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INTRODUCTION

This note gives a set of examples of local diffeomorphisms whose fixed points
satisfy the index restrictions given in Mallet-Paret and Yorke [1]. These
examples cover every major case and in total show that the restrictions
ﬁlaced on the index sequence is sharp.

Let f: R" > R" be a continuous map which has the origin as an isolated

fixed point, that is, £(0) =0 and f(x) # x for O < Hxl[fvel for some

€, > 0. Let Sn_l ={x ¢ Rn:»Hx[]= 1{ be the unit =n - 1 sphere in R"
and define
¥ on-1 n-1

£: S >S5S Tix~> (elx - f(elx))/|151x - f(91X>”

The topological degree of T 1is called the index of the fixed point and
will be denoted by ind(f,0). This notation emphasizes the fact that the
index depends on the function and the fixed point. In general, ind(f,xo)
will denote the index of the fixed point Xg of f and can be calculated
by translating this fixed point to the origin. The index is an invariant

under changes of coordinates and is important in bifurcation analysis.
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If the origin is an isolated fixed point of fk, the kth iterate of
f, for all k > 1 then define the index sequence {Ik} by Ik = ind(fk,O).
In general the index sequence {Ik} is quite arbitrary, but Shub and Sullivan
(2] have shown that if f is Cl then the index sequence is bounded and
more recently Mallet-Paret and Yorke [1] have shown that it is periodic.

In fact the latter authors show that the spectrum of the Jacobian matrix
of f at the origin places restrictions on the possible index sequences.

In order to understand the results of this note, it is necessary to
review the results of (17 and introduce some notation. Let 5" denote the
set of C1 functions f defined in a neighborhood of the origin in r"
such that the origin is an isolated fixed point for f and all its iterates.
Thus if f ¢ ®" then the index sequence is defined for f. Let D denote
the derivative operator so that Df(0) denotes the Jacobian matrix of f
evaluated at the origin. For the rest of this introduction let £ ¢ ﬁn
and Df(0) = A.

If I - A 1is nonsingular then

Il = ind(f,0) = sgn det(I - A)

Let a, (resp. 0_) be the number of eigenvalues of A, counting multi-

plicity, in (1,®) (resp. in (-~,-1)). In the generic case I - Ak is

nonsingular for all k > 1 and the index sequence is given by

o}
. . -u " k odd
I, = ind(f ,0) = sgn det(I - A) = g +0
k + -
(-1) k even
Thus in the generic case there are only four possible index sequences Ik:=1,
I, =-1L, I, = (~1)k, and I, = —(—l)k. Linear maps show that these index

sequences are achievable. To describe the general case, let I = (11,12,...)

be the infinite vector of indices and introduce the special vectors

L, = ( )

P R EA

where
k if k divides &
1 =
K)o if & does not divide &
Thus L, has the integer k in those positions which are a multiple of

k
k. Call I +he index vector of f ¢.8" and Lk the kth basic vector.

Let
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(&3
[

M= {m > 1: there is a y ¢ R" with Vs Ay,...,Am—ly distinct

and Amy =y}

If A has an eigenvalue which is an mth root of unity and another eigen~
value which is an {th root of unity, then clearly m,? and mf € M.

With this notation the central result of [1] is

THEOREM (Mallet~-Paret and Yorke). Let f ¢ ﬁn then the index vector I

of f has the form

E c L G, even
m m +
meM
I= m even
E c L + E c (L -1L,) g odd
m m 2m .

mm
meM meM

where the coefficients c, = are integers. Furthermore ¢y and c, are
subject to the additional restrictions
o,
(1) ey = (-1) if I - A 1is nonsingular
(ii) ¢ € {-1,0,1} if I - A has one dimensional kernel
o, *+0_ +1 9
(iii) c, € {0,(-1) } if I - A 1is nonsingular and I - A&

has one dimensional kernel.

These authors conjecture that this theorem is sharp in the sense that
for any given A and I permitted by this theorem there is a map £ ¢ &°
with Df(0) = A and with index vector I. This note verifies this con-
jecture in most cases by constructing specific examples. Even though the
most general case is not considered in this note, the most interesting cases
are considered. It should be clear to the reader that the methods given
here can be used to construct the general example.

Moreover the examples constructed below have unfoldings with generic
fixed points--in fact this is the method used to compute the index sequence.
That is we give functions fu depending on a small real parameter ¢ with
the following properties. First f = fO e 5" is the desired example satis-
fying the restrictions of the Mallet-Paret and Yorke Theorem. For u small
and nonzero fu and all its iterates have only generic fixed points and all
these fixed points tend to the origin as u = O.

Examples: Here we give a sequence of examples which illustrate the
various cases covered by the Mallet-Paret and Yorke Theorem. The examples

are ordered so that the complexity grows gradually.
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EXAMPLE 1. Let & = -1, 0 or 1, then there is an f ¢ J} such that Df(Q) =
(1) and with index vector aLl.

By the Mallet-Paret and Yorke Theorem the index sequence for any f ¢ ﬁl
with Df(0) = (1) 1is either Ll’ OLl or -—L1 and so it is enough to give
and f ¢ ﬁl with Df(0) = (1) such that

L11 = ind(£,0) = 1, 0 or -1

Consider
£ (x) =x + px - x2
u

where X,u € Rl and u 1is considered as a small parameter. We shall show
that fo € 19, DfO(O) = (1) and ind(fO,O) = 0. The fixed point equation

is
0=x - fU(X) = x(x - u

and so for y # 0 there are two fixed points namely x = 0 and x = U.
For u = 0 there is a unique fixed point. Since (d/dx)(x - fu(x)) = 2% - U
the index of the fixed point at the origin is -1 for u > 0O and the index
of the fixed point at x = u 1s +1 for u > O. The unique fixed point at
the origin is degenerate (i.e., not generic) when U = 0 and so cannot be
calculated from the derivate alone. As u = O+ the two fixed points
converge to the unique fixed point at the origin. Since the index of the
fixed point at the origin for u = 0 must be the sum of the indices of all
the fixed points that converge to it, we see that the index of the isolated
fixed point at the origin is O.

The jth 1iterate of fO is given by

B0 = x - 3+ 0Gh)

and so x - fé(x) = jx2 + O(XA) is positive for small x. Thus the origin
is an isolated fixed point for all iterates of fO and so f ¢ lﬁ.

Now consider

fp(x) =x = (ux + x3)
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The fixed point equation is
= 2
0=x - fu(x) =+ x(u + x7)

which has a unique solution =0 for u>0. For py >0 this fixed

b3
point is generic with index + 1 and so for L =0 the index is + 1 by

continuity of the index. Clearly DfO(O) = (1). The jth iterate of fO
is given by

fé(x) =x t jx3 + 0(x6)
and so the fixed point equation is
x - 8060 = T x(Gx’ + 06x7)

Again we see that the origin is an isolated fixed point of all iterates of

1
fO and so fO e b5 .

Let J(A,h) denote the k x k Jordan block matrix

A 1 0 . 0 0

0 1 AN 0 0
J(A,k) = |

0 0 e A 1

0 0 0 e 0 A

where A 1is any complex number, let dk denote the k-dimensional row

vector (1,0,...,0) and let e denote the k~-dimensional column vector

(O,...,O,l)T. In many cases we shall write J(X) for J(A,k), d for dk

and e for e when the dimension is clear from the context.

EXAMPLE 2. Let o = -1,0,1, then there exists an f ¢ S" such that
Df(0) = J(1,n) and with index vector oL, .
Let o = -1,0,1 be given. 1In the previous example we gave a scalar
function fu(x) = x + h(x,u) which had generic fixed points for u # 0
such that the sum of the indices of these fixed points is «. Moreover as
¥ > 0 these generic fixed points tend to the origin and so for u = 0 the

origin is a fixed point of index a.



164 MEYER

Let vy be an n-vector and consider
gu(y) = J(1)y + eh(y,dy)

The fixed point equation for this function is
0=y - gu(y)

or equivalently

0= “Ys
0 = “¥3
0 = Vo

0= -h(Uyyl)

Thus if E&(p) 1is a fixed point of fu then h(u,E(u)) = 0 and so ¥, =
=y, s 0, v, = £(u) 1is a fixed point of gu(y). If E(u) 1is a generic

fixed point of index +1 (resp. =-1) then hx(u,g(u)) > 0 {(resp. < 0). Now

0 -1 0 coe 0 0
0 0 -1 e 0 0

det : : : : : = _hx(UQE)
0 0 0 Q -1
—hx(u,i) 0 0 0 0

Thus if &(u) is a generic fixed point of index +1 (resp. -1) of fU

then Vg = eee =y = 0, v, = g£(u) 1is a generic fixed point of gH of
index +1 (resp. -1). Thus for u # 0 the functions fU and gu have
the same number of generic fixed points with the same index and for both
functions the fixed points tend to the origin as u > 0. Thus the index
of the origin for both fp and gU are the same or gu has index vector
aLl.

EXAMPLE 3. Let o = 0 or -1, then there is an f ¢ ﬁ; such that Df(0) =

(-1) and with index vector L1 + uLZ.
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If Df(0) = (-1) then ind(f,0) = 1 and so the examples given below
must have ind(fz,O) =1 or -1.

Consider fu(x) = -X + pzx * x3. In order to compute the iterates of
fU it is convenient to scale the variables by making the change of variables
X

= and f = so that
My an u Ug“

-y + uzy(l * y2)

gu(y)
and

g ,(y) =y~ 2u2y(1 t yz) + o™

U

Thus the fixed point equation is
2 2 . 2
h,(y,u) = (y - gu(y))/2u =y(lzy") + 0w

Clearly h,(0,0) = 0, h_(+ 1,0) =0, (3n/3y) = (0,0) =1 and (3h/3y) -
(+ 1,0) = :1. Thus the implicit function theorem yields functions EO =0
and E,(W) = 1 + 0(u) which satisfy h, (&g, ) = h_(,(W,u) = 0 for
small wu. Thus gi has one or three fixed points for small u # 0 depending
on whether the + or =~ sign is taken. The sum of the indices of these
fixed points is +1 or -1, again depending on the sign taken. Thus fZ
has either EO =0 or EO = 0 and uit(u) as fix;d points with total
index either +1 or =1. These fixed points of fu tend to the origin as
u~> 0 and so ind(fg,o) = +1, As in Example 1 it is not hard to show that
£y € &' and so the index vector for £q is L, + oL, where o= 0 or -1.
Implicit in all scale arguments is the assertion that all solutions
have been found. This assertion is based on the Newton polygon method which
gives rise to the scaling.
EXAMPLE 4. Let @ = 0 or -1, then there is an f € " such that Df(0) =
J(-1,n) and with index vector L, + aL

1 27

Here we make a slight change in the function of the previous example

2n 2n+1
X

so that the scaling works correctly. Let h(u,x) = p" x = and

consider
f“(y) = J(-1)y + eh(p,dy)

Scale by Yy T WY Yy ” u2y2,...,yn > unyn (here we do not introduce new

notation for the scaled variables as in Example 2) so that
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_yl + Uyz
£ (y) = '
H 7 - + Uy
Yn-1 n
n+l 2n
AT LGS SN
and
2
¥ - 2uy, + o(u™)
2 .
f = 2
W y__y - 2wy, + 0O

n+l 2n n+2
- +
Y, 2u yl(l iy Y+ 0w )

The fixed point equations become

2
0 = (fU - yl)/Zu =y, * o)
0= (£2 -y /2=y + 0G)
un-1 n-1 n
2 n+l 2n
= - = +
0 (fun yn)/Zu yl(l ty] )+ 0(w
for = 0 these equations have the solutions Yy =Yy = e =Y S 0 and
¥y = + 1, Yy = eee =y = 0 if the minus sign is taken. The fixed point

n-1

at the origin has index (-1) while the fixed points at *1 have index

(-1)“. Proceed now as in the previous examples to show that the unscaled

fg has an isolated fixed point at the origin with index 2*1 and so the

index vector of fo is L, +alL, where a = 0 or -1.

EXAMPLE 5. Let o and m be integers with m > 3 and let X be an mth
root of unity. Let A be a 2 x 2 matrix with eigenvalues A,h. Then

there exists an f ¢ ﬁz such that Df(0) = A and with index vector L1 +aLm.

Case 1. o > 1. Let z be a complex variable and consider fp(z) =

Az + pamz - zam+1 as a function from C = Rl X R1 into itself. Scale by
z + uz and so f (z) = Az + pumz(l - Zam)

m-1 am oam+1

u and fﬁ(z) =
z +mh u 2z(l - 2™+ 0y

). Thus the fixed point equation is



THE INDEX SEQUENCE OF A FIXED POINT 167

(3u,v)/3(x,y)) = | = Y| =uv - wv, =) s ui >0

by virtue of the Cauchy-Riemann equatioms. Thus in the unscaled variables
these are m+1 fixed points of f® of index +1 for i > 0 which tend
to the origin as u ~» O. Thus ind(fg,O) =qam + 1 or the index vector of

fO 1s L1 + aLm.

Zl-cxm) .

Case 2. o < 1. Consider fu(z) = Az + z(u—am - As above scale by

z +» uz and compute the fixed point equation
-1 - ==
0= (z - fﬁ(z))/mkm T e (1 - 27 4 0w
This equation has the origin and the - m roots of unity 51,...,£_um as

solutions when | = O as in the above example. This function is not amalytic

and so we must compute the Jacobian. Instead of using x = Re z and y=Imz

as coordinates, use z and z. If h(z,z) = -z(l - ;-am) then
(3¢h,h)/08(z,z)) = =1 when z =2 =0
0 -1
=—om~1
0 ~om&E 29
= = -a'm
_umgg-am-l 0

when z =&, z=2£ an -am root of unity

Then the fixed point at the origin has index +1 and the index of the fixed

points at the roots of unity are -1. Thus as before the unscaled fO has

index vector L., + aL .
1 m

Case 3. «a = 0. Consider fu(z) = Az + uzz + 225. Scale 2z - yz and com-

pute 0 = (z - fz(z))/mkm_luz = ~z(1 + |z[2) +0(u). Thus there is only one

fixed point at the origin and it has index +1. Therefore the index vector
of fo is Ll’
EXAMPLE 6. Let o and m > 3 be integers and X an mth root of unity.
Let A be a 2k x 2k real matrix which is similar to diag(J(r,k),J(},k))
over the complex numbers. Then there exists an f ¢ ﬁZk such that DIf(0) =

A and with index vector L1 + uLm.
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2k .
Let 2z be a complex k-vector and fu: C=R">C =R given by

(uam+2kdz am+1

J(A)z + e - (dz) (dde)k)

Case 1. a > 1: £ (z)
Z u

2k—amd 1-om

Case 2. a IOz + ey z - (42) ™ ™(dzd2)")

A

1: fU(Z)

J(X)z + e(pzkdz + dz(dzdz)k)

Case 3. o = 0: fb<z)

Scale by z; > plzi and proceed as in the previous examples.

EXAMPLE 7. Let o be an integer, n =2 and A =1 the 2 x 2 identity
matrix. Then there exists an f E.Bz such that Df(0) = A and with index

vector aLl.

Let z be a complex variable and fM: C = R2 > C = R2 be given by

Case 1., a > 1: fu(z) =z + uz + z%(22)

z + Uz + E-a(zE)

Case 2. o <-1: fu(z)

Case 3. a = 0: fu(z) =z + U + 22

EXAMPLE 8. Let k,2 and o be integers with k,L > 1 and let A =
diag(J(1,k),J(1,%)). Then there exists an f € ﬁk+l such that Df(0) = A
and the index vector of f 1is oL .

Let the fH of the previous example be of the form

fu(g +in) = (€ + a(u,g,m)) + i(n + b(,E,M))
k L .
Now let x € R and y € R and comsider the map

J(A,K)x + eka(p,dkx,dgy)
gu(x,y) =
J(A,0)y + egb(p,dkx,dzy)

The map g0 e.bk+2, DgO(O) = A and the index vector of GO is aLl.

EXAMPLE 9. Let o be an integer and A = -I. Then there exists an f E.DZ

such that Df(0) = A and with index vector L1 + uLz.

Let z be a complex variable and fu defined by

10
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Case 1. «a > 1: fu(z) = -z + Uz + zOH'1

Case 2. a <-1: fp(Z) = -z + uz + Zl—q

Case 3. o = O: fu(z) = -z +yu + (zz)z

EXAMPLE 10. Let k,? and o be integers with k,2 > 1 and let A =
diag(J(-1,k),J(~-1,2)). Then there exists an f E.bg+k such that Df(0)

= A
and with index vector L1 + aLz.
Proceed as in Example 8 using the functions Example 9.
EXAMPLE 11. Let «,B,y,& and m be integers with f,m > 3 and (LZ,m) = 1.

Let X be an &th root of unity, v an mth root of unity and A similar
to diag(),X,v,v) over the complex numbers. Then there exists an f 6.04

with Df(0) = A and whose index vector is L, + OLLSl + BLm + YL

1 m”®

Let a,b,c be positive integers and z,w be complex variables. Con~-
sider the maps given below as maps of R4 = C2 into itself which depend on

a small parameter .

2

20 + (uai _ .8 )(4ucm - wcm)

fU(Z)

wiv + (me _ wbm)(Aul _ ZZ)

(w)
&,
Scale by 2z > yz and w -+ pw to obtain

(1 - zaQ) cm)

uabﬂ,m 4 - w

fu(z) = Az +
gp(w) = VW + ubgm(l - wbm)(4 - zg)

The fth iterate of this map is

£f7(z) z + luacgmz(l - zal)(4 - W™ 4L,

g (w) Vlw + e

e = =

where the omitted terms are higher order in u than the displayed terms.
Since (&,m) =1 and v 1is an mth root of unity \)Q # 1. Thus the fixed

point equations are

11
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0= (z - fi<z>>/1ua°“m = =21 - 22 - W™ 4
0= (w- gﬁ(w)) =1 - Vv s
and these equations have solutions z =w =0 and w =20, z = gl,...,gal

where &. 1is an (aR)th root of unity when u = 0. As before it is easy
to invoke the implicit function theorem to show that these equations have
1 + ag solutions for small u. As before these fixed points have index +1.
Thus the index of the unique fixed point at the origin of the unscaled map
for u =0 has index 1 + al.

Similarly the index of the unique fixed point at the origin for the
mth iterate of the unscaled map for YW = 0 has index 1 + bm.

Now compute the (&m)th iterate and the fixed point equations become

aclm cm
) o+

= -z(1 - zal)(4 - w

o
]

v

(z - fﬁm<z>>/zmu

0= (w - gim(w))/lmpblm = -w(l - wbm)(4 - zl) + e

where u = 0 this system of equations is equivalent to the systems

z =0, wbm =1
2o, w=0
22 o, W a1

Fah, Wy

and so there are a total of 1 + bm + al + (ab + ¢)2m fixed points and they
all have index +1. Using the now familiar argument the index of the iso-

lated fixed point at the origin for the unscaled equation when u = 0 is

L, + all + bLm + (ab + c)le.
Thus we have given the required example when o > 1, B > 1 and y>aB.
The other cases are similar. In order to achieve fixed points with negative

index simply conjugate the appropriate term in the formulas for £  and

aSL) by (uaﬁl_zal

g . For example if o 1is negative simply replace (pa2 -z )
in the definition of £ . This will yield a function in .84 with index
vector L, - al, + bLm + (c - aQ)le.

Even though the general example 1s not given in this note, enough cases

are given to show all the technical difficulties that can arise.

12
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