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ABSTRACT

A classical theorem in mecharics states that a Hamil-
tonian which is invariant under a symmetry group admits addi-
tional integrals of motion. This paper investigates the converse
of the above theorem , If @ Hamiltonian admits integrals then
a symmetry can be constructed and the flow studied on a quo-
tient space. The quotient space is shown to be symplectic
and the resulting flow Hamiltonian. The constructions used
are similar to the recent constructions of Nehoroshev, Marsden

and Weinstein and Meyer.

The general theory presented is used to give an intrinsic
derivation of Hamilton's equations of motion. Also special
local coordinates are given which display the integrals in a

simple form.
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1. Introduction : A c¢lassical theorem in mechanics states that a Hamiltonian
which is invariant under the action of a group admits additional integrals, In 7]
Smale shows that in this case the flow defined by the Hamiltonian restricted 10 an
integral surface is invariant under a subgroup of the full group and so the flow is
naturally defined on the quotient space obtained by identifying orbits of the sub-
group in an integral surface. He uses this reduction 1o investigate relative equili-
brium peints in the planéir n-body problem. Subsequently, Nehoroshev [6]. Marsden
and Veinstein [3], and Meyer [4] have shown that the resulting quotient space s
symplectic and the resulting flow is Hamiltonian, This result is a generalization
of a theorem of Reeb [9] which states that the orbit space of a Hamiltonian flow restricted
to an cnergy surface naturally carries a symplectic structure (also see Souriau [8)). In this
case the group is the flow itself .

This paper investigates Hamiltonian systems which admit additional integrals
but an apriori group action is not given, When the Hamiltonian system admits additional in-
tegrals we again construct a quotient space where the flow can be studicd. This gives a
global generalization of the classical reduction of a Hamiltonian system of #-degrees of
freedom to a Hamiltonian system of #-k degrees of freedom when & integrals in involution
are known. These general results are developed in section 2.

The third section discusses particular situations in view of the general theo-
ry. In this section we recoup the theorem on Systems with symmetries, give spe-
cial local coordinates, give an intrinsic derivation of Hamilton’s equations of

motion and discuss the characteristic multipliers of a periodic orbit in the pre -
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sence of integrals. Qur derivation of Hamilton’s cquations of motion is novel in
that it does not require the Lagrangian formulation as a starting point. The deri-
vation procceds dircetly from the Newtonian formulation 1o the Hamiltonian for-

mulation.

2. Notation and General Results. Throughout this paper all manifolds, functions,
forms, ete. will be €™ . The notation of symplectic geometry used here follows

closely the notation given in [1], The reader is referred to [1] for the basic theo-
ry of symplectic manifolds and to [5 for the basic theory of distributions.  Let

M be a symplectic manifold of dimension 21 with symplectic structure | ie. Q

is a closed, nondegenerate 2-formon M. Thus for m = M, Qm is a nondege -

nerate skew symmetric bilinear form on T M and so T M is a symplectic  li-

near space with symplectic inner product Qm' The symplectic inner product

Qm defines an isomorphism b T,M- T,; Mivae? =Q (1), Let

m
# s T;IM -T M:v-uv# be the inverse of b . Let $= 3 (M) denote the smo-
oth real valued functions on M, X = X (M) the smooth vecior fields on M and
' = :r*(M) the smooth one forms on M . The symplectic structure @ defines
the Poisson bracket operator {, | and turns both ¥ and 1* into Lie algebras.
It HeF then dif = and dH? = (i) = . di* is called the Hamilionian

vector field whose Hamiltonian is H .

*

For any linear space V the dual will be depoted by V. It UV then let

o]

U=ifevi i) =0otandif €<V then let U'={ueV:fw=0 forall
fet i,
Before proceeding with the formal development, consideration of the following

-~ C
situation will help motivate the definitions and lemmas to follow. Let H =S

-1
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then the Hamiltonian veetor field dH” defines a flow on M. One method for

analyzing the flow defined by dH” is to lind all the global integrals for the flow
and then study the restriction of the flow on the invariant level sets of these inte -
grals. In general these invariant sets may not be manifolds and even if they are

manifolds they may not carry a symplectic structure, However, under some mild

nondegeneracy assumptions it will be shown that a quotient space of these inva -
riant scts does admit a symplectic structure and a naturally defined flow on  this
quotient space is Hamiltonian. The set of all integrals for dH” is the annihilating
subalgebra of H in J . i.e. the set of all integrals of dn® is 4= (H) = {Fef¥ :
VHOFP=0) and 4 is a subalgebra of S In many physical examples § is not

4 is known.

known completely but a subalgehra of

LEMMA I. Let 'V be a symplectic linear space with symplectic inner product
)] O s
) and WC V" asubspace. Then WC/(’W# N W) admits a natural symplectic

inner product o defined by ([ x], [y} = Q(x,y).

Proof : The proof given here is the same as found in [3] or [4], If v =W’
and weW, then Qv,4) = 0 by definition. Thus if x,y =W and & 5 W MW
then Q(x+ &, y+1n)=Q(x,y) and so « is well defined. If o ([w],[y])=0
forall [y]ew 2w A W), then Q(xy) =0 forall ye W or Qix..}eW
Thus x¢ W or [x]=0. This shows that « is nondegenerate on W wn wo)
Clearly o is skew symmetric.

In order to make a global construction based on the above, some notation
must be given. Let (' be a subalgehra of , S, Sm(@) ={dF(m)¢ T:” M

#n 0o
Pe@i,s=s(@=Us  te s%=u s2, 5%~ u s" ands'nsl-

#
meM meM ™ meM ™

= mUeM (S‘;ﬂ Sn?) . Clearly §, is a linear subspace of T:WM and if dim A
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is independent of » then § is a smooth sub-bundle of 7M. The algebra
will be said to have rank ¢ if dim§_=q forall mem. H ( has rank ¢

then § is an involutive distribution of M of rank 2n-g (see [5] Theorem 2

11.11) .

LEMMA 2: Let ({ bea subalgebra of S of rank qg. Then s* is an in-
. * I3 . ) + ©
volutive distribution and if dim (Sf” n S,) is independent of m =M then sins’

is an involutive distribution,

Proof : lel my= M and fl AU fq = (f such that dfl (mo), ce dfq (mg )

span S;ﬂo. Then there is an open neighborhood 0 of m such that dfl(m), .

., dfq(m) span §_ forall m=0. Let X] - df;, Xq = dfq” so X; 7 q
and X, (m)...., X, (m) span ST forall m=0. Now (X X0 = df dy, (7=

J o’

# , - . . X
=dif., f] 17 . Since { is an algebra |} fl., [z d and so d} j[., j/% (m) = §
7
Thus [)\l., 4\]-] (m) €5, forall m 0. Thus §° is an imvolutive distribution.
Cloarl) if the intersection of two involutive distributions has constant dimension

then the interseetion is an involutive distribution, Thus the sccond part of  the

lemma is now obvious .

Since  $9 ix an involutive distribution for cach mg = M there is a unique
maximal connceted integral manifold N of 50 through my. That is, mg= N .
N is a connected submanifold of M, r.N=35, forall » =N and N is ma-
ximal with respeet to these properties. Fet mye M be fixed and A the maxi-

. v - 0 C N0 s involutive
mal integral manifolds of 57 through mg . Since S §Y isan  involuti

. . . 5 0 ~ ! y N ide
distribution on M and S,N8, < TN for each m ¢ N onc can  consider

0 . Fonst)in= U

s  Ns” asan involutive distributionon N. lLet $=(§ 01 8 )N = Yy
mo]

(S:[ n 537) . Foreach m 2N let L, be the maximal integral manifolds of §



in N.If m and »’£N then define m-m’eL,, . Clearly - is an equivalence relation on N.
Let B be the quotient space of N modulo this equivalence relation and 7:N-B the pro-

jection map. In general B may not be a manifold so some additional assumptions must be made.

THEOREM 1. Let ( bea subalgebra of $ of rank q and my £ NC M as
R 0
above. Let dim “mn‘vm) be independent of m N sothat 7:N > B is def-
ined. 1f B is a manifold and 7 : N »B a fiber bundle then B is a symplectic
manifold with symple ctic structure . Moreover, O N =1« and if w(m)=b
: 0 # 0
then D : 7’"N = Sm—+ T, B has kernel Sm{':Sm .

Remark : Forany m, ©M there is an open neighborhood O of m, such that N+B

0
is a trivial disk bundle over a disk (see [6], Theorem 2.11.8).

Proof. ¢+ Let m #N besuchthat 7 (m)=56. Then Dr: T N = 570” >T, B
is surjective and has kernel S; n Sr(r)z by construction. Thus T,B is isomor -
# 0
phic 1o Smo/ (s,ns, ) and so by lemma 1 the space T,B has a symplectic
inner product. However, this inner product must be shown to be independent of
-1 . . 1
m =7 (b). Since N is connected it is enough to show that for each m v (b)
there is a neighborhood 0 of m such that the symplectic inner product defined
o, # .0 o, # 0 . for all
by 8,/¢s, 05,) and §_ /(S, NS, ) on TyB are the same forall 77 0.
This will be shown by constructing a symplectic isomorphism ¢ T M > T M

0 0 # 0 #0 .
such that ¢ (s_) =5  and (s, NS, )= §rﬂSr . This symplectic isomor-

r

phism will be constructed as the derivative of the time one map of a Hamiltonian

vector field on M which leaves N and L, iovariant .

Let the dimension of N be = 2n-g and the dimension of 1., be 3. Let U be an open

neighborhood of m in M and D
b

dinates X7 T25,70, 2) U is given by ix” <lfori=1,...2n, )N N U is given by

a coordinate system at m such that 1) » has coor-

\xi\ <1 for 4i=1,...,4 and «x =...=f2n=0.and4)the leaves of

a+ 1
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S in NNU are given by jx; 1 <1 for i=1,..., 8, x. =4, for i=B+1,...%
(a,"s constant such that "al.\ < 1} and x,=0 for 1=0+1,..., 2n . Such a
coordinate system exists by theorem 2.11.8 of [5] but it need not be symplectic.
The neighborhood 0 is given by 0 = LmrI U . In these coordinates L NU=0
is given by | x| <1 for i=1,..., B and x,=0 for i=B+1,...,2n. Let
re0 =1L, NU have coordinates x; =&, for i=1....,8. The vector field
Y = b, 3/dx ¢t b B

d/0x  will be considered as defined on N Nu. As

B

such it is clear that Y is tangentto N and to the leaves of S . Moreover the

solution of Y through m at #=0 passes through r when £=1.

Let GIYb

so O is a one form defined on N NU - - however it may 1ake
values in the cotangent bundle of MNOU = U . Thus we consider 6 : N Nu-1U

with the usual projection property. If X is any vector field on M which is tan-

0

gentto N then 0 (X )=Q (Y, X )=0 forall seNAU since X ES

B0 .
and Y S, nSS . Thus in the above coordinates

2n ,
9:2 94(x1,..,,xoc)dxl

)
i=0+1

Define G : U » R by the formula

#
so that dG| (NNU) =6 or Y =dG ' N.

Thus we have extended the vector field Y which was only defined on NN U
# # .
to a Hamiltonian vector field 4G defined on U . By construction dG is
#
tangent to N and L, and the solution of 4G through m at ¢=0 passcs

#
through r at £=1. Let ¢, be the flow defined by 4G so gﬁl(m) =7
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. 0 0 # 0
c’)l § T, M- T M issymplectic, D d)l(.Sm) s, and Dc‘;](bm N Sm )

a0,
Sr nér . Thus ¢ = Dd)l is the desired symplectic isomorphism .

THEOREM 2: Let the notation and hypotheses of Theorem 1 hold. Iet
H % besuch that {H, Q-0 ie. $H. f1=0 forall f=({. Thus cach
feU is an integral of dHP“ and N is an invariant manifold for the flow defined
by de. Then H is constant on rr-](b) forall b eB andso b £ F(B) may
be defined by bh = H o 1‘, Also each trajectory of the flow defined by dH* which
lies in N is mapped onto a trajectory of dh” by the map mn . Alsu m preser-

ves parametrization of the trajectories.

Proof: Use the same notation and coordinate system as in the proof of the
previous theorem. By hypothesis 0 = {H. f{ = Q (dH#, fl'fx) forall s ( and
so ) (de, S‘g) =0, The sector ficld de constructed in the previous section
has the property that dGi(s) e Si for all s =N, Thus Q (@dH*(s), dG"(s) =0 for
all s &N or H is an integral for the flow defined by d(y'# restricted to N .
Since H is constant along the trajectories ol de in N we have H(m) = H(r).

But r was an arbitrary point of L, near m and L, is connected. Thus H

is constant on Lm .

In order to establish the rest of the thcorem it is enough to show that
# # *
Dr(dH (m)) = db (m) when wim)=5b_ But this follows at once from 7 b =
HIN or 7*dh=d(H  N) and 7w = QN
3. Miscellaneous Remarks and Applications.

a) Symmeltries : In {3 ], (4] and [61 Hamiltonian systems which are

invariant under the dgction of a Lie group are studied and a reduction which mo-
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tivated the results of the previous section is given. Here we shall show how the re -

sults given above apply to this case, Let G be a connected Lie group, A its

algebra and d/a PGxMoM:lg.m) > (g,m)=gm anactionof G on M

such that ¢(g,.) : M > M is a symplectic diffeomorphism for all g G .  Let

at ) -

a£A and ¢ be the one parameter subgroup of G generated by 4. Then
, . , at.
wa.RxM—»M.'(t,m) Sy le . m)

is a Hamiltonian flow on M and so is gencrated by a local Hamilionian vector

P ER tocal Hamiltonian vector field in that X’ is a clo-

field X, on M. X d

sed one form. Let us assume that for cach 254  the form X, s exacti.c.

X, is a global Hamiltonian vector field. (This is always the case if Qs

5

exact, see [3]), Then X, = a’F;; where F,:MsR isa function which

is determined up to an additive constant. The map which associates to cach
@ =A the vector field X, isa Lic algebra homomorphism rom A into L.in
general it is not possible to choose the additive constants so that there is  a

. . . e . . .
Lie algebra homomorphism from A into J which 1akes a into r, where

X,=dF, . This problem is discussed in detail in [871 but will not concern

us here. Let € F be the set of all funetions FoeMoR such that X~

# . ., 4at a . N 0 §
di, generates aflow Wle  m)=e m for some a7 A . Even though
may not be a homomorphic image ol A . but it is a finite dimensional subalge-

T
bra of .

Let m s M be fixed . Then Wi-,m) G s M and DIL’J(e’,m) ;A=

I() G > T, M. Since

_d_dj(ga/.”[) = I)JU((),m) (a)
dt t-0

il

AVa(rn) = d]’a(m)
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4
we see that Sy D] wle,m) (A). Letus assume, as in the previous section
. . o , 0
that there exisis an integral manifold N through m for §° Let 6 N g6
i
eN N L Clearly Gy isaclosed subgroup of G and hence a Lic subgroup .

Let Ay A be the algebra of Gy Ler [+ (f and since / is constant  on

Lo at ) at oo . -
N it follows that /(e m) = j{ (e .m) ) is constant for each 4 * Ay - Thus

. at
0?;{%— flgste \m) ) o : df(l)]l//(e,m) {fa))
or
D Y (A - 50
Iu/(e,m) N) Sm

“

Since DI g (e.m) (A N) C Dl Ule,m) (A) - .S'm we can combine the-
se results to give

J »
D (e (Ay) ~ s N s
1 : m

m
To show the inclusion in the opposite direction et ¢ (@ be any element
. £ G0 4 . at ,
such that dg(m)” ¢ SaNsS,- Let a £ Abe such that ¢e” . ) is the flow gene-
#
rated by dg . The opposite inclusion will follow once it is shown that a - Ay

or that the flow (//(edt,m) leaves N imvariant. This follows from /. gl(r) = 0

forall fe{{ and all r €N which in turn follows from d1 /g1 =0 on Nand | f,g}(m) = 0.
# 0 R

But {f,g} (m) = 0 since dg(m) ¢ Smﬂ 5:2 and 4} /gt =0 on N since {fg% £ (1 and the

elements of  are constant on N. Thus combining the above

0 #
D dlem) (4 )5, NS,

. ) 0 # L .
I'hus the integral manifold of § Ns" on N through m is just the orbit of
m under the action of GN on N . Thus the resulis of the previous section are

natural generalizations of thd results of [31.,[4] and [6].

b) Local Coordinates : # <9 is afinite dimensional subalgebra then a

84
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classical theorem of Lie [21 can be used in many cases to choose local coordin -

ates on M so that the functions in ( have a simple form.

A k-tuple (fl’ ’f/a) of functions on a symplectic manifold (M, Q) is cak

led complete if the differential dfl s, dfk are independent and if there exist

functions Uit R >R (1 <7, j<k) such that

{fl'fjgzUI](fl”f/e) for ISI,]Sk
The matrix (Uij) of functions is called the structural matrix .

LIE'S THEOREM: Let (f ,....[,) and (/! ,,..,/k') be complete k-tuples
on the symplectic manifolds (M, Q) ) and (M’ Q') respectively and dim M =
dim M’ . Suppose that fi(x) = /l" (x’) for some x €M and x' M’ . Then
there exists a diffeomorphism & from a neighborbood of x onto a neighborbo-
od of x* such that &"Q"=Q.G [1=[; if and only if the two k-tuples have the

same structural mairix .

In the special case when the Uij are linear more information can be obiain-

ed. Assume that
b
ey f] § = Cyj Iy

where (z] are constants, the structural constants. (In this subsection the usual

. . ] - ) Y . )
conventions ol tensor analysis are employed). Then since §, 1 is skew symme-

tric Cij 4 (’ij = 0 and Jacobi’s identity for i gives
C CB cr cﬁ L C (*ﬁ =0
Bi Sk CBjChit CprCift 0
I n . . . 2n
lev ¢° ....q ,p +ovr b, bethe usnal symplectie coordinates in R and

1 n
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define

Then

m ) m [3
= [ - (Aﬁl- (4].”- Cﬁjcni | pmq

B m

i CBnt,
B,

(‘ij Iﬁ

= C

Thus the k- tuples (/] ,,,,, f) and (Fl, ..., F, ) have the same strue -

3
tural constants. Thus if x €M is such 1hat d/l(x) C e, d/k (x) arc indepen-
5 .
dent and %’ eR” is such that fl, (x) = F{x') and dl} (x’). ..., dl’k(x') are
i ‘
independent there exists a symplectic coordinate system  ¢,p  about x such

that in these coordinates fi (9.0) = Filq.p).

For example if fl' f2,f3 ed are such that |/, fj = fk when (7. j,k)
is an even permutation of (I, 2, 3) and | ]’i,fj =~/ when (i j k) is an

odd permutation of (1, 2, 3) then the corresponding functions FI ,F_,F_ are

F

il

2 3
RN

2 I
E. = ¢'p - ¢
3740, - 40
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These are the usual forms of angular momentum in R

c) Holonomic Systems : Here we shall use the general resulis of section 2
to give a derivation of Hamilton's ¢quations of motion for a holonomic system.
The derivation is unique in that it pruceeds dir(‘(‘l]_v from the Newtonian formul —
ation to the Hamiltonian formulation without the historical intermediate Lagran-

gian formulation.

et F = (fI ceen o) Rn > Rq, 1< q<n-1, be a smooth function such
q
-1
that 0 ¢ r? is a regular value and so p=F (0) is aregularly embedded
submanifold of R" of dimension 7 = n-g. In the physical system the lune -

tion I represents the constraints and P the configuration spuce .
.. . . . n " 1
Since  TR™ is naturally diffeomorphic to R™ x R we shall use coordin-
n o , . ) . . n
ates (x,y) € R x R" where x is considered as a coordinate in the position space R” and
y is considered as a coordinate in the velocity space T.R". Let G be a positive defin-
N . T a o ,
ite symmetric matrix and K=(1/2)y Gy.= (1/2)g%/3y y ", Consider K as a Riemannian
. n . . . : \
metric on R and the kinetic energy of the physical system. We shall take G as constant

i.e. independent of x in order to simplify the calculations given below. Define a symplec-

. n
tic structure on - TR hy

1 A B
0 =dx /\d(Gy)fgQL dx Ady .

) .
In the natural way consider FI ... F as functions on TR and since they
are independent of y they are involutions . That is | F l’]- =0 forall /
and j where {, | is the Poisson bracket operator defined by .Q . Let
0cC Rn he an open neighborhood of P such that d‘FI ..., dF are inde-

q
22 ~ .
pendent at all points of 0 and M=0xR . Let ( be the algebra gencrated

87
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by l’l coves oo By the definition of M inis elear that ¢ has rank ¢ .
q

In summary we have used the constraint l’l vo.., Fand the kinetie energy

g A

K 10 define a symplectic manifold (M. Q) and an algebra of functions d of

rank g . This is precisely the data necessary for the theorems of section 2

LEMMA : There is a naturally defined symplectic diffeomorphism between

the quotient space of Theorem 1 and the cotangent bundle of P .

#
' : P *. g . . . .
Proof: Weuse (£ to define §,5 ele. as in the previons section, It s

0
clear that P x R” = U TS R” is an integral manifold of § and let it be
s PP
called N .
. b4 4 0
Since 0={F  F }-(dF )_J dF., then §_ T S . Let meN have
1 7 / 7 m m
coordinates (u,v). A direct caleulation yiolds
d F. i 4 y Jd l.
dF (m) = ——- (u) dx’ and dF (m) =g B () ""8'6
] ! ! ax ay

-1 & - 1 .
where G~ =1{g B} . Thus the spaces S S and Sfﬂ are independent of
#
v and so we may consider §, asa subspace of TuRn and §, =1L, . Thus
. . -1 T
B=N/-= Lg_ (TpRni Qp) where y € QP CR, if y=G w where w z=0

forall ze T

Now construct the map ¢ : B » T°p by sending [y! > /'y where [ (z) =
. ~T
yTGz . First ¢ is well defined since [y! =[y+k] when E=G ‘w where
T T . Tr -1
u,Tz:O for all zETpP an fy+k(z):y Gz+ kTszy Gz+w GGz =

y Gz = fy (z) when z¢€ TPP. The map is clearly one - to-one and since the

dimensions of the two vector spaces are the same, ¢ is an isomorphism. Thus
83
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.

&: BT P isadiffeomorphism. Mso it is elear that & takes the simplectic
\ . *

structure of B 1o the nawral syvmplectic structure of T P and w0 & is a sym-

plectic dilfeomorphism.

Now let us consider a system of particles whose position and velocity — are

i on n n ) . .
given by (x,y) 2 R « R = TR and let the syvstem be subjected to tideal for-
ces’ which constraint it to move on P = F (0). l.et the kinetie energy of  the

T
system he K=(1/2)y G

Vv 'dn(l ll](’ (‘\I(‘I‘lli]l l‘()l‘('(?b 1)(‘ (l(‘l‘i\(‘(l I‘l‘()m Ih(‘ p()l('llli'dl

v U, The assumption that the forces of constraint are ‘ideal’’ means  in
encrgy L [he ass 1 that the { | 1 1 leal

this notation that the equations of motion lor the system is of the form b —dif~ -

7

A where H- K+ U, #  isasmooth one form such that @(m) * S, for all
m and # is with respect 1o the Hympl(‘('li(‘ structure defined above. Since the mo-

for all m and <o 4 _] r/l-‘,fi
i

tion is to take place on P vou must have b(m) = S,

h ._Idl“l‘ d9 =0 or {H, 1’1. { =0 on N . Thus the previous theory applies
. . #

i.e. Theorem 2, and so the flow defined by 2 may be carried down 1o B anid

«
g . N N N . . . Lk
across v b 1o T P . This gives rise to Hamilton's equations ol motion on T P,

d) Characteristic Multipliers of a Periodic Solution : In [4" Mever gave a ge~
neralization ol an inequality by Poincare on the algebraic multiplicity of the  cha-
racleristic mulliplier +1 ofa p(-rimli(' solution. The h)pulh('\‘vs given there were
far too strong and the proof vields a better theorem. Since the statement of the im-
provided theorem uses the notation of this paper we shall give it here but refer the

reader to [4] for the proof .

U sing the notation of seetion 2, ( is an algebra of integrals for the Hamilto -

i . 0 E:
nian vector tield X = (dH) Sm = VdFE{m): ¢ U}, and S and S, arc as

before. In constrast to the previous results it is best 1o include H as an clement

89
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ol (0. Let the solution of X lhruugh m be p('rindi(' ol least non negative pe-

riod 7 (Note we include the case of an equilibrium point) .

THEOREM 3 0 The geometric multiplicity of the characteristic multiplier + 1
of the periodic solution through m is greater than or cqual to  dim ‘S-m . The al-
gebraic multiplicity of the characteristic multiplier + 1 of the periodic solution

through m is greater than or equal to dim S,

/. O V::
, + dim (S ” n

m

).
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