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Normal Forms for the General Equilibrium

By
K. R. MEYER*

(University of Cincinnati, U.S.A.)

§1. Introduction.

Poincaré [12] considered the problem of reducing a system of differential equa-
tions of the form

(1) X =Ax+f(x)
to the linear equation
(2) y=Ay

by a change of variables y=¢(x)=x-4---. In the above x,y e R" (or C*), 4 is an
n X n constant matrix, and f is a formal or convergent power series in x starting with
terms of degree 2. Poincaré found that there was a formal solution of this problem
provided the matrix A4 is diagonalizable and its eigenvalues 2,, - - -, 4, satisfy

(3) VLIV

for j=1, - - -, n and all integer vectors k=(k,, - - -, k,) with k, >0 and |k|=k,+ - - -
+k,>2. Furthermore, he proved that if in addition to the above, the eigenvalues
lie strictly to one side of a line through the origin in the complex plane then the
formal series is actually convergent. Since that time there have been a multitude of
papers which give generalizations or variations of these two results. In general these
papers concentrate either on the formal question or on the smoothness question.
Hartman [3] gives a good summary of the literature on the existence of smooth
linearizations and Sell [13] has some more recent references. This paper shall deal
with the formal problem only.

When condition (3) does not hold one tries to reduce equation (1) to a different
system

(4) y=4y+g()

where g is simplier than f. See for example Lattes [7] and Sternberg [14]. This is the
problem of finding the normal form for equation (1). Except for a few exceptional
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cases, almost all of the literature still assumes that the matrix 4 is diagonalizable
and these exceptions use ad hoc methods. The most notable exception is Liapunov’s

0 1
stability study when A_—_—(O 0) see [8]. This example will be discussed in more

detail in Section IV. The case when A is 4 X4, has eigenvalues 4-i of multiplicity
two, is not diagonalizable and the system (1) is Hamiltonian was treated briefly in
Meyer and Schmidt [11] and will be discussed again in Section IV.

Recently, Kummer [5] has shown that the theory of Lie algebras is useful in
studying normal forms in some special cases in celestial mechanics. Taking this as
a lead Cushman, Deprit and Mosak [2] have taken some results from representation
theory and given a complete discription of the normal form of a Hamiltonian system
of two degrees of freedom when the matrix of the linear part is nilpotent. Although,
they discuss one example it is clear that their procedure is quiet general and forms
a basis for a complete theory of normal forms without the diagonalizable assumption.

This paper will use the general method given by Cushman, Deprit and Mosak
to develop the general normal form for equation (1). This new normal form will be
used to discuss some of the stability questions addressed by Liapunov and to discuss
the existence of periodic solutions in a resonance problem.

Since the general procedure is given completely in [2], I will simply summarize
the necessary results from representation theory and will be content with pedestrian
matrix proofs. Thus even though a previous reading of [2] is advised, it is not
necessary.

§ 2. Background results from linear algebra.

Throughout this section let ¥ denote a finite dimensional vector space over the
reals R or the complex numbers C. Let L=L(F) denote the space of linear trans-
formation of ¥ into itself. Given P and Q € L we define the Lie bracket [P, Ol e L
by the usual formula [P, Q]=P°Q—Q°P. Thus L becomes a Lie algebra. Note,
that P and Q commute if and only if [P, Q]=0. The Jordan decomposition theorem
states that for any 4 e L there exists S, N e L such that A=S+N, S is diagonal-
izable, N is nilpotent and [S, N]=0. For now, fix 4 and let S and N be as given
by Jordan’s theorem. Let R denote the range of S and K the kernel of S. The
fundamental property which is used over and over again in normal form theory is
the fact that for a diagonalizable matrix S, the space R and K are invariant under S,
ie. S: R—R and S: K—K, and V is the direct sum of Rand K, i.e. V=R®K, Thus
S|R, the restriction of S to its range, is an invertable map. Since S and N commute,
N also maps R into R and K into K and so does 4A=S+N. Since S|R is invertable
and N is nilpotent the map 4A|R=(S+ N)|R is invertable.

Consider the standard problem of solving a system of linear equations of the
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form Ax=y where y is given. Write y=y,+u where y,¢ R and u < K. From the
above there is an x, € R such that Ax,=y,. Let x=x,4+z where z¢e K, so the
equation becomes Ax=Ax,+Az=y,+u or Az=u. But since z ¢ K the problem
reduces to: given # € k find a ze K such taht Nu=u. Thus we have reduced the
problem to a similar problem on a smaller space with nilpotent matrix of coefficients.
For any particular N there are standard procedures available for deciding whether
the problem has a solution and if so what the solution is.

However, in the theory of normal forms one is presented with a single matrix
A as given in the introduction and this matrix is used to define a sequence of linear
operators via Lie derivative operations. To handle this problem a solution of the
solvability of Nz=u in terms of Lie operations is needed. Here Cushman, Deprit
and Mosak [2] invoke a theorem of Weyl which states in this special case that there
exists M, H e L such that

(1) [H, N1=2H, [H, M]= —2M, [N, M]=H.

Notice that the above Lie bracket relationships are the same as the relationship for
the three standard generators of s/(2, R), namely

0 1 0 0 1 0
N= , = , H= .
0 0 1 0 0 —1
Wely’s theorem is much more general and the reader is referred to [4] for the general
case and to [2] for the application of the general theorem to normal forms for
Hamiltonian systems. For our purposes it is enough to display the solution. By

the Jordan canonical form theorem it is enough to display a solution for a single
nilpotent Jordan block. Thus if N is of the form

(00 0 -0 0]

0 0 n—1---0 O

' 0 0 0O ---0 0

0

0 0 0 0

one finds that ) ’
(0 0 0 0]

0

M 0 2 0 0 0 O
0 06 0---»n—10 O
0 0--- 0 n Oj
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and

satisfy (1). The important properties of these operators are summarized in

Lemma. (a) M and n are nilpotent.
(b) NM and MN are diagonalizable.
(¢) kernel NM=kernel M, range NM =range N
kernel MN=kernel N, range MN =range M.
(d) V=kernel M®range N=kernel NDrange M.

The reader can verify this lemma from the matrix representations given above,
but the lemma holds simply under the relations (1) see [2] for the general proof.
Part (d) of the above lemma gives the natural replacement of the direct sum decom-
position for diagonalizable matries.

Return now to the problem of solving Nz=u where N is nilpotent. Given N
then let M and H be as in the above. By the lemma the equation Nz=u has a
solution if and only if Mu=0. For a better formulation of this solution, let P be
the projection of V(=K) onto the subspace kernel M as given in the first direct sum
decomposition in (d). Then for any u € V there exists a unique solution z e range M
of the equation Nz=u— Pu.

Now let us collect everything. Given a linear operator A find its Jordan de-
composition A=S+N. For the given N find M and H as above. Define 4*=
S+ M. Then for any y € V there exists unique w ¢ range 4* and v € kernel 4* such
that Aw=y—uv.

§ 3. The normal form.

Assume that fin (1.1) is a formal power series in x which starts with terms of
degree at least two. Scale by x—ex where ¢ is to be a small parameter. Equation
(1.1) becomes

(1) X=Ax+Fy(x, ¢)

where
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(2) Fyx,9=33 (%P0

i!

and F7 is an n-vector, each component of which is a homogeneous polynomial of
degree i+ 1. Sometime we shall let Fj(x)=4Ax. In normal form theory a formal
change of variables x=x(¢, e)=&+ - - - is constructed which reduces (1) to

(3) E=AE+F*E, o
where
(4) Fo§ 9= (JE,—{)Fa'(s).

The general theorem on normal forms is

Theorem. Let {P,;};o, {Q;}i2: and {R,};., be sequences of vector spaces of smooth
vector fields on a common domain with the following properties
(a) Q.,CP;;i=12,---
(b) FleP,;i=0,1,2, --.
(C) [Rian]CPi+j> Lj=0,1,2, ---
(d) forany UeP,, i=1,2, --- thereisave Q, and aw e R, such that

v=u-[w, Fj].

Then there exists a formal transformation x=x(¢, s)=& - - - which transforms (1)
into (2) and where Fye Q, fori=1,2,3, - . -.

A proof of this general result using the method of Lie transforms can be found
in [10]. In the above [-, -] is the Lie bracket of vector fields. Since equation (1) is
given and each FY{ is an n-vector of homogeneous polynomials of degree i1, it is
natural to take P, as the vector space of all n-vectors of homogeneous polynomials
of degree i+ 1. Furthermore, if Q; and R, are taken as subspaces of P; then con-
ditions (a), (b) and (c) of the theorem are automatically satisfied. Thus, it remains
to investigate the condition (d). Since Fj(x)=Ax is given and the Lie bracket is
bilinear, the condition (d) is a statement about the solvability of an infinite set of
linear equations. ‘

For the matrix 4 let S, N, M, H and A* be as given in Section 2. For any one
of these matrices, say A, define the linear operator

L,: P,—P,: W—[W, Ax].

Since these are linear maps the Lie bracket is well defined on them and by Jacobi’s
identity
[L;a, LB] :L[A,B]-
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Thus, the same commutator relations hold for L,, Ly, Ly, etc. as hold for 4, S, N,
etc.. Since the equation in part (d) is simply

LW+U=V

the theory from the previous section assures the existence of a solution pair v and w
where L,,v=0 and W is in the range of L,.. Thus, if we define R, =range L ,. and
Q,=kernel L,. where L. is considered as a map of P, into itself then all the condi-
tions of the above theorem hold. Therefore, we have:

Theorem. Let A, A%, P,, Q., R, be as defined above. Then there exists a formal
transformation x: x(§, e)=&+ - - - which transforms (1) to (3) where each F, satisfies
[F,, A*x]=0.

Of course an analytic transformation can be obtained by truncating the formal
transformation. In this case the condition [Fi, 4*x]=0 would only hold for a finite
range of i’s.

§ 4. Example and applications.

A) Stability Theory: Liapunov left an unfinished manuscript which investi-
gated the stability of a critical point when the matrix of a linearized equations have
the eigenvalue zero of multiplicity two. This work was completed in [8]. This
work contains a multitude of special cases, some of which can be codefied using a
suitable normal form. A complete treatment will not be given here since [9] and [8]
contain complete discussions of this problem. Here we shall just given an illustrative
example. _

Consider the system (1.1), i.e.

(1) X =Ax+£(x)

where now x € R* and A= (g é) Let A*= ((1) g) By the results of the last

section this equation is in normal form (relative to this choice of A*) if [f(x), 4*x]
=0. Let x=(u, v)T and f=(g, #)*. so the conditions to be satisfied are

ugv=0

2
2) uh,—g=0

the first condition implies that g is a function of « only and since g is of second
order at least we may set g(u)=a(w)u. The second condition in (2) becomes h, = a(u)
and so i(u, v)=p()+a()v. Thus the normal form for this equation is
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u=a(u-+v

3
) U= p(u)+a(wv

where « and $ are arbitrary series in u.
Assume that the normalization transformation converges to avoid the tedium of
working with remainder terms. Consider the Liapunov function

1, [
(4) szv—foﬁ(f)df

whose derivative along the trajectories of (3) is

(5) V= a(u)yr*— uB(wyo(u).

If uB() <O for small non-zero u then V is positive definite with respect to the origin.
If furthermore, a(x)<<0 for small non-zero u, then V<0 for u small and V=0 only
when u=0. Thus by LaSalle’s theorem [6] the origin is asymptotically stable. Many
of the other cases can be treated with equal ease, but this normal form does not
avoid the classical problem of the center. See [8, 9] for a further discussion.

B) Bifurcation Theory: Consider now the case when the matrix 4 in equation
(1) has a pair of double pure imaginary eigenvalues, say +i, and A4 is not diagonal-
izable. By a complex linear change of variables A can be reduced to

i 1 0 0
[0 i 0 0
0 0 —i 1
0 0 0 —i

(6) A=

The system (1) is no longer real, but now satisfies certain reality conditions, namely
Pf(Px)=f(x) where P is the 4 X 4 matrix which interchanges rows 1 and 3 and rows
2 and 4. To reflect this, introduce y=(x,, x,)%, y=(x;, x)7, =/ )7 g=(f0. [

and B= (i 1) In this notation equation (1) becomes
i
y=By+g(y, y)

7
D y=By+2(5,)-

Since the second equation in (7) is just the conjugate of the first it will be ignored in
the subsequent discussion.

As in the previous example B*=B" =S+ M where S= (:) 0) and M =((1) 8)
i
The Lie bracket operator takes on a slightly different form in these coordinates,

namely
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_ __0g 08 ~-
(8) gy, 7), Cy]=-2>Cy+-_°Cy—Cg
ady oy

for any 2X2 matrix C. The equation (7) are in normal form as defined in the
previous section if [g, B¥y]=0. In Section 2, it was shown that the kernel of
[-, B*y]is the kernel of [-, My] restricted to the kernel of [-, Sy]. The kernel of
[-, Sy] is well known and easy to calculate; it consists of series which contain only
terms of the form

(9) bytysyieyse
a+a,=a,+a,+1.
For g to be in the kernel of [, My] it must satisfy
gil i+ gi’)ﬁ:()
(10) ) ’ 5 ’
143 g1
+ =g
. B2 ayzyl &1

The effect of the first operator in (10) on a term of the form (9) is to generate two
similar terms but with the exponent sum a,~+a, reduced by 1. From this observa-
tion it is easy to see that g, must be of the form y.A(y,y,) where & is an arbitrary
series in the product y,7,. If g, has this form then a particular solution of the second
equation is »,4(»,7,). The general solution of the second equation in (10) is obtained
by adding the general solution of the homogeneous equation and so is g,=y.k(y,7,)
+y.h(y,, 7,) where k like 4 is an arbitrary series in the product y,y,. Thus the
normal form is

i=0+rp. 7)Y+,

¢9)) . N . _
Vo=k(y: 7y +E+ (Y 7)),

The linear system, when k=h=0, has many special properties and a natural
question to ask is which of these properties persist in the non-linear system. The
linear system has two independent integrals, namely y,y, and y,7,—¥,»,, and a sur-
face filled with periodic solutions, namely the surface y,=75,=0. Neither of these
properties are preserved in general since a nonlinear term can make the origin
asymptotically stable. (For example take k=0 and 4(y,y,)= — y,7,). However, it
will be shown that often the existence of an integral for the non-linear problem im-
plies the existence of a surface of periodic solutions.

First consider the special case when 2=0 and k(y,y)=ca(y,7,;), where « is a
constant, so that the system is
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W=iy+p,

(12) .
YVo=0y: Y1+ 1),

This system admits the integral y,7,— ¥,y, provided the constant « is real which will
henceforth be assumed. In order to find periodic solutions of (12) use the time
honored guess method and try y,=p, exp i(1+ p)t, y,=p, exp i(1+ )¢t where p,, p,
and B are constants to be determined. Since j is a frequence correction term it must
be real. Putting this guess into (12) yields

iBp.=p,

13) ) _
iBp,=ap,p,.

Solving the first equation for p,, substituting into the second and dividing by p; (a
non-trivial solution is sought) yields — g =a(p,p,). Thus if <0 there are non-
trivial solutions; in fact two surfaces of periodic solutions which eminate form the
origin. Thus suggests that a generalization of the classical result of Buchanan [1]
can be obtained using normal forms.

All the previous discussion has delt with formal series and in general one expects
these series to diverge. However, a truncation of the normalization transformation
will converge and yield a partially normalized equation. Let us assume that a system
of the form (1) is given where 4 is as (6). Furthermore, assume that your favoriate
algebraic manipulator has normalized the equations through the third order to yield
a system

ylz(i+,8(y1y1))y1+y2+El(yn Yas V1 ¥2)

(14 . g = o
y2:“y1y1+(l+‘8(y1y))y2+E2(yu Yas P15 Vo)

where « and 8 are constants, «<0, and F, and E, are convergent power series in the
displayed arguments beginning with terms of degree at least 4. Furthermore, assume
that the full system admits an analytic integral I(y,, y,, ¥1, ¥,) which has a convergent
series representation which begins with terms to degree two. Assume that the
quadratic terms in the expansion of I are a non-degenerate quadratic form.

Scale equations (14) by y,—ey,, ¥,—>¢’y, where ¢ is a small parameter. Then
equations (14) become

=1 +ey,+0(H)

15) o _ .
Ye=1y,+eay, 7,4+ 0(e%).

(Note, the similarity with the example in (12).)
This system is in the form necessary to apply the lemma on page 100 of Meyer
and Schmidt [11]. Calculating, the bifurcation equations
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Bi&;+2x¢,
16 B(g, &)= )
(16) (8, 8 <ﬁi$2 +2m§1§1>

(Note the similarity with (13).) Solving B=0 yields g*+ a(27)%,E,=0 which has a
two one-parameter family of solutions with 3 real provided «<<0. It is not difficult
to calculate that the rank of the Jacobian of B along these solutions is precisely 3
and so the lemma of Meyer and Schmidt applies. Thus under the above enunciated
hypothesis there exists two families of periodic solutions eminating from the origin
for equations (14).

The details of this argument were kept brief since they are essentially the same
as found in [11]. This outline is given to illustrate that the Hamiltonian nature of
the problem considered in Buchanan [1] and Meyer and Schmidt [11] was not that
important. All that was needed was a non-degenerate integral which of course
comes free in a Hamiltonian system and that one term in a normal form had a non-
zero coeflicient. )

It goes without saying that if 4 depends on an additional parameter 2 and 4(2)
has the form (6) when 2=0.then the antilog of the results in [11] can be carried out.
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