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Abstract. The existence of a new family of periodic solutions to the spatial Hill’s lunar
problem is established. These solutions have large inclinations and are symmetric with
respect to two coordinate planes. In this family the infinitesimal particle is very close to the
primary.

1. Introduction

This paper1 establishes the existence of a new family of periodic solutions to the spa-
tial Hill’s lunar problem. The periodic solutions of this family have large inclinations and
are symmetric with respect to two coordinate planes — hence the name doubly-symmetric
periodic solutions. In this family the infinitesimal particle (the moon) is very close to the
primary (the earth). These periodic solutions are perturbations of circular solutions of the
Kepler problem. By the Kepler problem we mean the spatial central force problem with the
inverse square law of attraction.

A related paper of the authors [7] established the existence of two new families of periodic
solutions to the spatial restricted three-body problem by Poincaré’s continuation method.
These families exist for all values of the mass ratio parameter µ and have large inclinations.
In one of the family the infinitesimal particle is far from the primaries and in the other case
the infinitesimal is very close to a primary. In this note we will indicate that the latter family
exists in Hill’s lunar problem also. This is reasonable since Hill’s lunar problem is a limit of
restricted problem developed to study the motion of the moon [5].

The small parameter ε will be introduced as a scale parameter in such a way that ε small
means the infinitesimal is close to the primary. The perturbation problem is very degenerate.
First of all, even to the second approximation the characteristic multipliers are all +1, and
second, the periodic solutions that we establish are undefined when ε = 0. These difficulties
are overcome by exploiting the symmetries of the problem and using the implicit function
theorem of Arenstorf [1].

In 1965, Jeffreys [8] showed that there exist doubly symmetric, periodic solutions to the
three dimensional restricted three-body problem. His method of the proof depends heavily
on a symmetry argument, together with a standard perturbation method applied to the mass
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ratio µ of the restricted problem There is no natural parameter in Hill’s lunar problem corre-
sponding to µ and so a scaling parameter is introduced. The problem becomes considerable
more difficult.

2. Hill’s lunar problem

One of Hill’s major contributions to celestial mechanics was his reformulation of the main
problem of lunar theory: he gave a new definition for the equations of the first approximation
for the motion of the moon [5]. Since his equations of the first approximation contained more
terms than the older first approximations, the perturbations were smaller and he was able to
obtain series representations for the position of the moon that converge more rapidly than
the previously obtained series. Indeed, for many years lunar ephemerides were computed
from the series developed by Brown, who used the main problem as defined by Hill. Even
today, most of the searchers for more accurate series solutions for the motion of the moon
use Hill’s definition of the main problem [4].

Before Hill, the main problem consisted of two Kepler problems — one describing the
motion of the earth and moon about their center of mass, and the other describing the
motion of the sun and the center of mass of the earth-moon system. The coupling terms
between the two Kepler problems are neglected at the first approximation. Delaunay used
this definition of the main problem for his solution of the lunar problem, but after twenty
years of computation was unable to meet the observational accuracy of his time.

In Hill’s definition of the main problem, the sun and the center of mass of the earth-
moon system still satisfy a Kepler problem, but the motion of the moon is described by a
different system of equations known as Hill’s lunar equations. Using heuristic arguments
about the relative sizes of various physical constants, he concluded that certain other terms
were sufficiently large that they should be incorporated into the main problem.

In a popular description of Hill’s lunar equations, one is asked to consider the motion
of an infinitesimal body (the moon) which is attracted to a body (the earth) fixed at the
origin. The infinitesimal body moves in a coordinate system rotating so that the positive
x axis points to an infinite body (the sun) infinitely far away. The ratio of the two infinite
quantities is taken so that the gravitational attraction of the sun on the moon is finite.

The Hamiltonian of the three-dimensional Hill’s lunar problem is

(1) H =
1

2

(
y2

1 + y2
2 + y2

3

)
− x1y2 + x2y1 −

1

2
(x2

1 − x2
2 − x2

3) −
1√

x2
1 + x2

2 + x2
3

(see [9]).2

3. Symmetries and Special Coordinates

The Hamiltonian (1) is invariant under the two anti-symplectic reflections:

(2)
R1 : (x1, x2, x3, y1, y2, y3) −→ (x1,−x2,−x3,−y1, y2, y3),

R2 : (x1, x2, x3, y1, y2, y3) −→ (x1,−x2, x3,−y1, y2,−y3).

These are time-reversing symmetries, so if (x1(t), x2(t), x3(t), y1(t), y2(t), y3(t)) is a so-
lution, then so are (x1(−t),−x2(−t),±x3(−t), −y1(−t), y2(−t),∓y3(−t)). The fixed set of

2These is a typographical error in the Hamiltonian of Hill’s lunar problem found in [10].
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these two symmetries are Lagrangian subplanes, i.e.

L1 = {(x1, 0, 0, 0, y2, y3)}, L2 = {(x1, 0, x3, 0, y2, 0)},

are fixed by the symmetries R1,R2. If a solution starts in one of these Lagrangian planes
at time t = 0 and hits the other at a later time t = T then the solution is 4T -periodic
and the orbit of this solution is carried into itself by both symmetries. We shall call such
a periodic solution doubly-symmetric. Geometrically, an orbit intersects L1 if it hits the
x1-axis perpendicularly and it intersects L2 if it hits the x1, x3-plane perpendicularly.

To be more specific, let

(3) (X1(t, α, β, γ),X2(t, α, β, γ),X3(t, α, β, γ), Y1(t, α, β, γ), Y2(t, α, β, γ), Y3(t, α, β, γ)),

be a solution which starts at (α, 0, 0, 0, β, γ) ∈ L1 when t = 0, i.e.

(4)
X1(0, α, β, γ) = α, X2(0, α, β, γ) = 0, X3(0, α, β, γ) = 0,

Y1(0, α, β, γ) = 0, Y2(0, α, β, γ) = β, Y3(0, α, β, γ) = γ.

The solution with α = α0, β = β0, γ = γ0 will be doubly-symmetric periodic with period 4T
if it hits the L2 plane after a time T , i.e.

(5) X2(T, α0, β0, γ0) = 0, Y1(T, α0, β0, γ0) = 0, Y3(T, α0, β0, γ0) = 0.

This solution will be a nondegenerate doubly–symmetric periodic solution if the Jacobian

(6)
∂(X2, Y1, Y3)

∂(t, α, β, γ)
(T, α0, β0, γ0)

has rank three.
It follows from the Implicit Function Theorem that nondegenerate doubly-symmetric pe-

riodic solutions can be continued under a small conservative perturbation which preserves
the symmetries. In general, a nondegenerate doubly-symmetric periodic solution may not
be nondegenerate in the classical sense, i.e. a nondegenerate doubly-symmetric periodic
solution may have all its multipliers equal to one.

Jefferys [8] proved the existence of nondegenerate doubly-symmetric periodic solutions of
the spatial restricted three-body problem by first setting the mass ratio parameter µ equal
to zero to get the Kepler problem in rotating coordinates. He then showed that some of the
circular solutions of the Kepler problem where nondegenerate doubly symmetric periodic
solutions. Thus, by the above remarks these solutions can be continued into the restricted
problem for small µ. Since there is no natural parameter like µ we will introduce a scale
parameter ε. This makes the analysis much more delicate.

We follow Jefferys by using a variation of the Poincaré-Delaunay elements. First, the
Delaunay elements (`, g, k, L,G,K) are a coordinates on the elliptic domain of the Kepler
problem. The elliptic domain is the open set in R6 which is filled with the elliptic solutions
of the Kepler problem. The elements are: ` the mean anomaly measured from perigee, g the
argument of the perigee measured from the ascending node, k the longitude of the ascending
node measured from the x1 axis, L semi-major axis of the ellipse, G total angular momentum,
K the component of angular momentum about the x3-axis. `, g, and k are angular variables
defined modulo 2π, and L,G and K are radial variables. If i is the inclination of the orbital
plane to the x1, x2 reference plane, then K = ±G cos i, and so an orbit is in the x1, x2-plane
when K = G. (Often, k and K are denoted by h and H, but we are Hamiltonophiles.)
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An orbit hits L1 at time t = 0 if it is perpendicular to the x1-axis. So its orbital plane
must be through the x1-axis or k ≡ 0 mod π, its perigee must be on the x1-axis or g ≡ 0
mod π, and it must be at perigee (apogee) or ` ≡ 0 mod π. Thus, L1 in Delaunay elements
is defined by ` ≡ g ≡ k ≡ 0 mod π.

An orbit hits L2 at time t = T if it is perpendicular to the x1, x3-plane. So its orbital
plane must be perpendicular to the x1, x3-plane or k ≡ π/2 mod π, its perigee must be in
the x1, x3-plane or g ≡ π/2 mod π, and it must be at perigee (apogee) or ` ≡ 0 mod π.
Thus, L2 in Delaunay elements is defined by ` ≡ 0, g ≡ k ≡ π/2 mod π.

Since these coordinates are not valid in a neighborhood of the circular orbits of the Kepler
problem, we change to Poincaré elements as follows: first make the symplectic linear change
of variables

q1 = l + g + k, p1 = L −G + K,
q2 = −k − g, p2 = L −G,
q3 = l + g, p3 = G − K,

and now apply the symplectic change of variables defined by the generating function

W (q, P ) = q1P1 +
P 2

2

2
tan q2 + P3q3

so that P2 =
√

2p2 cos q2 and Q2 =
√

2p2 sin q2. This combination of variable changes gives
the new variables:

(7)

Q1 = q1 = l + g + k, P1 = p1 = L −G + K,

Q2 = −
√

2(L −G) sin(k + g), P2 =
√

2(L − G) cos(k + g),

Q3 = q3 = l + g, P3 = p3 = G − K.

These variables are valid on circular orbits which occur at L = G (see [6, 12]). The circular
orbits with L = G correspond to Q2 = P2 = 0.

Thus, L1 in Poincaré elements is defined by Q2 = 0, Q1 ≡ Q3 ≡ 0 mod π, and L2 in
Poincaré elements is defined by Q2 = 0, Q1 ≡ 0 mod π, Q3 ≡ π/2 mod π.

4. Approximate Solutions

Move the infinitesimal mass close to the origin by scaling the variables: x → ε2x, y → ε−1y,
which is symplectic with multiplier ε−1. Letting H → ε−1H, expanding the potential in ε,
and by dropping the constant terms, the Hamiltonian becomes

(8) H = ε−3

{
|y|2

2
− 1

|x|

}
− (x1y2 − x2y1) + ε3H†(x, y, ε),

where H† is analytic and order 1 in ε.
The solutions that will be establish will have the new x, y coordinates of order 1 in ε and

so the original x will be order ε2 and the original y will be order ε−1. We will not scale time
and the solutions we establish will have periods which are order 1 in ε. Note that as ε → 0
the Hamiltonian tends to infinity, thus we can not just set ε = 0. We will need approximate
solutions to the equations and good estimates. (Scaling time does not remove the difficulties
of the problem. If we scale time so that the Hamiltonian becomes order 1 in ε then the new
periods will tend to infinity.)
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In Delaunay elements, the Hamiltonian becomes

(9) H =
−ε−3

2L2
− K + ε3H†(`, g, k, L,G,K, ε).

Since these coordinates are not valid in a neighborhood of the circular orbits, we change to
Poincaré elements (7) and the Hamiltonian becomes

(10) H =
−ε−3

2 (P1 + P3)
2 − P1 +

1

2

(
P 2

2 + Q2
2

)
+ ε3H†(Q1, Q2, Q3, P1, P2, P3, ε).

Thus the equations of motion are Q̇ = HP , Ṗ = −HQ or

(11)

Q̇1 =
ε−3

(P1 + P3)
3 − 1 + ε3f1, Ṗ1 = 0 + ε3f4,

Q̇2 = P2 + ε3f2, Ṗ2 = −Q2 + ε3f5,

Q̇3 =
ε−3

(P1 + P3)
3 + ε3f3, Ṗ3 = 0 + ε3f6,

where the fi are the appropriate partials of H†.
First let us consider the approximate equations in order to find the correct approximate

periodic solutions. Consider the approximate equations

(12)

Q̇1 =
ε−3

(P1 + P3)
3 − 1, Ṗ1 = 0,

Q̇2 = P2, Ṗ2 = −Q2,

Q̇3 =
ε−3

(P1 + P3)
3 , Ṗ3 = 0.

These are of course, the equations of motion for the Kepler problem in scaled, rotating
Poincaré elements. The solution of equation (12) are

(13)

Q1(t) =

(
ε−3

(p1 + p3)3
− 1

)
t + q1, P1(t) = p1,

Q2(t) = q2 cos t + p2 sin t, P2(t) = −q2 sin t + p2 cos t,

Q3(t) =

(
ε−3

(p1 + p3)3

)
t + q3, P3(t) = p3,

for initial conditions (q1, q2, q3, p1, p2, p3) at t = 0.
The periodicity conditions are the same as those in the Section 3. That is, at t = 0;

Q1 = iπ, Q2 = 0, Q3 = jπ and at t = T ; Q1 = (i + k)π, Q2 = 0, Q3 = (j + m + 1/2)π where
i and j are 0 or 1, and k, and m are arbitrary integers. To satisfy these symmetry condition
at t = 0 and at t = T we have so solve the equations
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(14)

Q1(T ) =

(
ε−3

(p1 + p3)3
− 1

)
T + iπ = (i + k)π,

Q2(T ) = p2 sinT = 0,

Q3(T ) =

(
ε−3

(p1 + p3)3

)
T + jπ = (j + m + 1/2)π,

The second equation is solved by taking p2 = 0, thus selecting a circular orbit of the
Kepler problem. The difference between the first and third equation has a solution with
T = (m−k+1/2)π. It remains to solve the third equation. With this choice of T it becomes

(15) (p1 + p3)
3 =

ε−3
(
m − k + 1

2

)
(
m + 1

2

) .

Recall that P1 + P3 = L which is the semi-major axis in the Kepler problem and that we
want solutions which are order 1 in L.

Let n be a fixed small integer. To solve (15) set m + 1/2 = ε−3, k = m − n, and
(p1 + p3)

3 = (n + 1/2). With this choice the period becomes T = n + 1/2
We shall indicate in Section 5 that these solutions of the approximate equations (12) are

actually approximations of actual doubly-symmetric periodic solutions of the true equations
(11). Thus, our main theorem is

Theorem 4.1. There exist doubly-symmetric periodic solutions of the spatial Hill’s lunar
problems with large inclination which are arbitrarily close to the primary.

5. Outline of the proof

Here we will outline the proof and refer the reader to [7] for a more detailed account of
a similar result. Consider the equations (11). The periodicity conditions remain: at t = 0;
Q1 = iπ, Q2 = 0, Q3 = jπ and at t = T ; Q1 = (i + k)π, Q2 = 0, Q3 =

(
j + m + 1

2

)
π where

i, j, are 0 or 1 and k, and m are arbitrary integers. By as standard but lengthy Grownwall
argument, the solution to this system of differential equations (11) is of the form:

Q1(t) =

(
ε−3

(p1 + p3)3
− 1

)
t + q1 + ε3g1, P1(t) = p1 + ε3g4,

Q2(t) = q2 cos t + p2 sin t + ε3g2, P2(t) = p2 cos t− q2 sin t + ε3g5,

Q3(t) =

(
ε−3

(p1 + p3)3

)
t + q3 + ε3g3, P3(t) = p3 + ε3g6,

for initial conditions (q1, q2, q3, p1, p2, p3) and for time tε[0, γ], where gi = gi(t, q1, q2, q3, p1, p2, p3).
To satisfy the symmetry condition at t = 0 we have the solution
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Q1(t) =

(
ε−3

(p1 + p3)
3 − 1

)
t + iπ + ε3g1,

Q2(t) = p2 sin t + ε3g2,

Q3(t) =

(
ε−3

(p1 + p3)
3

)
t + jπ + ε3g3.

Next we need to solve this for the symmetry condition at t = T which are now:

Q1(t) =

(
ε−3

(p1 + p3)
3 − 1

)
t + iπ + ε3g1 = (i + k)π,

Q2(t) = p2 sin t + ε3g2 = 0,

Q3(t) =

(
ε−3

(p1 + p3)
3

)
t + jπ + ε3g3 =

(
j + m + 1

2

)
π,

or

(
ε−3

(p1 + p3)
3 − 1

)
t− kπ + ε3g1 = 0,

p2 sin t + ε3g2 = 0,

(
ε−3

(P1 + P3)
3 − 1

)
t− (m + 1

2
)π + ε3g3 = 0.

This is done by applying the Arenstorf implicit function theorem twice. Roughly speaking
Arenstorf’s theorem applies to situations where the problem is undefined when ε = 0, all that
is required is that the perturbation and the derivatives of the perturbation are sufficiently
small. See [1, 7] for details.

First we consider the difference of the first and third equation, together with the second
equation. This is the system of equations

t +
(
k −m − 1

2

)
π + ε3g3 − ε3g1 = 0,

p2 sin t + ε3g2 = 0.

This has solution t = (m + 1/2− k)π, p2 = 0 at ε = 0. Along this solution, the determinant
of the derivative of the system with respect to t and p2 is given by

∣∣∣∣
1 0
0 sin(m + 1/2 − k)π)

∣∣∣∣ = ±1 6= 0.

Thus by the Arensdorf implicit function theorem, there exists a neighborhood N of 0 and
functions T (p1, p3, ε) near (m + 1/2 − k)π and p2(p1, p3, ε) near 0 for ε ∈ N and (p1, p3)
arbitrary such that
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T (p1, p3, ε) − (m + 1
2
− k)π + ε3g3 − ε3g1 = 0,

p2(p1, p3, ε) sinT (p1, p3, ε) + ε3g2 = 0.

Putting this solution for T into the third equation, we need to solve Q3(T )− (m+ 1
2
)π = 0,

or

ε−3

(p1 + p3)
3

[(
m +

1

2
− k

)
π − ε3g3 + ε3g1

]
−

(
m +

1

2

)
π + ε3g3 = 0,

which is equivalent to solving

(
m +

1

2
− k

)
π − ε3g3 + ε3g1 −

(
ε3

(
m +

1

2

)
π − ε6g3

)
(p1 + p3)

3 = 0

for (p1 + p3)
3 whenever ε ∈ N − {0}. Now the solution for T left both m and k arbitrary,

so for the moment regard m and k as free variables. Then letting m + 1
2

= ε−3 and letting
k = m− n for n a small integer, we need to solve

R =

(
n +

1

2

)
π − ε3g3 + ε3g1 −

(
π − ε6g3

)
(p1 + p3)

3 = 0.

By this choice of m and k, T becomes T (p1, p3, ε) = (n + 1/2)π + ε3g3 − ε3g1 which is
uniformly bounded as ε approaches zero. ∂T/∂p1 at ε = 0 is given by −4∂(ε3g6 − ε3g2)/∂p1

where the partials of the gi are evaluated along solutions; t = (n+ 1
2
)π, p2 = 0, ε = 0, (p1, p3)

arbitrary. By the another Grownwall argument the partials of the gi with respect to initial
conditions are also uniformly bounded as ε approaches zero. Thus we can differentiate R
along the solution (p1 + p3)

3 = n + 1/2, ε = 0 to get ∂R/∂p1 = −3π(n + 1/2)2/3 6= 0.
Thus we have shown that there exists a deleted neighborhood N −{0} of 0 such whenever

ε ∈ N − {0} and ε is of the form (m + 1/2)−1/3 for m an integer, the system has a periodic
solution with period near (4n + 2)π for n a small integer. These solutions are doubly
symmetric, and approximately circular orbits of small.
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