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Cross Sections in the Three-Body Problem
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In Dynamical Systems, Birkhoff gave a clear formulation of a cross section,
suggested a possible generalization to cross sections with boundary, and raised
the question of whether or not such cross sections exist in the three-body
problem. In this work, we explicitly develop Birkhoff 's notion of a generalized
cross section, formulate homological necessary conditions for the existence of a
cross section or generalized cross section, and show that these conditions are
not satisfied in the three-body problem.
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1. STATEMENT OF RESULTS

1.1. Introduction

The existence of a global cross section to a flow places global geometric
restrictions not only on the flow but on the space that underlies it. The
nonexistence of a cross section suggests a certain level of complexity for the
flow. Unfortunately, it is not always easy to determine whether or not a
given flow admits a cross section, since the existence or nonexistence
depends on both the topology of the space and the dynamics of the flow.

Poincare� first realized the importance of cross sections in his studies of
the restricted three-body problem [20]. He was able to reduce the problem
of the existence of periodic solution of the restricted problem to the
problem of finding fixed points of a cross section with boundary. Although
Poincare� was able to establish the existence of fixed points in several
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special cases, it was left to Birkhoff [3] to establish the general fixed point
theorem. Much of Birkhoff 's classic memoir [2] is devoted to questions
about cross sections in the three body problem.

Even though it is popular to assume the existence of global cross
sections in dynamical systems, Reeb observed that they do not appear in
classical mechanics [21]. Here is one consequence of Reeb's results.

Consider a classical Hamiltonian system defined on the cotangent bundle
of a manifold Q with Hamiltonian H=K+V, where K is kinetic energy
(a Riemannian metric) and V: Q � R is potential energy. Let M be the level
set where H=h, then the Hamiltonian flow defined by H on M does not
admit a compact global cross section.

The applications we have in mind are to the problems of celestial
mechanics and, in particular, to the three-body problem. In these problems
the level sets are not compact in general. Also, these problems start as
classical systems, but they are no longer classical systems when studied on
the reduced space where all the integrals and symmetries have been
eliminated. Thus Reeb's result does not apply to our studies.

We develop some necessary conditions for a flow on a manifold to
admit a global cross section or a cross section with boundary. Then using
our computations of the cohomology of the integral manifolds of the
spatial three-body problem by McCord et al. [17] and the planar three-
body problem in Section 4, we discuss the existence of cross section in both
senses. This discussion answers in the negative a question raised by
Birkhoff in his classic text on dynamical systems [2].

1.2. Global Cross Sections

Let M be a connected manifold of dimension m without boundary,
8: R_M � M a flow, and C a submanifold of M of dimension m&1
without boundary. Then C is a global cross section if

1. For each point p # M there is a t( p)>0 such that 8(t( p), p) # C.

2. There is a continuous function {: C � R such that

(a) 8(t, p) � C for all p # C and 0<t<{( p).

(b) 8({( p), p) # C for all p # C.

3. There is an open neighborhood U of C_[0] in C_R such that
8 |U is a homeomorphism from U to an open neighborhood of C
in X.

The function { is called the return time. The function P: C � C: p �
8({( p), p) is a homeomorphism and is called the Poincare� map or first
return map.
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If a flow admits a cross section, it admits infinitely many. For example,
if C is a cross section with return time function {, and \: C � R is any con-
tinuous function, then C$=[8(\( p) {( p), p) | p # C] is also a cross section
with return time function

{$(8(\( p) {( p), p))={( p)+\(P( p)) {(P( p))&\( p) {( p)

Clearly, h( p)=8(\( p) {( p), p) defines a homeomorphism h: C � C$ which
conjugates P and P$. But M may admit other cross sections (C", P") which
are not conjugate. For example, on the two-dimensional torus T 2 with flow

%4 1=1

%4 2=0,

each Cn=[%2=n%1], n�1 is a cross section with return map Pn(%1)=
%1+1�n. These are clearly not conjugate to each other.

The point is, if a flow admits a cross section, then it may generate several
inequivalent diffeomorphisms as Poincare� maps. On the other hand, suppose
P� : C� � C� is a homeomorphism of a manifold C� . Let M� =(R_C� )�t where t

is the equivalence relation on R_C� defined by (t+1, p)t(t, P� ( p)). Define
a flow on M� by 8~ : R_M� � M� : (s, [(t, p)]) � [(t+s, p)] where [ } ] denotes
an equivalence class. 8� is called the suspension of P� . The flow 8� admits
[0_C� ]#C� as a global cross section.

Thus, every cross section on a flow produces a diffeomorphism on a
manifold of one dimension less, and every diffeomorphism produces a flow
with a cross section on a manifold of one dimension higher. If one begins
with a cross section, obtains the Poincare� map, and constructs its suspen-
sion, the resulting manifold and flow are equivalent to the original. If one
begins with a diffeomorphism and constructs its suspension, then any slice
Ct=[t=t0] will be a section with return map conjugate to the original
diffeomorphism (though other, nonconjugate return maps may also exist).

The first and fundamental question for cross sections is existence:
Given a flow 8 on a manifold M, does there exist a cross section? In
particular, are there computable necessary or sufficient conditions for the
existence of a cross section? A related but distinct problem is to classify all
conjugacy classes of cross sections and Poincare maps. While this second
question has received considerable attention [10, 11, 29], the first has not
received as much attention as one might expect. Some simple necessary
conditions for the existence of a global cross section are formulated in the
following:

Theorem }I}I If the flow 8: R_M � M on the manifold M admit a
global cross section C, then
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v M is a fiber bundle over S 1 with fiber C.

v There is a long exact homology sequence

� Hk+1(M ) � Hk(C ) www�
id&P

* Hk(C ) � Hk(M ) �

v If C is of finite type, there exists an integer polynomial Q(t) with
0�Q(t)�PC(t) such that PM(t)=(1+t) Q(t).

v If C is of finite type, then /(M )=0 (the Euler characteristic of M is
zero).

v If C is of finite type, H1(M; Z) has a factor Z.

v The flow has no equilibrium points.

Remark. Of finite type means that the homology of M is finitely
generated. In that setting, PM(t) is the Poincare� polynomial of M: a formal
polynomial whose n th coefficient is the n th Betti number of M. The Euler
characteristic is the alternating sum of the Betti numbers, and is also the
value of the Poincare� polynomial evaluated at t=&1. The inequality
0�Q(t)�PC(t) should be interpreted term by term: each coefficient qn is
nonnegative and less than or equal to the n th Betti number of C.

1.3. General Cross Sections

Reeb's theorem indicates that global cross sections are not common.
Theorem 1.1 shows that, among other things, no flow with an equilibrium
point can admit a global cross section. But there are situations in which a
global cross section ``almost'' exists. As the simplest possible example,
consider the flow

%4 =1

r* =0

on R2 where (r, %) are polar coordinates. Let C be a closed ray emanating
from the origin. Then C"�C is a cross-section for the flow on R2"[0].

Now let M and 8 be as above but now C is a submanifold of M of
dimension m&1 with boundary �C of dimension m&2. Let int C=C"�C
be the interior of C. Then C is a cross section with boundary if

1. The boundary �C of C is invariant under the flow 8.

2. C"�C is a cross section for the flow on X"�C.

3. The return time and Poincare� map on C"�C extend continuously
to �C.
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Reeb's theorem says that global cross sections in an energy surface do
not exist for classical dynamical systems but cross sections with boundary
often exist. Generically on a compact manifold, the Hamiltonian has a non-
degenerate minimum of general elliptic type [15], and for a two-degree of
freedom system the flow near such an equilibrium point admits a cross section
with boundary on an energy surface. We illustrate this with a simplified
example.

Consider a Hamiltonian system on R4 with Hamiltonian

H=
|1

2
(x2

1+ y2
1)+

|2

2
(x2

2+ y2
2)

where |1 , |2>0 are constants (frequencies). H has a minium at the origin
and H=h>0 is an ellipsoid homeomorphic to S 3. Change to action-angle
coordinates I1 , I2 , �1 , �2 by Ii=

1
2 (x2

i + y2
i ), �i=arc tan yi �x i so that

H=|1I1+|2 I2

and the equations of motion become

I4 1=0, �4 1=&|1

I4 2=0, �4 2=&|2

A geometric model for S3 can be obtained from these coordinates.
Consider the set where H=|1>0, which we call S 3. Since |1I1+|2 I2=|1 ,
we can ignore the I2 coordinate and use I1 , �1 , �2 as coordinates on S3,
but remember that 0�I1�1 and �1 , �2 are angles defined modulo 2?. The
closed unit disk is coordinatized by (I1 , �1), 0�I1�1 using the usual
conventions of action-angle (polar) coordinates. For each point in the open
unit disk, there is a circle with coordinate �2 (defined modulo 2?), but
when I1=1, I2=0; so the circle collapses to a point over the boundary of
the disk. Thus a geometric model for S3 is two solid cones with points on
the boundary identified as show in Fig. 1. There are always two periodic
orbits, namely, where I1=0 and I1=1, and these would be called the
normal modes by engineers.

The closed disk where �2=0 mod 2? is a cross section with boundary,
since its boundary is the periodic orbit where I1=1 and all other solutions
cross the open disk (�4 2=&|2{0). The return time is 2?�|2 . This cross
section is shaded in Fig. 2.

There is another cross section which is an annulus with both the periodic
orbits as boundaries. This cross section is defined by �1+�2=0 mod 2?
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Fig. 1. Model of S 3.

with return time 2?�(|1+|2). Conley [7] showed that the flow near a
primary in the restricted three-body problem after regularization of colli-
sions is but a perturbation of this examples and was able to use this obser-
vation to invoke Birkhoff 's fixed point theorem to establish the existence of
long-period periodic solutions.

The same basic existence and uniqueness questions arise for cross
sections with boundary. The natural generalization of Theorem 1.1 gives
some verifiable necessary conditions for the existence of a cross section
with boundary.

Theorem }I"I If the flow 8: R_M � M on the manifold M admits a
cross section with boundary C, then

v M"�C is a fiber bundle over S 1 with fiber C"�C.

v There is a long exact homology sequence

� Hk+1(M, �C ) � Hk(C, �C ) www�
id&P

* Hk(C, �C) � Hk(M, �C ) �
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Fig. 2. Orbits on S 3.

v If C and �C are of finite type, then there exists a polynomial Q(t)
with

&min[P�C(t), tP(C, �C )(t)]�Q(t)�P(C, �C )(t)

such that PM(t)&P�C(t)=(1+t) Q(t).

v If C and �C are of finite type, then /(M )=/(�C ).

v All equilibrium points of the flow must lie in �C.

This theorem is proved in Section 2.

1.4. Applications to the Three-Body Problem

Here we apply the above results on cross sections to the three-body
problem. The three-body problem is a system of differential equations
describing the motion of three mass points moving in a Newtonian inertial
frame under the influence of their mutual gravitational attraction. Let
the particles have masses m1 , m2 , m3 , positions u1 , u2 , u3 , and velocities
v1 , v2 , v3 , respectively. The masses are positive constants and the positions
and velocities are two- or three-dimensional vectors depending on whether
we are discussing the planar or the spatial problem.
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Written as a system of first-order equations, the equations of motion
are

u* i=vi

(1)
mi v* i=

�U
�ui

, i=1, 2, 3

where the dot represents the derivative with respect to time, } =d�dt, U is
the self-potential

U= :
1�i< j�3

Gm i mj

&ui&uj &
(2)

and G is the universal gravitational constant. The self-potential is the
negative of the potential energy. Since there are six vectors in (1), the phase
space of the spatial problem is R18 "2, and for the planar problem the
phase space is R12"2, where 2 is the collision set [(u1 , u2 , u3 , v1 , v2 , v3) :
ui=uj , i{ j ]. Here and below 2 is the generic symbol for the collision set.

The equations of motion for the spatial problem admit the 10 known
integrals. There are six integrals of linear momentum expressing the fact
that the center of mass of the system moves with uniform velocity in a
straight line. We assume that our original Newtonian reference frame has
the center of mass fixed at the origin, so that in this frame the linear
momentum integrals are

m1 u1+m2 u2+m3u3=0 (3)

m1 v1+m2v2+m3 v3=0 (4)

Three more integrals are the three components of the angular momentum
integral

m1 u1_v1+m2 u2_v2+m3 u3_v3=c (5)

Lastly, there is the energy integral,

:
3

i=1

1
2 mi &vi &2&U=h (6)

Here c is a constant vector which we assume to be nonzero; see Cabral [5]
for a detailed discussion of the case when c is zero. The reference frame will
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be taken so that c=ck, where k is the unit vector (0, 0, 1)T and c is a
scalar. Thus the invariant plane, the plane perpendicular to the angular
momentum vector, is the x�y plane. In the planar case (3) and (4) give two
integrals each, and (5) and (6) give one integral each, for a total of six
integrals.

The first algebraic sets we consider are

M(c, h)=[(u1 , u2 , u3 , v1 , v2 , v3) # R18"2 : (3), (4), (5), (6)] (7)

and its planar analogue

m(c, h)=[(u1 , u2 , u3 , v1 , v2 , v3) # R12 "2 : (3), (4), (5), (6)] (8)

These are called the integral manifolds. The integral manifolds admit the
SO2 symmetry of rotation about the z-axis since this action leaves the
integrals fixed. Thus we also study the sets

MR(c, h)=M(c, h)�SO2

mR(c, h)=m(c, h)�SO2

We call these sets reduced integral manifolds. We note that M(c, h) is
8-dimensional, MR(c, h) is 7-dimensional, m(c, h) is 6-dimensional, and
mR(c, h) is 5-dimensional.

In a natural way the three-body problem defines a flow on these
reduced manifolds where all the integrals and symmetries have been
eliminated. It is on these manifolds that the three-body problem should be
studied. Indeed, Birkhoff [2, p. 287] said, ``The manifold M7 [MR(c, h)]
has fundamental importance for the problem of three bodies . . . .''

There has been considerable research into the nature of these manifolds
and the corresponding Hill's regions; see the works by Albouy [1], Cabral
[5], Chen [6], Easton [8, 9], Iacob [14], McCord et al. [17], Saari
[22�24], Simo [25], and Smale [26, 27]. A detailed discussion of the
history can be found by McCord et al. [17], with further references.

For fixed masses, the quantity &=&c2h is the sole bifurcation param-
eter and there are nine special values of this parameter, 0=&1<&2�&3�
&4<&5<&6<&7�&8�&9 . For the spatial problem eight of these values give
rise to bifurcation of the topological type of these manifolds. (One, &5 , is
an artifact of the method of analysis but does not give rise to a new
topological bifurcation. We keep this numeration to be consistent with our
previous work.) For the planar problem five of these values give rise to
bifurcations of these manifolds, namely, &1 , &6 , &7 , &8 , &9 . Thus for the
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Table I. Cohomology Groups for MR(c, h)

H p(MR) 0 1 2 3 4 5 6 7 /(MR)

I Z 0 Z4 0 0 0 0 0 5
II Z 0 Z4 0 Z5 0 Z2 0 12
III Z 0 Z4 0 Z3 0 Z2 0 10
IV Z 0 Z4 0 Z 0 Z2 0 8
V Z 0 Z4 0 0 Z Z2 0 6

VII Z Z Z3 0 0 0 Z3 0 6
VIII Z 0 Z3 0 0 0 Z2 0 6
IX Z2 0 Z3 0 0 0 Z 0 6
X Z3 0 Z3 0 0 0 0 0 6

spatial problem there are nine parameter ranges, which we denote by
Roman numerals. Specifically,

I=(&�, &1), II=(&1 , &2), III=(&2 , &3)

IV=(&3 , &4), V=(&4 , &6), VII=(&6 , &7)

VIII=(&7 , &8), IX=(&8 , &9), X=(&9 , �)

Note that by McCord et al. [17] the value &5 divided the region V into
two regions, V and VI. For the planar problem there are six parameter
ranges:

i=(&�, &1), ii=(&1 , &6), vii=(&6 , &7)

viii=(&7 , &8), ix=(&8 , &9), x=(&9 , �)

We compute the cohomology of these manifolds by McCord et al. [17] for
the spatial problem and in Section 4 for the planar problem. For the
discussion of the cross sections, the essential information is given in Tables I
and II. Note that the homology for Case I is computed incorrectly by

Table II. Cohomology Groups for mR(c, h)

H p(mR) 0 1 2 3 4 5 /(mR)

i Z Z2 0 Z Z2 0 0
ii Z Z2 0 Z Z2 0 0

vii Z Z4 0 0 Z3 0 0
viii Z Z3 0 0 Z2 0 0
ix Z2 Z3 0 0 Z 0 0
x Z3 Z3 0 0 0 0 0
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McCord et al. [17]. The correct values are given in Table I, with the
computations given in the Appendix.

From Theorem 1.1 and Tables I and II, we have:

Theorem }I/I The flow of the spatial three-body problem on MR(c, h)
does not admit a global cross section of finite type. In cases i�ix, the flow of
the planar three-body problem on mR(c, h) does not admit a global cross
section of finite type.

Proof. For the spatial problem we see in Table I that, in all
parameter ranges, /(MR(c, h)){0. Thus Theorem 1.1 shows that there
does not exist a global cross section of finite type.

For the planar problem, we require a more subtle argument, since in
all parameter ranges H1(mR(c, h)) has a factor of Z and /(mR(c, h))=0.
Instead, we make use of Morse inequalities. From Table II, the Poincare�
polynomial for mR(c, h) is

Case Pm(t) (1+t) Q(t)

i 1+2t+t3+2t4 (1+t)(1+t&t2+2t3)
ii 1+2t+t3+2t4 (1+t)(1+t&t2+2t3)

vii 1+4t+3t4 (1+t)(1+3t&3t2+3t3)
viii 1+3t+2t4 (1+t)(1+2t&2t2+2t3)
ix 2+3t+t4 (1+t)(2+t&t2+t3)
x 3+3t (1+t) 3

In all cases but case x, the polynomial Q(t) has a negative coefficient,
in contradiction to Theorem 1.1. g

The possibility remains that a cross section of finite type might exist
in the planar manifold in case x. We will see in Proposition 4.2 that, for &
in region x, each component of mR(c, h) is homeomorphic to the product
of a 4-disk and S1. Certainly, there are no topological obstacles to the
existence of a cross section. But does the flow on this five-dimensional
cylinder admit a cross section? At the moment, this is an open question.

At the end of Birkhoff 's [2, p. 288] discussion of these integral
manifolds, he said

In conclusion it may be observed that the states of motion in which the three
bodies move constantly in a plane through the center of gravity perpendicular
to the angular momentum vector, corresponds to an invariant sub-manifold M5

[mR(c, h)] within M7 [MR(c, h)],... . So far as dimensionality is concerned, this
manifold M5 would be suited to form the complete boundary of a surface of
section (Chap. 5) of the properly extended type.

In other words, Birkhoff asks if mR(c, h) is the boundary of a cross section
of MR(c, h) since it is an invariant submanifold of codimension 2. We
answer Birkhoff in the negative.
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Theorem }I�I The invariant manifold mR(c, h) is not the boundary of
a cross section of finite type of the flow of the three-body problem on
MR(c, h).

Proof. Refer to Tables I and II and note that, in all parameter
ranges, /(MR(c, h)){/(mR(c, h)). Thus Theorem 1.2 implies that mR(c, h)
is not the boundary of a cross section of finite type. g

2. THE TOPOLOGY OF FLOWS WITH CROSS SECTIONS

This section is devoted to the proof of Theorems 1.1 and 1.2.
Theorem 1.1 is simply the special case �C=<, so it suffices to prove
Theorem 1.2. Further, the bundle structure on M"�C and the corresponding
absence of equilibria are plain, so we need only to verify the homological
statements. The proof is essentially the same as that by McCord et al. [16].

Both homological statements are derived from a Mayer�Vietoris
decomposition of the space. Let

U0={x } t # M } x # C, 0�t�
{(x)

2 =
U1={x } t # M } x # C, &

{(x)
2

�t�0=
Let C$=[8({(x)�2, x) | x # C]. Then U0 _ U1=M and U0 & U1=C _�C C$.
Clearly, flowing forward by {�2 defines homeomorphisms C$$C and
U0$U1 . Moreover, using the flow lines, we have strong deformation
retractions from both U0 and U1 onto C, and onto C$. That is, we can flow
everything in U0 forward to C$ and backward to C; we can flow everything
in U1 backward to C$ and forward to C.

We then have a Mayer�Vietoris sequence for the pair (M, �C )

[ i0*i1*
]

� Hk(C _�C C$, �C) ww� Hk(U0 , �C)�Hk(U1 , �C) wwww�
[ j0*

&j1*
]

Hk(M, �C) �

Further, if we take the obvious Mayer�Vietoris decomposition of
(C _�C C$, �C ), we see that there is an isomorphism,

Hk(C, �C)�Hk(C$, �C ) � Hk(C _�C C$, �C)

If we let @i : C � Ui and @$i : C$ � Ui denote the inclusions, then the sequence
for (M, �C ) can be rewritten

[ �
�$] [ @0*@1*

@$0*@$1*
]

ww� Hk(C, �C)�Hk(C$, �C) www� Hk(U0 , �C)�Hk(U1 , �C)

wwww�
[ j0*

&j1*
]

Hk(M, �C) �
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The maps @i*
and @$i* are all isomorphisms. We can use @i*

to identify
Hk(U i , �C ) with Hk(C, �C ), and @0*

$ &1 @0*
to identify Hk(C$, �C ) with

Hk(C, �C ). With these identifications, the homomorphism

[ @0*@1*

@$0*@$1*
]

Hk(C, �C)�Hk(C$, �C) www� Hk(U0 , �C)�Hk(U1 , �C)

becomes

[ id
id

id
@1*

&1 @$1*
@0*
$&1 @0*

]
Hk(C, �C)�Hk(C, �C) wwwww� Hk(C, �C)�Hk(C, �C)

But the compositions @0
$&1 @0 and @&1

1 @$1 are both simply flowing forward by
time {�2, so the composition @&1

1 @$1 @0
$&1 @0 is the Poincare� map P: C � C.

That is, the matrix is

_id
id

id
P

*
&

and the Mayer�Vietoris sequence is

[ �
�] [ id

id
id
P

*
]

ww� Hk(C, �C)�Hk(C, �C) www� Hk(C, �C)�Hk(C, �C)

wwww�
[ i

*
&i

*
]

Hk(M, �C) �

The maps [ �
�] and [i

*
&i

*
] can be factored as

[ id
id ]

Hk+1(M, �C) w�� Hk(C, �C) ww� Hk(C, �C)�Hk(C, �C)

and

Hk(C, �C)�Hk(C, �C) wwww�[id &id ] Hk(C, �C) w�
i
* Hk(M, �C)

Now, the composition

[ id
id ] [ id

id
id
P

*
]

Hk(C, �C) ww� Hk(C, �C)�Hk(C, �C) www� Hk(C, �C)�Hk(C, �C)

wwww�[id &id ] Hk(C, �C) �
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reduces to Hk(C, �C ) www�
id&P

* Hk(C, �C ), so the Mayer�Vietoris sequence
can be rewritten as

w�� Hk(C, �C) ww�
id&P

* Hk(C, �C) w�
i
* Hk(M, �C) w��

It is a routine algebraic exercise to verify that this sequence is exact.
Given any long exact sequence

ww�
2n An � Bn � Cn ww�

2n&1

with the groups [An], [Bn], [Cn] finitely generated, the Poincare� poly-
nomials satisfy the relation

PA(t)+PC(t)=PB(t)+(1+t) R(t)

where the n th coefficient of R(t) is the rank of 2n . In particular, 0�R(t)�
min[tPA(t), PC(t)]. Applying this first to the exact sequence

Hk(C, �C ) www�
id&P

* Hk(C, �C ) � Hk(M, �C ) � Hk&1(C, �C )

www�
id&P

* Hk&1(C, �C )

we have

(1+t) P(C, �C )(t)=P(C, �C)(t)+(1+t) R(t)

where R2(t) is the polynomial whose n th coefficient is the rank of id&Pn*
.

This reduces to

P(M, �C )(t)=(1+t) K(t)

where R2(t) is the polynomial whose n th coefficient is the nullity of
id&Pn*

. In particular, 0�K(t)�P(C, �C )(t).
Applying the polynomial formula next to the exact sequence of the

pair (M, �C ), we have

P(M, �C )(t)+P�C(t)=PM(t)+(1+t) R$(t)

with 0�R$(t)�min[tP�C(t), P(M, �C )(t)]. Combining these, we have

PM(t)=P�C(t)+(1+t)(K(t)&R$(t))
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If Q(t)=K(t)&R$(t), then

K(t)&min[tP�C(t), (1+t) K(t)]�Q(t)�K(t)

which can be rewritten

&min[tP�C(t), tP(C, �C )(t)]�Q(t)�P(C, �C )(t)

The Euler characteristic formula follows at once from the Poincare�
polynomial formula.

3. DECOMPOSING THE INTEGRAL MANIFOLDS

For completeness we describe the integral manifolds, the Hill's regions,
and the configuration space for the planar problem just as we did for the
spacial problem. Our development follows the lines suggested by Easton
and is included because it represents a simplification of some of the com-
putations by McCord et al. [17]. Most of what is done in this section can
be gleaned from the works by Chen [6], Easton [8, 9], Iacob [14],
Saari [22�24], and Smale [26, 27]. This description is used in Section 4 to
compute the tables of cohomology groups.

In this section the vectors ui , vi , etc., are in R2. Write the angular
momentum integral

m1uT
1 Jv1+m2uT

2 Jv2+m3 uT
3 Jv3=c, where J=\ 0

&1
1
0+ (9)

Also, define the moment of inertia as

I= 1
2 (m1 &u1&2+m2 &u2 &2+m3 &u3&2) (10)

The Hill's region is the projection of the integral manifold onto
configuration space, e.g.,

h(c, h)=[(u1 , u2 , u3) : _v1 , v2 , v3 s.t. (u1 , u2 , u3 , v1 , v2 , v3) # m(c, h)]
(11)

hR(c, h)=h(c, h)�SO2

This characterization of the Hill's region as a projection of the integral
manifold is useful for relating the two spaces but not for understanding the
structure of the Hill's region itself. For that, we make use of a direct
formulation of the Hill's region.
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Proposition /I}I The Hill's region, h(c, h), is the set of u=(u1 , u2 , u3)
such that

U(u)+h�
c2

4I(u)
(12)

and �h(c, h), the boundary of h(c, h), is the set on which equality holds
in (12).

Also, m(c, h) is a singular fiber bundle over h(c, h) where the fiber is a
2-sphere over int h(c, h) and a point over �h(c, h).

Proof. The energy relation is K=U+h, where K= 1
2 � mi &vi&2 is the

kinetic energy. A level sets of K is a 5-dimensional ellipsoid. Since the linear
momentum constraint (4) defines two planes through the origin in v-space,
the intersection of such a level set and (4) is a 3-dimensional ellipsoid.

Fix u and use Lagrange multipliers to find the minimum of K on the
constraint (9) to be c2�4I. Thus the 3-ellipsoid and the plane (9) intersect
if (12) hold. The intersection is a point if equality holds and otherwise it
is a 2-dimensional ellipsoid (so topologically a 2-sphere). g

The next step in the decomposition of the manifolds is to scale the
distances by projecting onto the ellipsoid with I=1. Let

k(c, h)=[u # h(c, h)] : I(u)=1]
(13)

kR(c, h)=k(c, h)�SO2

Define a projection

0 : h(c, h) � k(c, h) : (u1 , u2 , u3) � \u1

\
,

u2

\
,

u3

\ + , where \=- I(u)

(14)

Proposition /I"I The set k(c, h) is the set of u with I(u)=1 and such
that

U(u)�& (15)

and the boundary of k(c, h) is where equality holds in (15).
The space h(c, h) a singular line bundle over k(c, h) with the line collapsing

to a point over �k(c, h). Over int k(c, h) the fiber is a closed interval when
&>0 (h<0) and a half-closed interval when &<0 (h>0).
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Remark. In comparing (15) with the similar inequality in [8, 17],
a factor of 2 seems to be missing, but it can be found in (10).

Proof. Let u=(u1 , u2 , u3) # h(c, h), \=- I(u), and q=(q1 , q2 , q3)=
\&1(u1 , u2 , u3). By Proposition 3.1,

U(u)+h�
c2

4I(u)

U(q)
\

+h�
c2

4\2

h\2+U(q) \&
1
4

c2�0

The last inequality is a quadratic in \ which always has a solution of the
form [a, +�) for h>0. For h<0 this last inequality has a solution if the
discriminant is positive, i.e.,

U(q)2+hc2�0 or U(q)2�&

In this case, the solution is a closed interval if the strict inequality holds
and a single point if equality holds. g

An element of kR(c, h) is a scaled triangle. It is routine to verify that,
if a scaled triangle p # kR(c, h), then so is its mirror image. It is convenient
to identify these triangles which differ from one another by a reflection. Let
c(c, h) denote the resulting quotient space, and �: kR(c, h) � c(c, h) be the
quotient map. The quotient map � is one-to-one on the collinear con-
figurations and two-to-one on the rest of kR(c, h). Clearly, �kR(c, h)=
�&1(�c(c, h)).

To describe mR(c, h) and hR(c, h), the only step remaining is to deter-
mine the structure of c(c, h) as a function of &. Thus we must study the
function U on the set I=1. Following Lagrange and Easton, we use the
mutual distances as coordinates. Let

s1=&u2&u3&, s2=&u3&u1&, s3=&u1&u2&

so that

U=G \m1m2

s3

+
m2m3

s1

+
m3 m1

s2 +
(16)

I=
1

2M
(m1m2 s2

3+m2m3s2
1+m3m1s2

2)
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where M=m1+m2+m3 . Since s1 , s2 , s3 are the sides of a triangle or a
collinear configuration, they must satisfy

s1>0, s2>0, s3>0, s1+s2�s3 , s2+s3�s1 , s3+s1�s2 (17)

Elements of c(c, h) are triangles with unit moment of inertia with the two
orientations identified, thus can be coordinatized by points in

D=[(s1 , s2 , s3) : I(s)=1 and (17)]

Thus the domain D of U(s) is a ``spherical'' triangle on the ellipsoid I=1
in the first octant as illustrated in Fig. 3. Since these coordinates do not
betray the orientation of the triangle, they can be considered as coordinates
for c(c, h). That is c(c, h)/D.

Both I and U are positive convex functions��their Hesians are positive
definite. Using Lagrange multipliers we find that the unique minimum of
U2 is

&6=
G2

2
(m1m2+m2m3+m3m1)3

(m1+m2+m3)
(18)

which occurs at the equilateral triangle configuration where

s2
1=s2

2=s2
3=2(m1+m2+m3)�(m1m2+m2m3+m3m1)

Thus, c(c, h)#D in the range &<&6 . As & increases beyond &6 , the set
of points not satisfying (15) is a monotonically increasing domain in D

Fig. 3 The domain of U(s).
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Fig. 4. The Admissible region.

growing out from the equilateral configuration. See Fig. 4, where the set of
nonadmissible configurations is shown as the black region. The non-
admissible region grows as & increases until it hits one boundary of D
(a collinear configuration) when &=&7 , then the next boundary at &=&8 ,
and then the last boundary at &=&9 .

The values &7 , &8 , &9 are the minima of U(s) on the three boundary
curves of D. Using Lagrange multipliers, we find

&7=
G2

4
(m1m2r2

12+m2m3r2
23+m3m1r2

31)
(m1+m2+m3) {m1 m2

r12

+
m2 m3

r23

+
m3m1

r31 =
2

where rij is the distance between the i th and the j th particles in the Euler
collinear central configuration. &8 and &9 are defined by the same formula
as &7 with a permutation of the masses and the corresponding rij .

Proposition /I/I The admissible regions, c(c, h), are show in white in
Fig. 4 for the various ranges of &.

Assembling all of this, we have the complete diagram of spaces and
maps.
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m ww�
8m mR

6 ?

h ww�
8h hR

0 |

k ww�
8k kR

9

c

�

The dimensions of the various spaces are dim m(c, h)=6, dim mR(c, h)
=5, dim h(c, h)=4, dim hR(c, h)=3, dim k(c, h)=3, and dim kR(c, h)=
dim c(c, h)=2. The information in Propositions 3.1 and 3.2 can be collated
to give the following description of mR(c, h) ww�|?

kR(c, h).

Corollary /I}I The fiber ?&1|&1(k) in mR(c, h) over k # kR(c, h) is

S 3, &>0, k # int kR(c, h)

?&1|&1(k)${V, &>0, k # �kR(c, h)

B3, &<0, k # int kR(c, h)

This, combined with the information about kR(c, h) and c(c, h)
encoded in Proposition 3.3 and Fig. 4, will enable us to establish the
homotopy types of m(c, h) and mR(c, h), and so determine their homology.

4. THE HOMOLOGY OF THE INTEGRAL MANIFOLDS

With this analysis in hand, it is now a relatively simple matter to
determine the homotopy types of the Hill's regions and integral manifolds.
The first step is to observe that each of these open manifolds has a strong
deformation retraction onto a lower-dimensional compact subcomplex.

Proposition �I}I For each range of &, there is a 1-complex l(c, h)/
kR(c, h) such that kR(c, h) has a strong deformation retraction onto l(c, h) and
mR(c, h) has a strong deformation retraction onto ?&1|&1(l(c, h)). The sets
l(c, h) are shown in Fig. 5.

Proof. First, it is clear that each kR(c, h) has a strong deformation
retraction \: kR(c, h)_[0, 1] � kR(c, h) onto lR(c, h). The only restriction
to be observed in constructing \ is to require

�kR(c, h)_[0, 1]/\&1(�kR(c, h))/(�kR(c, h)_[0, 1])) _ (kR(c, h)_[1])
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Fig. 5. The 1-complex l(c, h).

This lifts to a strong deformation retraction \~ : mR(c, h)_[0, 1] � mR(c, h)
with \~ 1(mR(c, h))/?&1|&1(l(c, h)). To see that such a lift exists, let
A=\&1(int kR(c, h)). By our choice of \, A is dense in kR(c, h)_[0, 1], and
over both B and \(A), the projection | b ? is a fibration. The homotopy
lifting condition guarantees the existence of a lift \~ over A. On the comple-
ment of A, \ maps into �kR(c, h), and | b ? is one-to-one there. Thus, the
unique continuous extension to all of kR(c, h)_[0, 1] is defined by setting

\~ =(| b ?)&1 b \ b | b ?

on the complement of A. g

With this, we can now determine the homotopy types of the integral
manifolds, Hill's regions and reduced spaces. The homological values of
Table II follow immediately.

Theorem �I}I The homtopy types of m(c, h), mR(c, h), h(c, h) and
hR(c, h) are given in Table III.

Proof. Combining Propositions 3.2 and retraction, it is clear that
hR(c, h) is homotopic to the wedge of circles l(c, h). Similarly, the homotopy
type of mR(c, h) is obtained by combining the results of Corollary 3.1 and
Proposition 4.1. In all cases, lR(c, h) consists of arcs that either lie entirely
in �kR(c, h), entirely in int kR(c, h), or lie in int kR(c, h) with end points in
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�kR(c, h). In the first case, the fiber in mR(c, h) is itself an arc; in the second
case, it is S3_I; and in the third case, it is S4 (i.e., S3_I, with the ends
collapsed to points).

In cases i and ii, the 1-complex lR(c, h) lies entirely in int kR(c, h), so
its preimage in mR(c, h) is simply S3_lR(c, h). In case x, lR(c, h) lies
entirely in �kR(c, h), and so is homeomorphic to its preimage. In the
remaining cases, the arcs in lR(c, h) with end points in �kR(c, h) effectively
attach a 4-sphere at two points to �kR(c, h). This is homotopic to attaching
the wedge product of an arc and a 4-sphere.

The homotopy types of h(c, h) and m(c, h) are simply the products of
S1 with h(c, h) and m(c, h), respectively. A homological calculation suffices
to justify this. Namely, since H2(mR(c, h))=H2(hR(c, h))=0 for all &, the
Thom classes of all of the S 1-bundles

S1 � m(c, h) � mR(c, h)

S1 � h(c, h) � hR(c, h)

must be trivial. Since the Thom class determines the homotopy type of the
total space, m(c, h) and h(c, h) must have the homotopy types of the trivial
(i.e., product) bundles. g

As a final note, we look more carefully at the reduced integral
manifold in case x. In this case, kR(c, h) consists of three half-open annuli.
For each half-open interval, the end point lies in �kR(c, h) (and hence has
a single point as its preimage in mR(c, h)), while all other points have S3

as their preimage. The preimage of the entire interval is the cone on S3,
or D4. Thus we have:

Proposition �I"I For &>&9 , mR(c, h) is homeomorphic to three disjoint
copies of D4_S 1.

APPENDIX. THE SPATIAL THREE-BODY PROBLEM FOR
POSITIVE ENERGY

In this appendix, we correct the erroneous computation of the homol-
ogy of H

*
(MR(c, h)) for &<0, that was presented by McCord et al. [17].

We use the notation and approach of McCord et al. [17].
There, it was shown that the integral manifold MR(c, h) could be

understood through a series of projections

MR(c, h) ww�?
HR(c, h) ww�|

KR(c, h) ww��
C(c, h)
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For positive energy, the set C(c, h) is a triangle with the three vertices
deleted, while �&1(c) is a 2-sphere for c in the interior of the triangle and
a point for c on one of the three boundary lines. Over each point k # K, the
fiber ?&1 b |&1(k) is contractible.

The integral manifold MR(c, h) is thus homotopic to KR(c, h). This is
in turn homotopic to a singular fiber bundle over a Y (i.e., a 1-complex
with three edges all meeting at a single common vertex), with the fiber over
each of the three end points a point and the fiber over all other points a
2-sphere. The problem is to identify correctly the limiting behavior of the
S2 fibers as points in the interior of the Y approach the boundary.

It was this step that was incorrectly described by McCord et al. [17].
A point in C records the shape of the triangle formed by the three masses,
while its preimage in KR describes the orientation of the triangle relative
to the angular momentum vector. The points in �C are the collinear
configurations. In the presence of nonzero angular momentum, collinear
configurations must lie in the invariant plane orthogonal to the angular
momentum vector. Thus the non-collinear configurations that limit onto
collinear must also lie in or asymptotically approach the invariant plane.
That is, as points c # int(C) approach c0 # �C, it is not the entire 2-sphere
�&1(c) that limits onto the single point �&1(c0), but just the equator.

Let A=�&1(int(C)) and B be a small neighborhood of �&1(�C). Then
A&S2, each of the three components of B is contractible, and each of the
three components of A & B is homotopic to a circle. The Mayer�Vietoris
sequence is then

0 � Z � H2(MR) � Z3 � 0 � H1(M) � Z3 � Z4 � H0(MR)

from which the values for Case I in Table I follow. In fact, for &<0, it is
not hard to identify the homotopy type of MR(c, h)&KR(c, h). The fiber in
KR(c, h) over each of the arms of the Y is homotopic to a 2-disk, so the
entire space has the homotopy type of a 2-sphere with three disks sewn
onto the equator, which is homotopic to a wedge of four 2-spheres.
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