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Abstract. We study the global flow defined by the three-dimensional isosceles three-body
problem with zero energy. A new set of coordinates and a scaled time are introduced
which alow the phase space to be compactified by adding boundary manifolds. Geometric
arguments gives an almost complete sketch of the global phase portrait of this gravational
system.

1. Introduction

In this paper, we apply the method developed in [1] to study the flow on the collision
manifold of the three-dimensional isosceles three-body problem. The isosceles three-body
problem has played an important role in the study of the Newtonian gravitational system
for last twenty years [2, 3, 4, 5]. Our goal here is a clear picture of the phase structure of
this flow.

We assume that three particles with masses m1 = m2 = 1/2,m3 = β move in Euclian 3-
space with coordinates (x, y, z2), (−x,−y, z2), (0, 0, z1) and initial velocities (dx/dt, dy/dt, dz2/dt),
(−dx/dt,−dy/dt, dz2/dt), (0, 0, dz1/dt) respectively. Th symmetries of the motion will be
maintained forever.

Use x, y and z = z1 − z2 as the coordinates of positions. Fix the center of mass at the
origin, βz1 + z2 = 0, and therefore linear momentum is zero, βdz1/dt + dz2/dt = 0. The
kinetic energy of this system is

T =
1

2

{(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz2

dt

)2

+ β

(
dz1

dt

)2
}

=
1

2

{(
dx

dt

)2

+

(
dy

dt

)2

+

(
β

1 + β

)(
dz

dt

)2
}

and the potential function expressed in x, y, z is
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Let q = (x, y, z)T and p = M(dx/dt, dy/dt, dx/dt)T where M is the 3 × 3 matrix M =
diag(1, 1, ε) and ε = β/(1 + β). The equations of motion of the system are

dq

dt
= M−1p,

dp

dt
= ∇U(q).

Total energy T − U is an integral and so equal to a constant h and the z-component of
angular monentun is an integral so k · (q × p) = c is constant.

In the next section we will introduce a sequence of changes of variables which are used in
Section 3 to define the the collision manifold. This sequence of transformations will make
the phase space a compact cube in three dimensional space with a non-trivial fictitious flows
on the boundaries. In Section 4 we will discuss the final evolution of the solutions. Finally
in the last section a sketch of the phase portrait will be given.

2. Changing Variables

In order to attach a boundary manifold to the phase space we shall preform a series of
changes of variables. First, we scale the position vector, p, the momentum vector, q, and
time, t, by the potential U to introduce new variables u, F,G and a new time τ by

u = (2U(q))−1, dτ = u−3/2dt,

F = u−1q, G = u1/2p
(1)

Note that F has only the dimension of mass and measures the geometry of the system,
whereas u has the dimension of length/mass and so measures the size of the system. The
variable u plays the role of I, the moment of inertia, of McGehee’s scaling. The equations of
u, F,G, are

du

dτ
= −2(M−1G,∇U(F ))u,

dF

dτ
= M−1G + 2(M−1G,∇U(F ))F,

dG

dτ
= ∇U(F )− (M−1G,∇U(F ))G,

(2)

where

GT M−1G = 1, U(F ) = 1/2 − uh (3)

and

U(F ) =
1

8

1

(F 2
1 + F 2

2 )1/2
+ β

1

(F 2
1 + F 2

2 + F 2
3 )1/2

.

In these coordinates the conservation of angular mometum yields: F1G2 − F2G1 = cu−1/2.
Next let

F1 = r sinφ G1 = R sinϑ

F2 = r cosφ G2 = R cos ϑ.
(4)
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The equations for (r,R, φ, ϑ) are

dr

dτ
= R cos(ϑ − φ) + 2(M−1G,∇U(F ))r

dR

dτ
= −(1/8r2 + βr/(r2 + F 3)3/2) cos(ϑ − φ) − (M−1G,∇U(F ))R

dφ

dτ
=

R sin(ϑ− φ)

r

dϑ

dτ
=

[(1/8r2 + βr/(r2 + F 3)3/2) sin(ϑ − φ)]

R

(5)

Note that, for the complete set of equations of motion, we also need the equations for F3,
G3 and u given in (2).

We again have the following restrictions

R2 + G2
3 = 1, 1/8r + β/(r2 + F 2

3 )3/2 = 1/2 − uh (6)

and the angular momentum integral

u1/2(F1G2 − F2G1) = c.

The manifold defined by (6) with u = 0 is the celebrated collision manifold. The flow
defined by (5) extends to this boundary and the boundary is invariant. The flow defined by
(5) on the boundary is called the fictitious flow. It reflects the near-collision behavior of the
gravitational system.

It is easy to see that setting h = 0 in (6) will give us the same set of equations as obtained
by setting u = 0. So what has been found on the collision manifold is not that fictitious after
all. It is exactly the flow of the original problem with zero energy. From now on, we will only
discuss this flow. We see that with u = 0(or h = 0), (6) gives two constrains on variables
(r,R, φ, ϑ, F3, G3). Also notice that the equations in (5) are independent of u and φ and ϑ
only as ϑ − φ. These observations will reduce the dimension of our problem to three.

Again, change variables by

r = w sin ξ, R = sin η,

F3 = w cos ξ, G3 = ε1/2 cos η,

Φ = ϑ − φ.
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Figure 1. Coordinates for the isosceles problem in three-space.

We see that w = (1 + 8β sin ξ)/4 sin ξ. The equations for (ξ, η,Φ) are

dξ

dτ
=

4 sin ξ(cos ξ sin η cos Φ − ε−1/2 sin ξ cos η)

(1 + 8β sin ξ)
,

dη

dτ
=

16[βε−1/2 sin η cos ξ sin2 ξ − cos η(1/8 + β sin3 ξ) cos Φ]

(1 + 8β sin ξ)2
,

dΦ

dτ
=

16 sin Φ[(1/8 + β sin3 ξ) − (1/4 + 2β sin ξ) sin2 η]

(1 + 8β sin ξ)2 sin η
.

(7)

Let sin ηdτ ′ = dτ and rewrite τ ′ as τ . The equations of motion become

dξ

dτ
=

4 sin ξ sin η(cos ξ sin η cos Φ − ε−1/2 sin ξ cos η)

(1 + 8β sin ξ)
,

dη

dτ
=

16 sin η[βε−1/2 sin η cos ξ sin2 ξ − cos η(1/8 + β sin3 ξ) cos Φ]

(1 + 8β sin ξ)2
,

dΦ

dτ
=

16 sin Φ[(1/8 + β sin3 ξ) − (1/4 + 2β sin ξ) sin2 η]

(1 + 8β sin ξ)2
.

(8)

The three quanities ξ, η,Φ are the coordinates we shall use to study this problem. The
angle ξ is half the vertex angle at m3 of the configuration triangle. The angle Φ is the angle
between the radius vector and the velocity vector of particle m1. The dimensionless quanity
η measures the ratio of the velocity of particle m3 and the radial velocity of particle m1.
Refer to Figure 2.

For any point of the original phase space D0

D0 = (0, π)× (0, π) × (0, π)

there is a solution of h = 0. However, (8) now has been defined on D:

D = [0, π]× [0, π]× [0, π],
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Figure 2. Escape boundary, ξ = 0 or π.

which is the closure of D0. This is our compactified phase space.

3. The boundary manifolds

In this section we shall look at the flow on the various boundaries. First set ξ = 0 in (2.8)
so the equations become

dη

dτ
= −2 sin η cos η cos Φ = − sin 2η cosΦ,

dΦ

dτ
= (2 − 4 sin2 η) sinΦ = 2 cos 2η sin Φ.

These equations admit the integral sin 2η sinΦ = C, so the phase portrait is as given in
Figure 3. This is the flow in the limit as particle m3 goes upward to infinity. The flow on
the boundary ξ = π is exactly the same.

Consider the boundary defined by setting Φ = 0 in (2.8). The equations on this boundary
are

dξ

dτ
=

4 sin ξ sin η(cos ξ sin η − ε−1/2 sin ξ cos η)

(1 + 8β sin ξ)

dη

dτ
=

16 sin η[βε−1/2 sin η cos ξ sin2 ξ − cos η(1/8 + β sin3 ξ)]

(1 + 8β sin ξ)2
.

This is half of the triple collision manifold for the planar isosceles three-body problem. It
corresponds to the collision part – see Figure 3.

The other half, the boundary Φ = π, corresponds to the ejection part – see Figure 3.
Consider the boundary defined by η = 0 or π. When η = 0 or π the equations are

dξ

dτ
= 0

dΦ

dτ
=

16 sin Φ(1/8 + β sin3 ξ)

(1 + 8β sin ξ)2
.

Figure 3 gives the phase portrait for these boundaries.
Putting all these pictures together, we have Figure 3.
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Figure 3. Collision boundary, Φ = 0.

Figure 4. Ejection boundary, Φ = π.

Figure 5. Boundary η = 0 or π.

4. The final evolution

First we claim that there is no rest point inside of the phase space D0. By (2.8) an internal
rest point would satisfy

cos ξ sin η cos Φ − ε−1/2 sin ξ cos η = 0, (1)
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Figure 6. All boundraies.

βε−1/2 sin η cos ξ sin2 ξ − cos η(1/8 + β sin3 ξ) cos Φ = 0, (2)

(1/8 + β sin3 ξ) − (1/4 + 2β sin ξ) sin2 η = 0. (3)

From (1) and (2)

β cos2 ξ sin2 η sin ξ = (1/8 + β sin3 ξ) cos2 η. (4)

Combining (3) and (4) gives

β cos2 ξ sin2 η sin ξ = sin2 η(1/4 + 2β sin ξ) cos2 η.

Therefore,

β cos2 ξ sin ξ = (1/4 + 2β sin ξ) cos2 η (5)

Together (5) and (3) yield 1/8+β sin ξ = 1/4+2β sin ξ, so 1/8+β sin ξ = 0. Since ξ ∈ (0, π)
and β > 0 this is a contradiction.

Next we claim that the flow is gradient-like. Define

P =
(F,G)

(F TMF )−1/4
.

From (2.5) we have

dP

dτ
=

[1 − (F,G)2/(F TMF )]

(F TMF )−1/4

or
dP

dτ ′ =
sin η[1 − (F,G)2/(F TMF )]

(F TMF )−1/4
.

Let W = M1/2F and Z = M−1/2G. Since GT MG = 1 we have ‖ Z ‖= 1, | (F,G)2/(F T MF ) |=
| (W/ ‖ W ‖, Z) |≤ 1. So dP/dτ ≥ 0. Thus the flow is gradient-like.

Note that

P = χ(ξ)(sin ξ sin η cos Φ + ε1/2 cos ξ cos η) sin−1/2 ξ

where

χ(ξ) =
(1 + 8β sin ξ)1/2

2(sin2 ξ + ε cos2 ξ)1/4
.
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Figure 7. Flow near P0.

Now what are the α- and ω-limit set of the solutions? Since the flow is gradient-like and
there is no rest point inside of the phase space, the α- and ω-limit sets of the solutions will
be in the boundaries of the cube.

All the points on the lines η = 0, π ; Φ = 0, π ; ξ ∈ (0, π) are rest points. Denote the
collection of these lines by L.

Proposition 4.1. No solution in D0 has its α- or ω-limit set in the set L.

Proof. We will prove the statement for the line η = 0,Φ = 0, ξ ∈ (0, π). The proof is
similar for the other cases. Take any surface of the form

Sη0 = {(ξ, η,Φ)η = η0,Φ < Φ0, ξ ∈ (0, π)}
where η0 < ε,Φ0 < ε for sufficiently small ε > 0. See Figure 4. According to (2.8), we can
take ε so small that dη/dτ < 0 for any point on Sη0 .
Similarly, take

SΦ0 = {(ξ, η,Φ)Φ = Φ0, η < η0, ξ ∈ (0, π)}
where η0 < ε,Φ0 < ε. We can again make ε so small that for any point on SΦ0, dΦ/dτ > 0.
So η is decreasing and Φ is increasing inside the interior of the box with boundaries Sη0 and
SΦ0 and a solution entering this box must on Sη0 must leave it on SΦ0 .

Now assume that a solution takes point p0 on the line as an ω-limit point. This solution
will intersect Sη0 infinitely many times, therefore it will have an ω-limit point on the surface
Φ = 0 with η = η0. Because P increases along any non-trivial orbit on Φ = 0(the flow is
gradient-like), this is impossible.

Proposition 4.2. The α- or ω-limit set of a solution inside of D0 is one of the following:
i) One of the rest point inside of the boundaries Φ = 0 or Φ = π.
ii) On the boundary ξ = 0.
iii) On the boundary ξ = π.

The proof of this proposition follows from the discussion above.
Look at the hyperbolic final evolution of the system. Assume that the ω-limit set of a

solution is on the boundary ξ = 0. We see that as t → ∞, the particle m3 goes upward
forever. So z(t) increases and dz(t)/dt > 0 decreases monotonically. Also P (t) → ∞ as
t → ∞ for this solution.
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On the boundary ξ = 0, we have a special collection of solutions. It is the lines Φ = 0,η ∈
(0, π/2); Φ = π, η ∈ (0, π/2); η = 0 and π/2, Φ ∈ (0, π) together with four rest points
(0, π/2, 0); (0, 0, 0); (0, π/2, π); (0, 0, π). Denote it as `. See Figure 3 where ` is the lower
loop made up of the four rest points and the four trajectories connecting them. We claim
that if one point of ` is a limit point of a solution, so will be all the other points of ` .

Now assume that such a solution exists. P → ∞ and ξ → 0 as τ → ∞. By the definition
of P we see cos η/(tan ξ)1/2 → ∞.

Go back to the original definition of η and ξ in Section 2.. We will have z1/2dz/dt → ∞.
So for any C > 0, z(t) > Ct2/3 for t > T sufficiently large. This can happen only when
the motion of m3 is hyperbolic. See [6]. Therefore dz(∞)/dt = limt→∞(dz/dt) > 0 for this
solution.

But we will have τn → ∞, such that η(τn) → π/2. This simply means (dx/dt)2 +
(dy/dt)2 |τn→ ∞. But this is impossible and so the points of ` are not limit points.

Let Q = sin 2η sinΦ. From (2.8)

dQ/dτ = 16β sin2 η sinΦ sin 2ξ(ε−1/2 cos 2η sin ξ − cos ξ sin 2η sin Φ)/(1 + 8β sin ξ)2.

Proposition 4.3. If the ω-limit of a solution is on the boundary ξ = 0, then limτ→∞Q(τ ) =
Q0 exists and 0 < Q0 < 1.

Proof. This solution can not take ` as its limit. So there is an ε′ > 0, such that ξ(τ ) →
0,Φ(τ ) > ε′ and η(τ ) > ε′ for τ ∈ [0,∞).P (τ ) → ∞ as τ → ∞. Set U = 1/P so

dU

dt
= −P−2dP

dt
=

−[1 − (F,G)2/(F T MF )]

P 2(F TMF )1/4
.

Since 1− (F,G)2/(F TMF ) = 1− (sin ξ sin η cos Φ+ ε−1/2 cos ξ cos η)2/(sin2 ξ + ε cos2 ξ) there
is aM(ε′) > 0, such that | 1 − (F,G)2/(F TMF ) |> M(ε′). It will turn out that | dQ/dU |<
M ′(ε′). Where M ′(ε′) is another constant related to M(ε′). According to this inequality, the
limit of Q exists as τ → ∞ (U → 0).

Q0 can not be 1 since nearby Q = 1, dQ/dτ < 0.
By this proposition, a solution takes either a rest point on the boundary Φ = 0(the

parabolic case) or a periodic solution on the boundary ξ = 0(or π)(the hyperbolic case) as
its α- or ω-limit set.

The boundary manifolds η = 0 and π are rather artificial. They appear when we break the
collision manifold of the planar problem into two pieces and paste them on the boundaries
Φ = 0 and Φ = π. Taking the surface, say, η = 0 as the singular element, we can use the
conception of block regularization to simplify the picture. This means we can identify the
lines η = 0,Φ = 0 and η = 0,Φ = π and ignore the surface η = 0. The phase space now is,
topologically, D2 × I and the flow on its boundary S1 × I will be exactly the flow on the
collision manifold of the planar problem. Here I = [0, 1], and D2 is the two dimensional disk.

5. The McGehee manifold

Set Φ = 0 in (2.7). The unbroken collision manifold is S1 × I, and the fictitious flow on it
is

dξ

dτ
=

4 sin ξ(cos ξ sin η − ε−1/2 sin ξ cos η)

(1 + 8β sin ξ)
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Figure 8. Flow on total collision manifold.

Figure 9. Flow on McGehee manifold.

dη

dτ
=

16[βε−1/2 sin η cos ξ sin2 ξ − cos η(1/8 + β sin3 ξ)]

(1 + 8β sin ξ)2

The phase picture of this flow is in Figure 5.
Figure 5 looks different from the familiar picture of McGehee’s collision manifold for the

planar problem. The difference is caused by the different treatments of binary collision.
McGehee regularizes binary collision. While we have a sub-boundary of binary collisions.

We will need more information about the flow in which binary collision is regularized. So
we are going to study the picture on McGehee’s manifold first, then come back to that of
ours later.

The flow depends on β. Refer to [5]. Its picture is depicted in Figure 5 for small β. We
will concentrate only on this picture from now on. For the case of larger β, the picture is
different but the analysis is similar.

The 2-manifold in Figure 5 is defined in (ϑ,w, v) -space by equation

(v2 cos2 ϑ + w2)/2 + U(ϑ) cos2 ϑ = 0.

See [2] for the details of this equation.
There are six rest points in Figure 5. Those labeled, E, E′ are the Eulerian points, and

L1, L′
1, L2, L′

2 are the Langrangian points. E is a sink, E′ is a source and L1, L′
1, L2, L′

2 are
all saddles. Two curves γ+(L1) and γ−(L1) in Figure 5 form the stable manifold of L1.

Denote by K as the curve ϑ = 0 on this manifold and
K+ = all the points of K with w > 0,
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Figure 10. Stable and unstable manifolds with key points.

Figure 11. Boundary of Figure 12. Orbits on
Poincare section Poincare section.

K− = all the points of K with w < 0,
a = the last intersection of γ+(L1) with K+,
b = the last intersection of γ−(L1) with K+.

Similarly, let γ+(L2) be the stable curve of L2 depicted in Figure 5 and
c = the last intersection of γ+(L2) with K+.

We still need two more crucial points:
d = the last intersection of γ+(L′

1) with K+,
b1 = the last intersection of γ+(L′

2) with K+.
Where, as depicted in Figure 5, γ(L′

1) is the stable curve of L′
1. γ(L′

2) is that of L′
2.

Let F : K+ → K+ be the flow-defined Poincare map, and

Γ = {a, b, c, d, b1} ∪ {F−n(a), F−n(c), F−n(d), F−n(b1) : n ∈ Z+}.
In there natural order from E to E′, the points of Γ can be listed as

E, a, b, c, d; f−1(a), b1, f
−1(c), f−1(d); . . . ;

f−n(a), f−n+1(b1), f
−n(c), f−n(d); . . . E′.

We also have a similar sequence on K−. See Figure 5.
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Figure 13. Poincare Section Figure 14. Boundary of Poincare Section.

The points on K+\Γ have three possible destinations as τ → ∞ namely the right arm,
the left arm or the Center. The set Γ divides K+ into countable many intervals (see Figure
5). The destiny of these intervals are in the order of

center, right, center, left, center, right, center, left . . .

points on the intervals (f−n+1(b1), f−n(c)) and (f−n(d), f−n−1(a)) will go to the center,
(f−n(a), f−n+1(b1)) to the right and (f−n(c), f−n(d)) to the left.

Any two points on the same interval have the same intersection number (See its definition
at the beginning of next segment), and the intersection numbers of these intervals are in the
order of

∞, 0,∞, 0;∞, 1,∞, 1; . . . .;∞, n,∞, n;∞, n + 1,∞, n + 1; . . .

6. The Global Picture

We now go back to the three-dimensional picture the phase space (ξ, η,Φ) in Figure 3 and
define the intersection number. For a point p in D0, let

p = (ξ(p), η(p),Φ(p)),

O(τ, p) = the solution at time τ which starts from p at time τ = 0,

O(p) = {O(τ, p) : 0 < τ < ∞},

S = {p : p ∈ D0 and ξ(p) = π/2}.
S will serve as a global Poincare section in our discussion. From now on, by a S-neighborhood
U of p, we will mean that p ∈ S and U is a neighborhood of p in S. Divide S into three
parts by

S+ = {p : p ∈ S, η(p) > π/2},
S− = {p : p ∈ S, η(p) < π/2},
T = {p : p ∈ S, η(p) = π/2}.

We see that S = S+ ∪ S− ∪ T , and T itself is a solution of (2.8). See Figure 6.

Definition 6.1. For a given point p ∈ S, let N(p) = cardinality of {O(p) ∩ S}. N(p) is the
intersection number of p.
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For the six rest points, easy calculation shows that E is a sink, E′ is a source, L1, L2 are
hyperbolic points with 2-dimensional stable manifold and 1-dimensional unstable manifold
and L′

1, L
′
2 are that with 1-dimensional stable manifold and 2-dimensional unstable manifold.

Denote the stable manifolds of L1 and L2 as W s(L1) and W s(L2) and Λ = W s(L1) ∪
W s(L2). In D,W s(L1)(W

s(L2)) is a manifold with γ+(L1) and γ−(L1)(γ
+(L2) and γ−(L2))

as its boundary. Clearly we have:

Proposition 6.1. For any p ∈ S, p 6∈ Λ, there is a S-neighborhood U of p, such that for any
p′ ∈ U,N(p′) = N(p).

The solutions which tend to the boundaries ξ = 0 form an open set in the phase space.
So do the solutions which tend to the boundary ξ = π and to the Eulerian rest points. So
the intersection number changes only on Λ ∩ S.

Since the vector field is transversal to S+ and S−, and Λ is an embedded two dimensional
manifold inside of the phase space, we have:

Proposition 6.2. Λ ∩ S+ and Λ ∩ S− are one-dimensional embedded manifold in S+ and
S− respectively.

As we noted at the end of Section 2, the surfaces η = 0 and η = π can be ignored and the
phase space could be regarded, topologically, as D2×I. Then S becomes the disk in Figure
6. Its boundary is exactly the circle K on McGehee’s manifold we discussed in Section 5.
We see that EAA’E’ = K+, EBB’E’ = K− as well.

Now let us look to the global structure of the flow. For a given C∞-curve c in S, c(t) :
(−∞,∞) → S, the α- and ω- limit set of c(t) are defined by

ω(c) = {p : p ∈ S̄; there is tn → ∞ such that c(tn) → p},
α(c) = {p : p ∈ S̄; there is tn → −∞ such that c(tn) → p},

where S̄ is the closure of S. We also say that c(t) is a curve connecting α(c) and ω(c).
Since Λ ∩ S = (Λ ∩ S+) ∪ (Λ ∩ S−) ∪ (Λ ∩ T ) and Λ ∩ T = ∅, we see that Λ ∩ S =

(Λ ∩ S+) ∪ (Λ ∩ S−). Take B as a connected branch of Λ ∩ S, either B ⊂ Λ ∩ S+

or B ⊂ Λ ∩ S−. Without loss of generality, we always assume B ⊂ Λ ∩ S+.B is an
one-dimensional embedded manifold of S+ by Proposition 5.

Proposition 6.3. B has no limit point on T.

Remember that T is a solution connecting E and E’. For any q ∈ T , there is a S-
neighborhood Uq of q, such that all the points q′ ∈ Uq approch E. Therefore q can not
be a limit point of B. Also, we have:

Proposition 6.4. For two given points p1, p2 ∈ B;N(p1) = N(p2).

For a given point p ∈ B, take a small S-neighborhood Up of p. For any p ∈ Up ∩ B,O(p′)
will stay close to O(p) therefore end up with L1(or L2) by the same intersection number.
This means N(p) can not be changed at any point of B. So we must have N(p1) = N(p2).

Proposition 6.5. B does not take E or E′ as its limit point.

Proof. Since the flow is gradient like and P (E) > P (L1,2), E can not be a limit point of
B.

13



Figure 15. Connection between points a and d.

E′ is a spiral-source. For any n > 0, there is a S-neighborhood Un of E′ such that N(q) > n
if q ∈ Un. E′ can not be a limit point of B because the intersection number of B is finite.

No limit points are located in S+ since B is an embedded manifold in S+. Also, B can
not take any of the points of K+\Γ as its limit since the sets of hyperbolic solutions and
going-to-center solutions are open.

But Γ is a countable set of discrete point. So We have the following for Λ ∩ S+

Proposition 6.6. B is a curve connecting two points of Γ.

From this proposition, B can only be one of the following:
(1) A curve which takes the same point of Γ as its α- and ω-limit set. We will call it a

loop.
(2) A curve connecting two different points of Γ. We will call it a regular branch.

Proposition 6.7. For any given point p of Γ, there exists at least one branch B which takes
p as its limit point.

In any given neighborhood of q ∈ Γ, there are at least two points with different destina-
tions. Take a curve connecting these two points. There must be a point q′ on this curve,
such that q′ ∈ Λ. So the B we claimed exists.

Proposition 6.8. The limit points of B must have the same intersection number as that of
the points on B.

Now let us see the possible branches of Λ for the point a in Figure 5:
(1) No loops since a loop destroyes the hyperbolic structure of L1.
(2) B can not connect a and c since they have different destinations.
(3) B can not connect a and d.
If it does. Take a segment α of B ended with d (Refer to Figure 6). Under the action of

our flow, α will go forward with one of its ends on γ+(L′
1). After reach L′

1, it will go along
with an orbit connecting L′

1 and L1. But there is no such a connection with intersection
number zero. So the points of α will have intersection number at least 2. But the intersection
number of a is zero.

(4) Also, B can not connect b1 by the reason of different intersection numbers.
14



Figure 16. Connection of points Figure 17. Ideal phase structure.

Figure 18. Other possibilities.

(5) Similarly other points of Γ, except b, can not be connected to a.
So we have:

Proposition 6.9. There is only one regular branch connecting a and b, and it is the only
branch for a and b.

Similarly, there is only one branch of Λ which connects c and d. Now the picture looks
like Figure 6. Notice we have the same thing on K−.

What happens for d might be complicated. However, we see that
(1) The possible connections are between d and f−1(a), and b1.
(2) The connection among d, f−1(a), b1 on K+ forms the fundamental diagrams. Trans-

fering this digrams by the flow defined Poincare map backward will give the whole picture
of the Λ ∩ S.

What about the connection among d, f−1(a), b1?
(1) The ideal picture is in Figure 6. There would be one connection between f−1(a) and

b1, no connection between d and f−1(a). It would be true if there were only two connecting
orbits for L1, L2, L

′
1, L

′
2. One joins L′

1 and L2 and another joins L′
2 and L1.

(2) Unfortunately, what really happens might not be so nice. We might have loops around
d and b1 if there are non-transversal intersections among W s(L1,2) and W u(L′

1,2). The
number of the regular curves connecting d and b1 is determined by the number of transversal
intersections between W s(L1,2) and W u(L′

1,2). However, we know that there will be only one
regular curve landing f−1(a). The destinations of the points on different sides of any branch

15



of Λ ∩ S will be different, and one should be the center. Refer to Figure 6. Since there is
virtually no method available to analyze the intersections of W s(L1,2) and W u(L′

1,2), these
are all we can do.
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