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Entrainment Domains
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1. Introduction

There is a substantial literature on the existence and persistence of invariant
tori for systems of ordinary differential equations [7, 8, 14, 15, 17]. The majority
of this literature does not concern itself with the nature of the flow on the torus it-
self, since the works of Poincare and Denjoy have shown that these flows can be
quite varied and complicated. However, by addressing himself to the flow on these
invariant tori, Bushard [3, 4, 5] shed considerable light on the entrainment (or lock-
ing-in) of periodic solutions. This parper also studies the entrainment of periodic
solutions on invariant tori. Whereas, Bushard considers a fairly general system and
obtains qualitative information, we consider a more specific class of equations with
the goal of devloping an effective procedure for obtaining quantitative information.

The prototype has been the forced van der Pol equation. Therefore, we illus-
trate our procedure by studying this equation and a system of two weakly coupled
van der Pol equations introduced by Linkens [16] in a study of the electrical activity
of the human gastrointestinal tract. For the forced van der Pol equation there are
several studies on harmonic entrainment but few when the forcing frequency and
natural frequency are considerably different. Hayashi [10] and others have con-
sidered the cases when the ratio of the natural and forcing frequency is near 1 to 2
and 1 to 3 in detail. He found that for a small range of detuning a periodic solu-
tion with frequency near the forcing frequency exists. Since other frequecy ratios
require long computations they were not considered until now.

In order to fix some definitions, consider a system of equations of the form

(1.1 *=fx, D

where f is a smooth function from B"® X B* into R®, B® and B* are open balls in R”
and R* respectively, and x=dx/dt. Suppose that for each 1 ¢ B* the system (1.1)
has a unique, smooth, two dimensional invariant torus 7,CB" and that it varies
smoothly with 2. Also let C, be a smooth closed curve on T', which is a global
cross section for the flow on T, and that C, varies smoothly with 2. Thus to the
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flow on T, we may associate a real number p(2)—the rotation number. Also p(2)
is rational if and only if the flow on T, has a periodic solution. Let I", be another
smooth, closed curve on T, which varies smoothly with 2 and is such that C, and I,
form a base for the first homology group of T,. If p(2) is rational, say p(2)=p/q
where (p, g)=1, then the periodic solutions on T, are homologous to pC,+ql;.
Thus a rational rotation number has a simple geometric interpretation: if the rota-
tion number is p/q where (p, g)=1 then the periodic solutions of (1.1) on T, wind
p times around C, and q times around I', before closing.

Following Bushard we define the p/q entrainment domain to be 4,,,=p~'(p/9)-
Since p is continuous, A4,,, is closed in B¥. Clearly distinct rational numbers give
rise to disjoint entrainment domains.

Even though the rotation number is continuous in 2 it will not be differentiable
in general. This is due to the “locking-in phenomenon” or the “entrainment of
frequency phenomenon”. Restricting our attention to the flow on the two dimen-
sional torus a periodic solution has 2 characteristic multipliers 1 and g, x>0. If
p#1 the periodic solution is called hyperbolic—a source if £>1 and a sink if 0<
p¢<1. If a periodic solution is hyperbolic, an easy application of the implicit func-
tion theorem implies that small perturbations of the equations have a periodic solu-
tion with the same rotation number. Thus if for 2=2, equation (1.1) has a hyper-
bolic periodic solution with rotation number p/q then 4, is an interior point of 4,,,.
In general one expects that most periodic solutions are hyperbolic. For generic one
parameter families of flows on a torus, it is a consequence of the work of Sotomayor
[20] that the entrainment domains are unions of nontrivial closed intervals and
these intervals do not cluster. Thus generically the rotation number as a function
of a single parameter has the essential qualitative features of the Cantor ternary
function.

In view of the works of Sotomayor and Pugh [19] one would expect that the
entrainment domains are k-manifolds with smooth boundaries and that their union
is dense in B* for most systems. We shall not pursue these general questions but
concentrate on calculating the boundaries of the A,,, for a special class of equations
by small parameter methods.

2. An illustrative example

In this section a special equation defined on the torus is presented to illustrate
the entrainment phenomenon. This discussion also introduces some definitions and
methods in a simple setting.

Consider the equation

2.1) b=w—ecg(@, 1)
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where g is smooth and I-periodic in § and ¢. The two real parameters are ¢ and
o. As written (2.1) is a single non-autonomous equation, however, by considering
the equivalent autonomous system

2.2 0=w—e9, 1)
=1

where § and ¢ are defined mod 1 we obtain a dynamical system defined on the 2-
torus 7°=R?*/Z*. The closed curve z=0 mod 1 is a global cross section for the
flow provided w0, ¢ is small and it together with the closed curve §=0 mod 1 form
a base for the first homology group of T?. A solution 4(¢) of (2.1) which satisfies
0(t+q)=0(t)+p becomes a periodic orbit of (2.2) with rotation mumber p/q.
Sometimes we shall refer to such a solution as a periodic solution of (2.1) with ro-
tation number p/q. If () is such a solution then the initial conditions 6(0), (1),
-+-,0(g—1) for t=0 also give rise to periodic solutions of (2.1) but all of these so-
Iutions give rise to the same closed orbit for (2.2). In view of this we shall identify
these periodic solutions and refer to the whole class as a periodic orbit of (2.1) or
(2.2). This last convention simplifies the counting of periodic solutions.
A solution 4(¢) of (2.1) is a periodic solution (orbit) if and only if

(2.3 0(q)—60)=p.

Thus the p/q entrainment domain, 4,,,, for (2.1) is the set of all (¢, w) such that
(2.1) has a solution 4(7) which satisfies (2.3). Clearly (0, p/q) € 4,,, and given any
®,#p/q there is a neighborhood N of (0, w,) which does not meet 4,,,. Thus for
small ¢ the only points in A,,, are near (0, p/g).

Bushard [4] has shown that there are positive numbers e, , and continuous
functions a, b such that

a,b: I=[—e, el>T=I[p/q—0d, p/q+dl, a(0)=b(0)=p/q,
a and b are differentiable at ¢=0,
Ay NUXD={(s; w): 0<e<Le, and min (ae), b(e)) <w<Lmax (ale), b(e))}.

That is, close to (0, p/q) the entrainment domain, 4,,,, is a sector bounded above
and below by continuous curves which pass through (0, p/g)—see figure 1. The
two curves a and b will be called the local boundary curves for A,,, and the set
Ay NI XT) will be called the local sector of A,,,. The functions a and b may
be equal (for example when g=0) and so the local sector may degenerate to a
single curve. The example given below has only nondegenerate sectors.

Let S={(a, B): « and B are relatively prime} and
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Figure 1: Local sector of entrainment domain Ay,.
2.4) 90, )= a,, sin 2z(afl— B1)
5

where the coefficients a,;, (@, f) € S are positive with magnitudes so chosen that g is
smooth. In order to study (2.1) in a neighborhood of (0, p/q) we let o=p/q+eA.
Thus arbitrarily small squares about (0, p/g) can be given by fixing 4 in some finite
range, say —1<4<1, and requiring ¢ to be small, say [¢|<e. The variable 4 is
classically called the detuning.

In order to find the periodic solutions of (2.1) of rotation number p/q we use
the change of variables dictated by the method of averaging. The change of vari-
ables

2.5 d=0+-eu(d, 1)
reduces (2.1) to
(2.6) ¢=p/q+e{d+h(@, D} +0()
where

g (P)\Ou , Ou
@.7) h= g+<q)aa+ o1

—all functions evaluated at (4, ¢). Thus if

u@, )= [? b, cos 2r{ad — Bt)

where b,,=0 and b,;=qa,,/(8q—ap) otherwise the equation (2.1) becomes
(2.8) ¢=p|q+e{d—ag, sin 2z(gp—pH)} + 0(?).

Note that u and hence % are independent of ¢ and 4 and thus (2.8) is a valid repre-
sentation of (2.1) for e sufficiently small. Equation (2.8) is easy to solve to first
order in ¢, indeed the solution of (2.8) satisfying ¢(0)=d, is given by
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&, ¢y, 4, &) =¢y+ (] Pt + et(d—a,,, sin q2zg,) + 0(e)

where 0(¢?) is uniform for bounded ¢ and 4. From this last expression one computes

(29) ¢(q> ¢05 Aa 5)'—¢0_‘p:5qr(¢0> A’ 5)
where
(2.10) (o, 4, &) =A—ay, sin q2ag,+0(&).

From the above one sees that all solutions of (2.8) are periodic when ¢=0 but the
solution B(2, ¢y, 4, ¢) is periodic for ¢=0 if and only if r(gy, 4,¢)=0. Thus we must
investigate the zeros of r in more detail.

When ¢=0 the equation r=0 can be solved for 4 as a function of ¢, i.e.,

F(@o, Ggp SIN 27y, 0)=0. Moreover,

g; =1. Thus by the implicit function theo-

rem there is a function d(g,, &)=a,, sin g2z¢,+0(e) such that r(g,, d(¢, ¢), ¢) =0.
The function d is defined and smooth for all ¢, and |¢|<e, for some ¢,>0 and is 1-
periodic in ¢,. It is important to note that we solved for 4 as a function of ¢, and
¢ instead of solving for ¢, as a function of 4 and ¢ as is customary in perturbation
theory. As we shall see ¢, is a multivalued function of 4 and an attempt to solve
for ¢, leads to difficulties or partial results. :

In the discussion which follows we wish to consider d as a function of ¢, and
¢ as a parameter and so use the notation d,(¢;) =d(gy, ). Also a periodic solution
(orbit) will always be a periodic solution (orbit) with rotation number p/q. Since
a periodic orbit gives rise to g periodic solutions the number of ¢, mod 1 which give
rise to periodic solutions must be a multiple of g. Thus the number of zeros of
A—d (¢) =0 for fixed 4 and ¢ must be a multiple of g. d, achieves its maximum
value of a,, at the points (1+4i)/4q, i=0, +1, £2, - - - and achieves its minimum
value of —a,, at the points (—1+4i)/4q, i=0, =1, £2, ---. The derivative of
d, at these points is zero and the second derivative is non-zero and so by the implicit
function theorem these maxima and minima persist under perturbations. Since the
number of zeros of 4—d,(¢,)=0 must be a muitiple of g in any interval of length
1 the maximum values of d, must all be the same. The same is true for minimum
values. Thus for |¢|<e,, some ¢,>>0, there are smooth functions

‘!’z(e):(_1+4i)/4q+0(5)3 i:07 27 i
Ty(e)=(1+41)/49+0(e), i=0, 2,
M(e)=a,,+0()

m(e)=—ag,+0()

H+

+1,
+1,

such that d, achieves its maximum value of M(¢) at ¥;(¢) and its minimum value of
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m(e) at \r,(e). Moreover, the derivative of d, is positive for ¥;(e) <¢<¥,(e) and
negative for ¥ (&) <y <ar;,.(e).

For |e|<e, there are three important parameter ranges:

Case 1: A<mf(e) or 4> M(e)
Case 2: Ad=mfe) or A=M(e)
Case 3: m(e) <Ad<M(e).

In cases 1,2 and 3 the number of zeros of 4—d.(¢,) =0 in an interval of length
1 are 0, g and 2q respectively. So in cases 1, 2 and 3 equation (2.1) has 0, 1 and
2 periodic orbits respectively.

Thus the local boundary curves for A4, are a(e)=p/q+eM(e), b(e)=p/q+
em(e) and they are clearly smooth.

The information obtained so far is sufficient to calculate the characteristic
multipliers of these periodic orbits. If &(¢, ¢,, 4, ) is a periodic solution of (2.1)
then its characteristic multiplier is y:%(q, ¢, 4,¢).  Considering this solution as

0
a periodic orbit for (2.2) then its characteristic multipliers are 1 and p. Referring
to (2.9) one computes

0¢ or ad
=24, ¢o, d(py &), ) =1+ eq— —
3¢0(q Bo, A( B0, €), €) +sqad 3

dd

=14eqg——=.

ddq

Thus when %>0 (resp. <0) the characteristic multiplier is greater (resp. less)

0
than one and the periodic orbit is unstable (resp. stable). When the derivative of
d, is zero the priodic orbit is degenerate.

In summary:
The local boundary curves for A,,, are smooth and of the form
a(e)=p/q+ea,, +0(c")
ble)=p/q—eay,+ 0().
For points on these local boundary curves (except for e=0, w=p/q) equation (2.1)

has one degenerate periodic orbit. For the interior points of the local sector the
equation (2.1) has 2 periodic orbits one stable and one unstable.

3. Normalization via Lie transforms

There are a multitude of methods for establishing the existence of periodic so-
Iutions. An effective and standard procedure is to successively transform the equa-
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tions into a simplier normal form and then use the implicit function theorem. The
evolution of this method can be seen by referring to Poincare [18], Birkhoff [1],
Krylov and Bogoliubov [14], Bogoliubov and Mitropolskii [2] and Diliberto [7].
A significant recent advance in this methed is an algorithm given by Hori [13] to
construct the transformaticn by Lie series. By modifying Hori’s algorithm Deprit
[6] and Henrard [11] developed a recursive algorithm. Since a recursive algorithm
easily lends itself to inductive proofs and computer programs we use the Lie trans-
form method of Deprit and Henrard. The first theorem and its corollary in this
section are essentially the same as found in [7] and are present here to clarify the
method and to help establish the subsequent new results.

Since the method of Lie transforms will be used repeatedly in subsequent argu-
ments, a brief summary will be given. Consider a system of equations of the form

(3.1) =2,z

where Z,, has a formal expansion in ¢ of the form
(3.2) Z,(9=1, (//iNZQ).
=

A change of variables z=z({, ¢) is constructed as a formal solution of a system of
equations

(3.3) LW, 0=t
de

where W has a formal expansion of the form

(3.4) W@ 9=, &/iDW 1.

Equation (3.1) in new coordinates becomes

(3.5 S AD)

where Z* has the formal expansion

(3.6) Z4@ 9= 3, (' iDZI0).

The method of Lie transforms introduces a double indexed array of functions {Z¢}

which agree with the previous definitions when either i or j is zero and are related
by the recursive formula



178 K. R. MEYER and D. S. SCHMDT
) ) I (7 )
3.7) Zi=Z+ 3 (;{) (25, Wi,o]

where [, ] is the Lie bracket operator defined by

(3.8) [4,B]=24p_9B 4

0z 0z
The interdependence of the functions {Z%} can be easily understood by considering
the Lie triangle

Z;

y

2—>7}
|
LY——>7—>7
AN

The coefficients of the expansion of Z, are in the left column and of the expansion
of Z* are on the diagonal. From (3.7) one calculates an entry in the array by
using the functions in the column one step to the left and up. The derivation and
a discussion of these formulas are found in [11].

In the applications to follow the expansion for Z, is given and the expansion
for W is to be found so that the expansion for Z* is in a specific normal form. In
order to summarize the normalization procedure we introduce three sequences of
vector spaces of functions, one for the coefficients of Z,,, one for the coefficients of
Z* and one for the coefficients of W. These sequences of functions can be used
to state the following general theorem on normalization.

Theorem 1. Let {P,};,, {Q.}io, and {R;};.. be sequences of vector spaces of
functions (from n-space to n-space) with the following properties
iy Q,CP,;,,i=1,2,...
i) Z;eP,;,i=0,1,2,..-
i) [R;, P;lCP;,;1,j=0,1,2,.-.
iv) forany A e P;, and i=1,2, - - -, there exists B ¢ Q, and C ¢ R, such that

B=4+IC, Z]].

Then there exists a W with an expansion of the form (3.4) with W, e R, which
transforms (3.1) to (3.5) where Z* has an expansion of the form (3.6) and Z} ¢ Q,,
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i=1,2, .

Proof. Use induction on the rows of the Lie triangle. Induction Hypothesis
I,: LetZieP, ;for0<Li+j<nand W;eR,, Zic Q, for 1<i<n.
I, is true by assumption and so assume I,,_;. By (3.7)

n—2 —
Z =24 (” ; 1)[W,m, Zo . J+ W, 73,

The last term is singled out since it is the only term not covered by the induction
hypothesis or the hypothesis of the theorem. All the other terms are in P, by I,,_,
and iii). Thus

Z, =K'+ [W,, Z{]

where K* € P,. A simple induction on the columns using (3.7) shows that
Z,_=K'+W,, Zi]

where K' ¢ P, for I=1, - - ., n and so
Z3=K"+[W,, Z7].

By iv) there are solutions W, ¢ R, and Zp ¢ Q,. Thus I, is true.

Remark. Usually the function Z, is given and so the spaces {P;} are defined
naturally. The spaces {Q,} and {R;} are defined by the operator L: C—[C, Z].
If for example the operator L is such that the spaces P; are the direct sum of the
range and the kernel of L then the natural choice for Q; is the range of L and the
one for R; is the kernel of L.

The following well known theorem is a consequence of this theorem.

Corollary. Consider the system
3.9 i=Ax+f,(x,¢)

where A is diagonalizable, f.(x,0)=0 and f, has a formal expansion in ¢ with
coefficients which are polynomials in x. Then there exists a formal change of
variables x=x(&, ¢), x(&, 0)=¢&, which reduces (3.9) to

(3.10) E=As+1*(¢, o)
where f* has the property

(3.11) e~ 4f*(e%s, ) =1*(§, e).
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Proof. Use coordinates such that A4 is diagonal and let P, be the vector space
of polynomials in these coordinates. It is easy to see that P; is the direct sum of
the range of L and the kernel of L as in the remark above. It is also easy to check
that each term in the kernel of L satisfies (3.11).

If f, is analytic in e then a convergent transformation can be constructed by
truncation and so (3.9) can be reduced to

(3.12) E=AE+15(E, 9 +0(E

where f% satisfies (3.11) and N is any fixed positive integer. The equation é=A4¢&
+f%(&, ) will be called the Nth average of (3.9).

Equation (3.10) is easy to analyze. The function e**‘u,, 1 and u, constant, is
a solution of (3.10) if and only if

(3.13) 0=(1—DAu,+1*uy, ¢).

Thus if the linearized system is T-periodic, i.e., e#“=1I, then (3.10) has a periodic
solution of the form e*#'y, if and only if (3.13). Equations (3.13) are the bifurca-
tion equations. Similarly for (3.12), if e4“=/1 then a periodic solution of (3.12)
of the form (u,+ 0())e@+2"04¢ exists if and only if

(.14 0=(1—2DAu,+ f*(uy, &) + 0(c").

With A. Deprit we have written a P1/] program which preforms the algebraic
manipulations to effect the normalization described in the corollary to Theorem 1.
The abundance of examples given in section 5 illustrates the effectiveness of the
program and the method.

We wish to consider two systems. The first is the standard forced van der Pol
equation

(3.15) fi+e(u®—Du+ wlu=cA cos w,t.

In view of the example we should lock for periodic solutions when the ratio of the
natural frequency o, to the forcing frequency o, is nearly rational. - With this in
mind, replace o} by p*-+¢’p4 and w, by q. Then the above system is equivalent to

=i,

(3.16) =t
;= —pu, + e{(1 — 1) u, + u,} — 4u,
= —qu,. ‘

The second is the system of two weakly coupled van der Pol equations (see [16])
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i+ 5{(”1 +eduy) — 1}, + 0}, + eduy)=0

(3.17) .. .
U, + 5{(”2 +eduy)’— l}uz + wi(u, +edu)=0.

By letting w?=p®+¢’p4 and wi=g* we obtain the equivalent system

U =pu,
u,=qu,
3.18) * 2
;= — pu, + {(1 — ) u,— Apu,} + & — 2Au 1, — Au,} — {2, + 24u,}
0= —qu, -+ e{(1 —uDu, — Aqu,} — 26°Au,uu, — S 15U,

In order to simplify the calculations we change to complex coordinates in (3.16) and
(3.18) by letting

Vi=u,—iu
(3.19) o
Yo =Uy—1U,.

In these variables the forced van der Pol equation (3.16) becomes

y1=ipy,+ (/84— ) '|‘4Ai(y1+}71)
(3.20) — 4y, —y) —Yi—Yiv +y A+ 7R}

P,=1qY,.
If the ratio p/q is not 1 then the first average is easy to compute by using the in-
trinsic condition (3.11). Look at the right hand side of the first equation in (3.20)
term by term. Consider a term of the form

(3.21) cysyseyliyse.

Since the solutions of the linear system (i.e., when e=0) are y,() =a,e°??, y,(¢¥)=
a2’ such a term satisfies (3.11) if and only if

(3.22) (ay—B1— Dp+(a,— B)g=0.

Clearly, any term of the form

(3.23) AU A

satisfies this condition. However, when the ratio p/q is rational there may be other
solutions of (3.22). The terms of the form (3.21) where the exponents satisfy
(3.22) but are not of the form (3.23) will be called resonance terms. As we shall
see these terms are important in determining the entrainment domains. Thus by
looking at the terms in (3.10) which satisfy (3.22) the first average of (3.20) when

p/g#1is
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(3.24) ;f1={ip+(e/8)(4—y1?1)}y1
YVo=1gY;.

These averaged equations are easily analyzed in the polar coordinates r,e?*=y,,
re2=y, In these coordinates (3.24) becomes

F=(e/8)(4—rDr,

élzp
3.25
( ) F,=0
6,=q.

Similarly the first average of (3.18) in complex coordinates is

J'11={ip+(5/8)(4—ylj71)}y1

(3.26) . . _
J’2={ZQ+ (5/8)(4—y2y2)}y2

and in polar coordinates is

F=(e/8)(4—rDr,

élzp

(3.27)
f,=(c/8)(4—r1)r,
6,=q.

Both of these averaged equations admit invariant tori. For (3.25) the torus
r,=2, r,=A/p (A constant) is invariant and for (3.27) the torus r,=r,=2 is invari-
ant. The flows on these invariant tori are linear. A classical theorem [8,9, 15]
asserts that these tori persist under small perturbations and so equations (3.16) and
(3.17) admit invariant tori for small e.

On the formal side a further normalization can be made. Consider the formal
system

F=R(r,0,9=3, (/] DRY(r, 0)

6=0,(r,0,9=7. (&[], O)

Jj=0

where r is a k vector, 6 is an [ vector, and RY, 65 have finite Fourier expansions with
smooth coefficients.

Theorem 2. Assume that R(r, 0)=p(r), p(ry) =0, gp (r)) has no pure imagi-
r

nary eigenvalues and 6Yr, )=w is a constant vector. Then there exists a formal
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change of variables (r, 8)— (7, 8) such that the above equations become
F=R*(#,0,¢)
§=6%(, 0, ¢)
where R* and 6* are like R, and 8., but have the additional property that
R*(F), 0, ) =0, 0% (Fy, 0+ wt, ) =0*%(F,, 8, ¢).

Proof. See [2] or [7]. A constructive proof based on Lie transformations
can be given, but this proof is essentially the same as the proof of Theorem 1.

Theorem 2 applies directly to the weakly coupled van der Pol equations after
the first average transformation has been made. Due to the special nature of the
second set of equations for the forced van der Pol equation the above theorem or
its proof can be made to apply to these equations also.

We want to analyze the flow on the invariant tori by searching for periodic
solutions. Therefore we write down the usual bifurcation equations, but we find
that up to order ¢ the bifurcation equations are dependent and that we cannot call
on the implicit function theorem to show that the full bifurcation equations can be
solved. For this reason we will go to higher averaged equations until the bifurca-
tion equations become independent. This occurs with the appearance of the first
nonzero resonance term.

Condition (3.22) and the fact that our equations contain only terms of odd de-
gree determine that the resonance term of smallest degree in the differential equation
for y, is p2-'y? in case p and g are odd and it is 72¢~'y2” in case p and g have different
parities.

Our goal is to predict at which order of ¢ these resonance terms can occur for
the first time in the averaged equations. We will restrict the discussion to the
weakly coupled van der Pol equations (3.18) as the result for the forced van der
Pol equation follows easily afterwards. The equations (3.18) written in the complex
coordinates (3.20) have the following general form

2
y1:ip}I1‘|‘5f(1)+%fg+ T

(3.28) ,
y‘z=iqyz+s92+%93+ -

plus 2 conjugate complex equations for y, and y,. The notation for the functions
was chosen to coincide with the one used in the Lie transformation. We will show
that all functions in an entire row of the Lie triangle lie in certain subspaces of the
vector space of homogeneous polynomials. The functions f; and ¢} contain terms
of the form (3.21). Let y,=a;+ B, and y,=a,+ 5, so that (3, y,) indicates the
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order of a term in the two sets of conjugate variables. All polynomials whose terms
lead to the same values of y, and y, define a subspace in the vector space of homo-
geneous polynomials. Instead of listing all possible pairs (y,, y,) which occur in a
row of the Lie triangle we will specify y, but only the maximal value for ;. Thus
(71, 7)) defines a subspace which has the following basis vectors ygiyzyfipls with
0<a,+p.<ry: and a,+B,=7,. Later on it will be convenient to allow 7, or 7, to
be negative and we adopt the convention that the corresponding subspace consists
only of the zero vector.

In accordance with (3.7) and (3.4) we set Zi=(f%, g%, %, )7 and W,=
(U Vs B, D,)*.  We are now in a position to describe the terms which appear
in the (m+1)* row of the Lie triangle, i+j=m and in the transforming function
W,. For example the terms of f} lie in subspaces described by (3, 0) and (0, 1)
whereas those for g} are given by (0, 3) and (1,0). Due to the symmetry between
the functions f? and g7 it will be sufficient to list the subspaces for the first component
in Z{ and W, only.

Lemma. For the weakly coupled van der Pol equation, terms in fi with i+j
=m and in uy, lie in subspaces described by 2m+1, 0) or by 2m—2—p—(—1)*, p)
p=1,2,---.

Proof. We use the result and notation of Theorem 1. We have P,,=R,, and
the first component of this vectorspace has a basis of the form ywyzpfiyss with o,
@, B1s f22>0, a4+ B <71, .+ B, =7, and the possible pairs of (7,,7,) are given by
2m+1,0) or Cm—2—p—(—1)?, p). One verifies that Z%, ¢ P,,, that is the terms
in f), have the proper form. For example, P, is specified by (3,0) (0,1) which
agrees with the bounds on the exponents given for f] earlier.

Next we have to verify [P,, P,]JCP;,;,i,j=0,1,.... Because of the bi-
linearity of the Lie bracket it will be sufficient to verify it for a basis only. Let
Zy=fx> 90 fo» 98)" € Py, k=i or j, be basis vectors and it suffices to verify our
bound on the order of the terms for the expression

(3.29) ofs fi+ L g;.
oy, 0y,

Both products give terms whose exponents are bounded by the expression given in
the lemma with m=i+4j. The statement of the lemma follows now from Theorem
1.

Theorem 3. Consider equation (3.18) written in complex coordinates. In
case p and q are both odd a resonance term of the form y2yi~' can occur for the
first time at order ¢®+?/* in the normalized equation for y,. In case p and q have
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different parities the resonance term yi*y:4~! will be of order e?*9*1,

Proof. 1In case p and g are odd we need a term of order (g—1, p). From
the previous lemma p=p and q—1<2m—2—p—(—1)*. The last inequality re-
duces to p+g<2m. Since p+gq is even the smallest integer which satisfies the
inequality is m=(p+q)/2.

In case p+gq is odd we need p=2p and 2q9—1<2m—2—p—(— 1) which is
satisfied by m=p+qg+1.

Similar results can be found for the forced van der Pol equation.

Theorem 4. Consider equations (3.20). In case p and q are both odd a
resonance term can occur for the first time at order ¢®?*47?/% gnd in case p and q
have different parities it will at order ¢&?+971,

Proof. Although the symmetry of the equations is destroyed the proof is very
similar to the previous one and in some respects even easier since the equation for
¥, is already in normal form. One shows that the functions in the (m+4-1)* row of
the Lie triangle (order ¢™) lie in a vectorspace described by (2m—3p+1, p) where
0=0,1,2,.... From this bound on the order of the terms the statement of the
theorem follows at once.

Table 1 gives the ratios p: g which produce resonance terms of low order as
predicted by our theorems. It has to be pointed out that our theorems only provide
a lower bound as the coefficient of the resonance term could happen to be zero.

As remarked before we have written a PL/I program which performs the
normalization described in theorem 1 and we have used this program to check all
cases in table 1 up to order 8 for the forced van der Pol equation and up to order
6 for the weakly coupled van der Pol equations.

Table 1. Ratios of p:g which result in resonance terms at order ™

m p:q for 3.16 or 3.20 p:q and g :p for 3.18

2| 1:3 1:3

3 1:5 1:5

41 1:7,1:2,3:1 1:7,3:5,1:2

51 1: 1:9,3:7

6| 1:11,1:4,3:5,2:1 1:11,5:7,1:4,2:3

7] 1:13 3:7 5:1 1:13,3:11,5:9

8| 1:15,1:6 2%3,5:3 1:15,3:13,5:11,7:9,1:6,2:5,3:4
9| 1:17 3:11 1:17,5:13,7: 11

10| 1:19,1:8,3:13,2:5,5:7,3:2,7:1 1:19,13:17,7:13,9:11,1:8,2:7,4:5

Many of the computations for the forced van der Pol equation were checked against
a similar Fortran-Assembler program written by J. Henrard. Except for the 1:7
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resonance case for the forced van der Pol equation the resonance term did appear
as predicted. We checked this case by hand and found that the coefficient of the
resonance term j%y, was zero at order ¢*. At the next order a resonance term was
found. As we shall see in the next section the order at which a resonance term
appears (with nonzero coefficient) has a direct bearing on the width of the entrain-
ment domain.

4. Computing the boundary curves

In this section we shall compute the boundary curves for the entrainment do-
mains from the averaged equations. Due to the symmetry of the forced van der
Pol equation (see [12]) there are three cases for the averaged equations depending
on the parities of p and g. - Recall that the forced van der Pol equation is

(4.1) i+ @u=e{(1— )i+ A cos w,1}

and that we have set w,=¢ and wj=p*+e’p4. The averaged equations in polar
coordinates are as follows:

Case 1: p+qodd. Then m=3p+qg—1 is even and the averaged equations
have the form

F={(e/)A—r)+5(r, A, D+ - - +em 7, (1, A, D}r
+&mCra-14%® sin 2q(0— pf)

b=p+en,(r, A, D)+ - - - +e™n,(r, A, 4)
+e™Cr?*?-24°%? cos 2q(0 — pt).

4.2)

Case 2: p+qgevenand (p—q)/2even. Then m=3p+g—2)/2is odd and the
averaged equations have the fom

F={(e/8)d—r)+ .- +emE,(r, A, D)r
+e™Cri—A? sin q(6 — pt)

O=p+ -+ Yu_i(r, 4, 4)
+e™Cri=1A? cos q(@— pt).

4.3)

Case 3: p+gevenand (p—q)/2 0odd. Then m=Bp+qg—2)/2 is even and
the averaged equations have the form

F={(e/8)@—r)+ -+, _(r, A, D)r
+e™Cri-1A? cos g0 — pt)

O=p+ - +e™yn(r, 4, 4)
—e™Cri1A? sin g(6 — pt).

4.4)
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In the above &, &;, --- and %,,7,, --- are polynomials in r, 4 and 4 with
£2,4, H=52,A,4)=---=0 and 92,4, 4)=4/2—nF(4). In order to find
the boundary curves we must expand the frequency ratio in a series ine. Let 4=
d,4-de+ -+ so that wl=p(p+4,e2+ 4,68+ ---) and w,=q. The coefficients 4,,
4, - -- are to be determined so that the above equations have a per1odlc orbit on
the torus with rotation number p/q.

Consider case 1—the other cases are similar. Since £,2,4,4)=..-=
&n-1(2, A, H)=0 the invariant torus is of the form r=p(g, ) =2+0(e™""). Thus
the equation for the flow on this torus has the form

é:p+52772(29 Aa A)+ cee +em77m(29 A: A)
+e™C2%-24%? cos 2g(0 — pt) 4+ 0(e™*Y).

This equation will not have a periodic solution for small ¢ unless 4 is chosen so that
the %,, - -+, pn_, are zero. Using the expansion for 4 yields ,(2, 4, 4)=4,/2—
95, 4y, - -+, 4y _y) for k=2,3, ... and yf=0if k is odd. Thus set the odd terms
to zero and choose the even terms by recursion. That is, choose

A,=2p(4)

4,=0
4.5) 4,=29f(A4, 4,, 4,

Ay 1=0.

Also define
4.6) Ar=nkd, 4, ---,4, ) and C*=24"247C.
Now the flow on the torus is
@.7n 9=p+sm{Am—A,ﬁ+C* cos 2g(@—pH} 4+ 0(e™*Y).

This equation is almost of the same form as the example treated in section 2 and
can be studied in the same manner. In particular the boundary curves are

W 3= LD+ A+« - -+ Ay (LEECHE 0™
q

where the coefficients are given by (4.5) and (4.6). Proceeding as in section 2 with
this case and the others yields:

Theorem 5. For the forced van der Pol equation the boundary curves have
order of contact at least equal to m—1.



188 K. R. MEeyer and D. S. ScaMIDT

If for a particular p and q the resonance term appears, i.e. C+0, then the
boundary curves are analytic in ¢ and have an order of contact equal to m—1.
They can be computed by the scheme given above. For the interior points of the
local section defined by these boundary curves the equation has two (resp. one)
stable and two (resp.one) unstable periodic orbits with rotation number p/q in case
1 (resp. cases 2 and 3).

For the weakly coupled van der Pol equations (3.17) the averaged equations
and analysis is similar. The algebra is slightly more complicated but straightfor-
ward and so only a summary will be given. There are three cases depending on
the parity of p and q.

Case 1: p-q odd.

i=r{(e/8)4—r)+ P+ - - - +e™ P, _} —e™cr3? 2P sin 2(pf,—qb,)
Fo=r,{(e/8)(4—1D+ Qs+ - - - +e™'Q,, 1} —™driEP 1 sin 2(pf,— gb,)
6,=p+&P,+ - - - +&™P,, +em™cria-22? cos 2(pf,— qb,)

6,=q+8Q,+ - - - +emQ,, + e™dririP=2 cos 2(ph,—qb,).

4.8)

In these equations P, and Q; are polynomials in (r,r, 4,2). Moreover,
Py(2,2,4,2)=4/2—P§(2) and P,(2,2,4, )=0,(2,2, 4, )=0 for odd i.

Case 2: p+gqeven and m=(p+¢q)/2 even. In this case the resonance term
for the r; equation has the form ¢™cr#~'r? cos (pd,—q6,). The other resonance terms
are similar.

Case 3: p+gqeven and m=(p+q)/2 even. In this case the resonance term
for the r; equation has the form —e™cri~'r2 sin (pf,—q8,). v

For all these cases the invariant torus is r,=240(s™*"), r,=2-+0(¢™*") and so
the equation to order m for the flow on the invariant torus is obtained by setting
ri=r,=2 in the 6, and 6, equations and then computing the equation for df,/dg,.
In case 1 the equation has the form

(4.9) 0, _P L aR, 4 ... 1 en(R,+C* cos 2(ql—pby)

dg, q

where R, j=2, - - -, m is a polynomial in 4 and 2 and C* is a constant. Proceed-
ing as before expand 4 in a series in order to find periodic solutions on the invari-
ant torus. In the next section we list this expansion in the form

2
(4.10) %=§{P+62A2+"'+emdm}

2

by listing the 4,. In summary:
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Theorem 6. For the weakly coupled van der Pol equations the boundary
curves have order of contact at least equal to m—1.

If for a particular p and q the resonance term appears, i.e., C*=+0, then the
boundary curves are analytic in ¢ and have order of contact equal to m—1. For
the interior points of the local sectors defined by these boundary curves the equa-
tions have two (resp. one) stable and two (resp. one) unstable periodic orbits with
rotation number p/q in case 1 (resp. cases 2 and 3).

5. Results

The previous section showed that the boundary curves for the local sectors are
of the form

2

(5.1) A=Ppred,+edit - +emdy)+0Em)
w; g

for both equations (3.15) and (3.17). The term 4, has the form 4%+ C* and the

terms 4, depend only on the parameter A of the given differential equations. In the

forced van der Pol equation (3.15) the parameter 2 was set to be 2:;.
p

The tables 2 and 3 contain the values of the series (5.1) for the equations (3.15)
and (3.17) respectively. We list the terms which are contained in 4, to 4,, for dif-
ferent values of p and q. The first column gives the subscript of 4, that is the
order in e. The second column gives the power with which 1 appears in 4, and the
third column its ceefficient. The prefix + — distinguishes the term C* in 4,,.

Table 2. Local sectors for the forced van der Pol equation (3.15) for different
resonance cases

order coefficient order coefficient
e p & i
P=1, 0=3 P=3,0=1
2 0 1. 250000000000E —01 2 0 4. 166666666666E —02
2 1 . +—1.250000000000E—01 4 0 —-5.545510493831 E—04
4 2 1. 136718749999E —01
P=1, Q=5 4 3 4+—1.757812500000E —02
2 0 1.250000000000E —01 P=1, 0=9
3001 5. 2083333333335 03 2 0 1.250000000000E—01
P=1, 0=7 4 g —1.497395833333E— 02
4 —9.505208333334E—05
2 0 1.250000000000E —01
4 0 —1.497395833333E— 02 5 1 +-2.712673611093E—06
4 2 —3.002025462963E—04 P=1, 0=11
5 1 +—4.973234953714E—05 2 0 1. 250000000000 —01
4 0 —1.497395833333E—02
P=1, 0=2 4 2 —3.959986772486 E—05
2 0 1.250006000000E —01 6 0 2.484356915491E—03
4 0 —1.497395833333E—02 6 1  +—2.938729745382E—07
4 2 3.703703703703E—03 6 2 8.517445721442E—06
4 2 +—2.7777TTTTTTTIE—02 6 4 3.068622317823E—09
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order coefficient order coefficient
e 2 e 2
P=1,0=4 P=1, 0=15
2 0 1. 250000000000E—01 2 0 1.250000000000E—01
4 0 —1.497395833333E—02 4 0 —1.497395833333E—02
4 2 —6.624338624338E—03 4 2 —1.069647539075E—05
6 0 2. 484356915491 E—03 6 0 2.484356915491E—03
6 2 3.357591632772E—03 6 2 2.408644265599E—06
6 2 +—1.113040123456E—03 6 4 2.268722305866E—10
6 4 4.834803057025E—05 8 0 —3.705793938550E —04
s BERE
2 0 4.166666666666E—02 :
29 o 8 4 1.432160915784E—10
& 5 limeotonr_os P=l, 0=6
0 1.0223 -0
6 2 1. 581745747033E—03 29 L 0000000E
6 3 +—1.322428385415E—05 4 2 —6.362163913184E—04
[ 4 2.225467136927E—04 6 0 2. 484356915491 E—03
P=2, 0=1 , 6 2 1. 1712391513541115—84
‘ | 6 4 6.960062936741E—07
20 5250000000000 02 § 0  —3.705793938550E—04
4 2 6. 338624338624E —01 8 2 —3.847043128384E—05
6 0 7.763615360970E—05 8 2 4—5.680006377530E—07
6 2 —6.283028204107E—01 8 4 —2.729921T17543E—07
6 4 —5.469723691945E—01 P=2, 0=3
6 4  +-—7.901234567901E—(2 > %0 6. 250000000000E—02
P=1, =13 4 0 —1.871744791666E —03
2 0 1.250000000000E— 01 4 2 —9. 688888888888 E — 02
4 0 —1.497395833333E—02 6 0 7.763615360970E—05
4 2 —1.946587166612E—05 6 2 8. 934309633095 E — 02
6 0 2.484356915491E—03 6 4 1.948444444444E 02
6 2 4.302956813584E—06 8 0 —2.895151515248 E—06
6 4 7. 4797600985 77E — 10 8 2 —8.584718717207E—02
7 1 +-3.754146512604E—08 8 4 —6.401513371620E—02
P=3, 0=7 8 4  1+—3.448223733935E—04
2 0 451. %6?6?8‘6166666E~02 P=5, Q=3
4 0 —5.545910493831E —04
1Y e 20 2400009000005
6 0 1.022369101022E— 05 i 2 6. 4332899305555 — 02
6 2 —1.994781894878E — 04 6 0 7 949942129434F — 07
6 4 —2.201660156250E—05 6 2 —1.599023603644E—02
P=5, 0=1 8§ 0 —4'743456%(1)82%_09
- g8 2 3. 908820568173E—03
2 0 2499999999999 -2 § 2 3 ST
4 0 1. 197916666665 E— 04
4 2 1.955708498677E—02 8 5 4+ —1.537421393016E—05
6 0 7.949942129454E (7
6 2 —1.382577699047E —03
6 4 —1.689814455995E—03
7 5 4—2.452866040139E—05
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coefficient

1.111111111111E-01

+ —1.750000000000E +00

1.250000000000E +-00

1.200000000000E—01
1.083333333333E+-00

-+ —7.291666666666E—01

9. 375000000000E —02
1. 666666666666E 00
—1.403808593750E —02
1.791005291005E +00

+—9.52777777777T1E—01

2. 962962962962E +00

1.224489795918E —01
1.041666666666E + 00
—1.496772178259E—02

+—2.855902777777E—01

—8.077344179464E —01
1.085521556712E 400

2. 666666666666E —02
6.375000000000E 400
—4.827160493832E—04

+—3.038194444444E—03

—5.262165178571E—01
1.556396484374E + 01

1.234567901234E —01
1.025000000000E +-00
—1.497167606564E —02
—6.151477305487E 01
1.050785156249E+00

+—1.022460937499E—01

3.401360544217E—02
4.350000000000E 4-00
—5.358813971548E—04
1.280080994897E +-00
6.527718749999E 00

+ —3.978587962963E —04
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Local sectors for the coupled van der Pol equation (3.17) for different
resonance cases

coefficient

1.171875000000E —01
1.133333333333E+-00
—1.491546630859E—02
—2.843730537980E -00
1.289481481481E+00
2.367223302505E—03
7.634791879674E+00
—1.288018284281E4-00
2. 640966588843 E+00
1.472874403292E 400

3.472222222222E—02
5.199999999999E 400
—1.502017425411E—03
—3.472700577200E +-00
1.684799999999E +01
4.995900647218E—05
—1.023487625528 E 400
—4.117748123514E—02
1.133690681096E +-01
6.537023999999E +01

1.239669421487E—01
1. 016666666666E --00
—1.497293559183E—02
—5.292743735981E—01
1.033681712962E+00
2.468887604467E—03
—3.484099211516E 402
8.969081053884E —02
2.348613590037E—01
1.051053308416E+-00

1.224489795918E —02
1. 541666666666E +-01
—8.860891295277E—05
—3.083627553828 E4-00
6.426287615740E +01
4.633676408758 E—07

+ —2.454323743386E +06

1.847531357120E—01
2.076539379226E+01
3.376032348130E 402

191
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