(0, 0) is a source in the sense of Proposition 3.3.

In this case the origin is the only equilibrium in D, so by Theorem 3.1 there is a unique
heteroclinic orbit from (0, 0) to (1, 0). Let φc(t) = (u(t), v(t)) be this heteroclinic orbit.

Theorem 4.1 If (10) holds and there exists a constant a > 0 such that

f (u) ≤ au for 0 ≤ u ≤ 1, (11)

then there exists a real number c∗ > 0 such the heteroclinic orbit φc(t) is positive for all
c ≥ c∗ and it is positive and negative for all 0 < c < c∗.

The bound (11) would certainly hold if f had a derivative at the origin. This theorem appears
in [1,7] under the additional assumption that f is C1.
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Proof When c = 0, the equilibrium point at the origin is a center, i.e. there is a neighborhood
of the origin filled with periodic solutions. Therefore, when c is small and positive all small
solutions spiral out from the origin and the heteroclinic orbit is both positive and negative.

Let φ(t) be a heteroclinic orbit that is both positive and negative. It must cross from the
second quadrant to the first quadrant by crossing the positive v-axis. The crossing must be
transversal since at the crossing u̇ = v > 0. Since a transversal intersection is an open
condition, the set {c : φc is positive and negative} is open in R.

Choose c with 0 < 4a ≤ c2. We compare Eq. 2 and the linear equation

u̇ = v, v̇ = cv − au (12)

Equation 12 is a linear unstable node with particular solutions along the eigenvectors of
the coefficient matrix, that is along the vectors (c ± √

c2 − 4a, 2a). Let ψ(t) = (u(t), v(t))
be one such solution of (12), so ψ(t) remains in the first quadrant for all t , tends to the origin
as t → −∞, and tends to ∞ as t → +∞.

If the heteroclinic orbit φc(t) = (u(t), v(t)) were not positive it would leave the first
quadrant (in negative time) by crossing the positive v axis. It would have to cross the curve
defined by ψ(t). But at any point in the first quadrant

dv

du
= c − f (u)

v
≥ c − au

v
= dv

du
.

This is impossible since the inequality would have to be in the opposite sense at a crossing.
If φc(t) is positive for c = c̃ then it is positive for all c ≥ c̃, since the asymptotic curves

are strictly decreasing with c by Proposition 3.2.
Let c∗ = sup{γ : φc is positive and negative for all 0 < c < γ }. Now c∗ < ∞ since

for large c the heteroclinic orbits is positive. Since the set of c giving rise to positive and
negative heteroclinic orbits is open, φc∗ must be positive. Thus, for all c ≥ c∗ we have that
φc is positive. �	

We observe that in general the bound (11) is necessary.

Proposition 4.1 If (10) holds and f has a vertical tangent at the origin, then for all c > 0
the heteroclinic orbit φc(t) is both positive and negative. In fact, the heteroclinic orbit spirals
to the origin as t → −∞.

Proof Assume the heteroclinic orbit is positive, so by Proposition 3.3 it must lie completely
in the set S with u > 0. Consider the curve C : v = c−1 f (u), where dv/du = 0. The slope
of any orbit at points below this curve is negative. Since f has a vertical tangent at the origin,
f (u) > c2u for all sufficiently small u, which implies that for small u the curve C lies above
the line v = cu by c−1 f (u) > cu. Therefore, the heteroclinic orbit must ultimately lie below
C as it approaches the origin and so all points on the orbit near the origin must have negative
slope. On the other hand, since it is converging to the origin through the first quadrant, it
must have points with positive slope close to the origin. This is a contradiction and so the
heteroclinic orbit cannot be positive. Repeat as in Proposition 3.3 to see that the heteroclinic
orbit must be a spiral. �	
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5 Heteroclinic Bifurcations

In this section we assume that there is a real number θ , 0 < θ < 1, such that f (u) < 0 for
0 < u < θ , f (θ) = 0, and f (u) > 0 for θ < u < 1. Also assume

F1 =
1∫

0

f (τ )dτ > 0.

We continue to assume c > 0, that f (u) is odd, and f (±1) = f (±θ) = f (0) = 0. Each of
these zeros of f give rise to an equilibrium point of Eq. 2. By Theorem 3.1 there is a unique
heteroclinic orbit φ(t) tending to (1, 0) from the left as t → +∞ and it tends to one of the
equilibria (θ, 0), (0, 0), or (−θ, 0) as t → −∞.

Let

Rn = {c ∈ R+ : φ(t) → (θ, 0) as t → −∞ and crosses the negative v-axis n times}

Ln = {c ∈ R+ : φ(t) → (−θ, 0) as t → −∞ and crosses the negative v-axis n times}

An = {c ∈ R+ : φ(t) → (0, 0) in the first quadrant as t → −∞
and crosses the negative v-axis n times}

Bn = {c ∈ R+ : φ(t) → (0, 0) in the third quadrant ast → −∞
and crosses the negative v-axis n times}

(R, L , A, B stand for right, left, above, and below).

Theorem 5.1 The sets An, Bn are singletons and the sets Rn, Ln are open intervals. Let
An = {an} and Bn = {bn}, then

∞ = b−1 > a0 > b0 > a1 > b1 > a2 > b2 > a3 > b3 · · · → 0

and

Rn = (an, bn−1), Ln = (bn, an).

Theorem 5.1 is illustrated in Fig. 3, where only the stable curve of (1, 0) is shown for the
parameter c in these various ranges. Note that (±θ, 0) are likely locally to be spirals, so for
c in Rn or Ln , the left end of the curve may not go directly to the equilibrium as show in the
figure.

Our method of proof is reminiscent of Sir William Matthew Flinders Petrie’s method used
to find the chronological order of the pyramids of Giza [13]. Long before carbon dating could
give good estimates on the exact dates, Petrie in the late 1800s found the order by examining
potter shards. Potter styles evolve over time so pyramids with similar shards will be of about
the same date. Using this idea he gleaned information about the nearest neighbors. Also he
assumed that the simplest shards were the oldest and the most stylized were the youngest.
With these three simple principles he was able to order the pyramids.

With Petrie, we do not give the exact values of the a’s and b’s, but only their order. We also
use three principles or lemmas. The first, Lemma 5.1, gives nearest neighbor information,
the second, Lemma 5.2, tells what happens for large c, and the last, Lemma 5.3, tells what
happens for small c. With these three lemmas we found the order.

Before stating the lemmas we make some general remarks. Our standing assumption is
c > 0, but if we take c = 0 we have V̇ = 0, so the function V is an integral for Equation
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Fig. 3 The unfolding sequence as c decreases

Fig. 4 Flow lines compared to the level lines of V

(2) and the flow is along the level lines of V —see Fig. 4a. By (5) the level lines of V are
qualitatively accurate as shown. In particular, the region where V < 0, marked in gray, con-
sists of two disjoint neighborhoods of the equilibria at (±θ, 0) with the maximum value of
v on its boundary occurring at u = ±θ , where f changes sign. The equilibria at (±θ, 0) are
centers and the outer region of D consists of periodic solutions which limit on the two orbits
asymptotic to the equilibria at (±1, 0). As soon as c > 0, V becomes a Liapunov function
and the flow drifts across the level lines in the outward direction making the equilibria at
(±θ, 0) sources. Note that since the function V does not depend on c, the region where V < 0
is contained in the domains of repulsion for the equilibria (±θ, 0) for all c > 0. We will call
the set where V < 0 and u > 0 (respectively u < 0) the core domain of repulsion of (+θ, 0)
(respectively (−θ, 0)). Because the equilibria at (±θ, 0) are sources for c > 0, it follows that
the sets Rn and Ln are open.

Since V increases along solutions and V = 0 at the origin, the stable curves of (0, 0)
are contained in the core domains of repulsion of (±θ, 0), while the unstable curves are
contained in the region where V > 0 (see Fig. 4b). This can also be seen directly from the
choice of M in Fig. 2. In our discussion we shall refer to the two unstable curves of (0, 0) as
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Fig. 5 a The region N0. b The regions of repulsion when c̃ ∈ A1

the A-curve and the B-curve. The A-curve is the unstable curve of (0, 0) starting in the first
quadrant; the B-curve is the unstable curve of (0, 0) starting in the third quadrant.

Let v̄ be the maximum value of v on the set where V = 0 (the boundary of the core
domains) which, as observed above, occurs at u = ±θ . For any c > 0 consider the solution
through the point (−θ, v̄). Since V̇ > 0, the solution is bounded away from the u-axis on
the strip −θ ≤ u ≤ +θ . Consequently, u̇ is bounded away from 0 and the solution extends
across the strip and intersects the line u = θ . Let v = φ(u), −θ ≤ u ≤ +θ , be the graph of
this solution through (−θ, v̄). The A-curve must also cross u = θ and at a value intermediate
between v̄ and φ(θ). Define a neighborhood N0 by

N0 = {(u, v) : |u| < θ, 0 ≤ v < φ(u), V (u, v) > 0}

and let α0 be the subsegment of u = θ satisfying v̄ < v < φ(θ) (see Fig. 5a). N0 forms a
funnel. The only ingress sets for N0 are from the core domains of repulsion of (±θ, 0), so
every solution crossing α0 which is not the A-curve came directly from the core domain of
either (−θ, 0), if it crossed above the A-curve, or (+θ, 0), if it crossed below the A-curve.
We can construct a similar picture for the B-curve.

For c > 0 the A- and B-curves must leave D as t increases or tend to (±1, 0) as t → +∞
for if not they would be bounded and tend to an invariant set in D. The only invariant sets
in D are (0, 0), (±θ, 0). The A- and B-curves cannot tend to (±θ, 0), which are sources,
and cannot return to (0, 0), since V is increasing. Thus the union of the A- and B-curve
separate D into two regions which are the domains of repulsion of (±θ, 0) in D. (They are
the separatrices.)

We will call the stable curve of (1, 0) starting in {u < 1, v > 0} the S-curve. Figure 5b
illustrates the heteroclinic orbit in the region D when c̃ ∈ A1. In this case the A-curve and the
S-curve coincide. Also shown is the symmetric heteroclinic orbit from (0, 0) to (−1, 0)—the
B-curve. As stated above, the A- and B-curves separate D into the domains of repulsion of
the sources at (±θ, 0) for all c > 0. In Fig. 5b the domain of repulsion of (+θ, 0) is shaded,
whereas the domain for (−θ, 0) is not.

The domains of repulsion can be quite complicated especially when c is small. However,
if we use the direction of increasing t along a solution to provide an orientation, then the
domain of repulsion of (+θ, 0) is always on the right of the A-curve as t increases and the
domain of repulsion of (−θ, 0) is on the left. On the other side, the domain of repulsion of
(+θ, 0) is on the left of the B-curve as t increases and domain of repulsion of (−θ, 0) is on
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Fig. 6 The tubular neighborhood
of h

the right. As c increases the vector field defined by (2) rotates counterclockwise or veers to
the left relative to an orbit for a smaller value of c (for increasing t).

Lemma 5.1 If c̃ ∈ An, then c̃ is the right endpoint of an interval in Ln and a left endpoint
of an interval in Rn.

If c̃ ∈ Bn, then c̃ is the right endpoint of an interval in Rn+1 and a left endpoint of an
interval in Ln.

In particular, the set (∪n An) ∪ (∪n Bn) contains only isolated points.

Proof Let c̃ ∈ An . For any c > 0 we can construct a region N0 as in Fig. 5a where only
the top boundary changes with c. Choose c0 < c̃ sufficiently close to c̃ that the solution
through (−θ, v̄) for c = c0 still crosses u = θ above the A-curve for c = c̃. Fix N0 at c = c0

and consider solutions for c > c0 relative to this fixed N0. The top boundary is no longer
impervious to the flow. Rather for c > c0 the vector field points out across the top boundary
so the top boundary is an egress set. Consequently, the only ingress sets are still the two arcs
where V = 0 and we can draw the same conclusion as before: any solution which intersects
the cross section α0 is either the A-curve for that parameter value or came directly from the
core basins of repulsion of (±θ, 0) without crossing the negative v-axis. This holds even if c
is so large that the A-curve crosses above α0, although in that case all solutions crossing α0

would be coming exclusively from the core basin of repulsion of (+θ, 0).
The intersection of the A-curve with α0 is continuous and strictly increasing as a function

of c by Proposition 3.2. Let N1 be a neighborhood of (1, 0) given by Propositions 3.1 and 3.2
such that the S-curve is strictly decreasing in N1 as c increases. Let α1 ⊂ N1 be a small
open arc transverse to the heteroclinic orbit when c = c̃ and let h be the segment of this
heteroclinic orbit between α0 and α1. Since c̃ ∈ An , h crosses the negative v-axis exactly
n times. Let Q be a small tubular neighborhood of h which is sufficiently small that any
solution which stays in Q also crosses the negative v-axis exactly n times (see Fig. 6). Since
solutions are continuous in all of the variable, including the parameter, we can choose an
open subarc α′

1 ⊂ α1 and an ε > 0 with ε < c̃ − c0, such that for all c with |c − c̃| < ε, any
solution for parameter c which intersects α′

1 stays in Q in backwards time until it intersects
α0. By possibly choosing ε smaller, we can also assume that the S-curve for parameter c
intersects α′

1 for all c with |c − c̃| < ε.
As c increases from c̃ the vector field points to the left across h as one traverses the orbit

with increasing t . Thus solutions for parameter c which stay in Q can only cross h from
right to left with increasing t , or from left to right in backwards time. Since the S-curve is
strictly decreasing as c increases, for c̃ < c < c̃ + ε the S-curve crosses α′

1 strictly below
(to the right) of h. Consequently, the S-curve stays in Q and is trapped on the right side of
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h, crossing α0 to the right of h. On the other hand, the A-curve is strictly increasing in c, so
the A-curve for parameter c crosses α0 strictly to the left of h. Since the S-curve is a solution
for parameter c crossing α0 below the A-curve for the same parameter, the S-curve came
directly from the core basin of repulsion of (+θ, 0). As a result, the S-curve does not cross
the negative v-axis before hitting α0, crosses exactly n times while in Q, and then does not
cross again after α′

1. Thus, (c̃, c̃ + ε) ⊂ Rn and c̃ is the left endpoint of an interval in Rn .
As c decreases from c̃ the vector field points to the right across h as one traverses the

orbit with increasing t , the A-curve will intersect α0 to the right of h, and the S-curve will
hit α′

1 to the left of h, be trapped to the left of h in Q, and ultimately land in the core basin
of repulsion of (−θ, 0). Thus, (c̃ − ε, c̃) ⊂ Ln and c̃ is the right endpoint of an interval in
Ln .

When c̃ ∈ Bn the argument is just about the same. Again as c increases from c̃ the S-curve
jumps to the left source and as c decreases it jumps to the right source, but jumping to the
right source causes it to cross the negative v-axis one more time, so c̃ is the right endpoint
of Ln , but the left endpoint of Rn+1. �	
Lemma 5.2 There exist a c∗ > 0 such that c ∈ R0 for all c > c∗.

Proof Choose v̄ > 0 sufficiently small that the segment I = {(θ, v) : 0 < v < v̄} is in the
core domain of repulsion of (θ, 0). This does not depend on c. For each c > 0, the S-curve
is the graph of a function for θ ≤ u ≤ 0. Let this function be vc(u). vc(u) → 0 as u → 1−.
If for some c > 0, vc(θ) ≤ v̄, then the S-curve intersects the domain of repulsion of (θ, 0)
and c ∈ R0.

Let k be the maximum of f (u) on θ ≤ u ≤ 1 and set c∗ = k/v̄. For c > c∗, the slope of
the solution curve through any point (u, v) in the half strip H = {(u, v) : θ ≤ u ≤ 1, v ≥ v̄}
is

dv

du
= c − f (u)

v
≥ c − k

v̄
> 0.

Therefore, dvc/du > 0 at any point on the graph of vc(u) which is inside H . Consequently,
if the graph were to start in H , vc(θ) ≥ v̄, then vc would be increasing on θ ≤ u ≤ 1.
However, this would contradict that vc(u) → 0 as u → 1−. Consequently, vc(θ) < v̄ and
c ∈ R0 for all c > c∗. �	
Lemma 5.3 For any large n there is a small c such that the heteroclinic orbit crosses the
negative v axis at least n times.

Proof When c = 0 the flow is along the level lines of V —see Fig. 4a. Exterior to the stable
and unstable curves of the origin and within D all solutions are periodic and cross the nega-
tive v-axis. Each of these periodic orbits are Jordan curves that separates the critical points
(0, 0), (±θ, 0) from the critical points (±1, 0).

Let p0 be a point on the negative v axis within D, so the solution ψ0(t) of Eq. 2 is
periodic with period T . Let c > 0 be so small that the solution ψc(t) of (2) through p0

with this c meets the negative v axis at least n + 1 times. The solution ψc(t) meets the
negative v axis in successive points p0 = (0, y0), p1 = (0, y1), · · · , pn = (0, yn). Since
V̇ ≥ 0 it follows that 0 > y0 > y1 · · · > yn . This is illustrated in Fig. 4b for n = 2. Let
Ik = {(y, 0) : yk−1 ≥ y > yk}.

The segment of the solution pc(t) from p0 to p1 union with the interval I1 is a Jordan
curve which separates the critical points (0, 0), (±θ, 0) from the critical points (±1, 0). The
heteroclinic orbit must intersect I1 and then successively I2, I3, . . . , In and so it must cross
the negative v axis at least n times. �	
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Proof of Theorem 5.1 By Propositions 3.1 and 3.3 and Theorem 3.1, the sets Rn , Ln , An , and
Bn partition (0,+∞). By Lemma 5.2 R0 is nonempty and contains an interval (c∗,+∞).
Let a0 = inf{a : (a,+∞) ⊂ R0}. R0 is open, so (a0,+∞) ⊂ R0. Moreover, by Lemma 5.3,
R0 is not everything, so a0 > 0. Since the sets Rn and Ln are open, a0 must be in some
An or Bn . By Lemma 5.1, the only possibility is for a0 to be an isolated point of A0. We
also know from Lemma 5.1 that there exists a nonempty interval (b, a0) ⊂ L0. Define
b0 = inf{b : (b, a0) ⊂ L0}. By the same arguments we conclude that b0 > 0, (b0, a0) ⊂ L0,
and b0 is an isolated point of B0. We continue in this manner to generate a sequence

∞ = b−1 > a0 > b0 > a1 > b1 > a2 > b2 > a3 > b3 . . .

with the properties that for each n, an ∈ An , bn ∈ Bn , (an, bn−1) is a maximal interval in
Rn and (bn, an) is a maximal interval in Ln . If this sequence converges to 0 we are done,
for then each of the An and Bn contain exactly one point and each of the Rn and Ln consist
of exactly one interval. Suppose the sequence converges to some d ≥ 0. d cannot be in Rn

or Ln , since these are open, and d cannot be in An or Bn , because these sets contain only
isolated points. Therefore, d = 0. �	
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