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Abstract. We compute the homology of the integral manifolds of the restricted three-body
problem—planar and spatial, unregularized and regularized. Holding the Jacobi constant
fixed defines a three-dimensional algebraic set in the planar case and a five dimensional
algebraic set in the spatial case (the integral manifolds). The singularities of the restricted
problem due to collusions are removable, which defines the regularized problem.

There are five positive critical values of the Jacobi constant: one is due to a critical point
at infinity, another is due to the Lagrangian critical points and three are due to the Eulerian
critical points. The critical point at infinity occurs only in spatial problems. We compute
the homology of the integral manifold for each regular value of the Jacobi constant. These
computations show that at each critical value the integral manifolds undergo a bifurcation
in their topology. The bifurcation due to a critical point at infinity shows that Birkhoff’s
conjecture is false even in the restricted problem.

Birkhoff also asked if the planar problem is the boundary of a cross section for the
spatial problem. Our computations and homological criteria show that this can never
happen in the restricted problem, but may be possible in the regularized problem for some
values of the Jacobi constant. We also investigate the existence of global cross sections in
each of the problems.

1. Introduction
We study the topology and bifurcations of the integral manifolds of the restricted three-
body problem—planar and spatial, unregularized and regularized. The restricted problem
is a Hamiltonian system with one integral—the Hamiltonian or the Jacobi constant.
Holding this integral fixed defines a three-dimensional algebraic setm in the planar case
and a five-dimensional algebraic setM in the spatial case. We will refer to these as the
integral manifolds.

The restricted problem has two singularities corresponding to the collision of the
infinitesimal with the primaries. These singularities are removable by a process known
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as regularization, which is discussed in §3. The unregularized system will be called the
restricted problemto differentiate it from theregularized problem. The integral manifolds
of the planar and spatial regularized problem will be denoted byr andR, respectively.

There are five positive critical values of the Jacobi constant,µ(1− µ) < 3 < c1 ≤
c2 < c3, whereµ(1− µ) is due to a critical point at infinity, 3 is due to the Lagrangian
equilateral triangular point andc1, c2 andc3 are due to the Eulerian collinear critical points.
µ(1− µ) is a critical value only in the spatial problem. We compute the homology of the
integral manifold for each regular value of the Jacobi constant for the planar and spatial,
unregularized and regularized problems. From these computations we will show that at the
critical values the integral manifolds undergo bifurcations in their topology.

In his discussion of the integral manifolds of the full three-body problem Birkhoff [4]
stated that the only bifurcations of the integral manifolds are due to the critical points
that correspond to relative equilibrium solutions. Although this is true in the planar
case [9, 29, 30] it is false in the spatial problem [21]. Our computations show that the
same conclusions hold in the simpler restricted and regularized problems, i.e. ‘Birkhoff’s
conjecture’ is true in the planar problems and false in the spatial problems.

In the same discussion Birkhoff observes that the integral manifold for the planar three-
body problem is a codimension two invariant subset of the integral manifold of the spatial
three-body problem. He then asks if the planar problem is the boundary of a cross section
in the spatial problem. In [20] we develop some homological criteria for an invariant set of
a flow to be the boundary of a cross section and answer Birkhoff’s question in the negative.

As the planar restricted and regularized manifolds are also closed invariant codimension
two subspaces of the spatial restricted and regularized manifolds, we can also ask if they
could be the boundary of a cross section. By applying the homological criteria we will
show that the planar restricted manifold can never be the boundary of a cross section of
finite type in the spatial restricted manifold; but that for some energy levels, the planar
regularized manifold may be the boundary of a cross section in the spatial regularized
manifold.

As a separate issue, we also give in [20] some criteria for the existence of global cross
sections to a flow. In the restricted problem there are no homological obstructions to
the existence of a global cross section in the planar manifold; but there can never be a
global cross section of finite type in the spatial manifold. The analysis for the regularized
manifolds is less decisive—global cross sections are ruled out in some energy ranges and
may exist in others.

1.1. The integral manifolds. The restricted three-body problem is defined by the
Hamiltonian

H = 1
2|y|2− xTKy − U, (1)

whereU is the self-potential

U = µ

d1
+ 1− µ

d2
, (2)

and 0< µ < 1 is the mass ratio parameter, see [1, 22, 26]. The vectorx is a Cartesian
coordinate of an infinitesimal particle (thesatellite) in a synodical coordinate system



Integral manifolds of the restricted three-body problem 887

which leaves the two primaries of massµ and 1− µ fixed on thex1 axis andy is the
momentum conjugate tox. In the planar problemx, y ∈ R

2, d2
1 = (x1 − 1+ µ)2 + x2

2,
d2

2 = (x1+µ)2+ x2
2 and in the spatial problemx, y ∈ R

3, d2
1 = (x1− 1+µ)2+ x2

2+ x2
3,

d2
2 = (x1+ µ)2+ x2

2 + x2
3. The matrixK is

K =
[

0 1
−1 0

]
or K =


 0 1 0
−1 0 0
0 0 0




in the planar and spatial problems, respectively. These problems have two singularities at
the primaries, i.e. the singular sets for the planar and spatial restricted problems are

δ = {(−µ,0), (1− µ,0)} ×R
2, 1 = {(−µ,0,0), (1− µ,0,0)} × R

3.

The equations of motion are

ẋ = ∂H

∂y
= y +Kx

ẏ = −∂H
∂x
= Ky + ∂U

∂x
.

The HamiltonianH is the only known integral of these equations. Instead ofH(x, y)

one often considers the Jacobi constantC(x, ẋ) as the integral of motion whereC =
−2H + µ(1− µ), i.e.

C(x, ẋ) = V (x)− |ẋ|2, whereV (x) = x2
1 + x2

2 + 2U + µ(1− µ),
is the amended potential.

The integral manifolds for the restricted problem are

m(c) = {(x, y) ∈ R
2×R

2 \ δ | C(x, y) = c},
M(c) = {(x, y) ∈ R

3×R
3 \1 | C(x, y) = c}.

The finite critical points forV are equilibrium points for the equations of motion. There
are five equilibrium points for the restricted problem, denoted byLi , i = 1, . . . ,5. L1, L2

andL3 lie on thex1 axis and are called the Eulerian collinear equilibrium points andL4

andL5 are at the vertices of an equilateral triangle with base vertices at the two primaries
and are called the Lagrangian points. Note that in the spatial problemV has a critical point
at infinity with critical valueµ(1− µ), since∇V → 0 andV → µ(1− µ) asx3→ ∞.
The critical value due to the Lagrangian points is 3. Letc1, c2 andc3 denote the critical
values due to the Eulerian points. One verifies thatµ(1− µ) < 3 < c1 ≤ c2 < c3. (The
valuec3 corresponds to the critical point between the two primaries.) By classical Morse
theory [23], the topology of the integral manifolds can only change as the parameterc

passes through a critical value, i.e. if there are no critical values in[a, b] thenM(a) is
diffeomorphic toM(b). Our homology computations show that each of the critical values
gives rise to distinct topologies.

By the process called regularization, the singularities due to the collision of the satellite
with the primaries can be removed. The analytic details of this process will be discussed
in §3, but the geometry is easy to state. Let

d ∼= (S1 ×D2) ∪ (S1×D2), D ∼= (S2×D3) ∪ (S2×D3),
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where Sn is the n-sphere andDn is the closedn-ball. There is a neighborhoodN
of the singular set1 in M(c) and an embedding6 : N → D whose image is
(S2×(D3\{0}))∪(S2×(D3\{0})). Furthermore, there is a smooth non-singular flowχ on
D, and6 takes the orbits of the restricted problem to orbits ofχ . After the flow onM(c)

is reparameterized the diffeomorphism6 takes parameterized trajectories of the restricted
problem to parameterized trajectoriesχ . Thus, there is a well defined non-singular flow
defined onM(c) ∪6 D which is an extension of the flow of the restricted problem. The
planar problem is regularized in the same way. In fact, the setsn andd used to regularize
the planar problem are simply the restriction ofN andD to their planar subsets. Thus, the
regularized manifolds are defined by

r(c) = m(c) ∪σ d, R(c) =M(c) ∪6 D.

1.2. Summary of results. The five critical values divide the real line into six intervals
denoted by

I = (−∞, µ(1− µ)), II = (µ(1− µ),3), III = (3, c1),

IV = (c1, c2), V = (c2, c3), VI = (c3,∞).
Our main results are summarized in the four tables of homology, Tables 1–4. The body of
these tables give the integral homology groups and Euler–Poincar´e characteristicχ in each
range of regular values, for each of the four problems.

One feature reflected in the tables is that for large values of the Jacobi constant (cases V
and VI), these manifolds are disconnected. In case V, each of the four manifolds splits into
two components, one a bounded neighborhood of the primaries, the other unbounded. In
case VI, the bounded component further decomposes into disjoint neighborhoods around
the two primaries. In case V, the bounded component is denoted by the subscriptb and the
unbounded component by the subscriptu (e.g.Mb(c) or ru(c)). In case VI, the unbounded
component is again denoted by the subscriptu, and the two bounded components are
denoted by the subscripts 1 and 2 (e.g.M1(c) or r2(c)).

TABLE 1. Homology of the planar integral manifolds.

Hp(m) 0 1 2 χ(m)

I Z Z
3
Z

2 0
II Z Z

3
Z

2 0
III Z Z

4
Z

3 0
IV Z Z

3
Z

2 0
V Z

2
Z

3
Z 0

V.b Z Z
2
Z 0

V.u Z Z 0 0
VI Z

3
Z

3 0 0
VI.1 Z Z 0 0
VI.2 Z Z 0 0
VI.u Z Z 0 0
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TABLE 2. Homology of the spatial integral manifolds.

Hp(M) 0 1 2 3 4 χ(M)

I Z 0 Z
3 0 Z

2 6
II Z 0 Z

2
Z Z

2 4
III Z Z

2
Z

2 0 Z
3 4

IV Z Z Z
2 0 Z

2 4
V Z

2
Z Z

2 0 Z 4
V.b Z 0 Z

2 0 Z 4
V.u Z Z 0 0 0 0
VI Z

3
Z Z

2 0 0 4
VI.1 Z 0 Z 0 0 2
VI.2 Z 0 Z 0 0 2
VI.u Z Z 0 0 0 0

TABLE 3. Homology of the regularized planar integral manifolds.

Hp(r) 0 1 2 3 χ(r)

I Z Z 0 0 0
II Z Z 0 0 0
III Z Z

2⊕ Z2
2 Z 0 0

IV Z Z⊕ Z2
2 0 0 0

V Z
2

Z⊕ Z2
2 0 Z 0

V.b Z Z
2
2 0 Z 0

V.u Z Z 0 0 0
VI Z

3
Z⊕ Z2

2 0 Z
2 0

VI.1 Z Z2 0 Z 0
VI.2 Z Z2 0 Z 0
VI.u Z Z 0 0 0

TABLE 4. Homology of the regularized spatial integral manifolds.

Hp(R) 0 1 2 3 4 5 χ(R)

I Z 0 Z
2
Z 0 0 2

II Z 0 Z
2
Z

3 0 0 0
III Z Z

2
Z

2
Z

2
Z 0 0

IV Z Z Z
2
Z

2 0 0 0
V Z

2
Z Z

2
Z

2 0 Z 0
V.b Z 0 Z

2
Z

2 0 Z 0
V.u Z Z 0 0 0 0 0
VI Z

3
Z Z

2
Z

2 0 Z
2 0

VI.1 Z 0 Z Z 0 Z 0
VI.2 Z 0 Z Z 0 Z 0
VI.u Z Z 0 0 0 0 0
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In Tables 1 and 3 for the two planar problems there is no difference in the homology in
cases I and II. It will be shown in §2.1 that there is, in fact, no difference in the topology
of the planar manifolds in cases I and II. On the other hand, for the two spatial problems,
Tables 2 and 4 show that there is a difference in the homology in cases I and II. This reflects
the fact thatµ(1−µ) is not a critical value for the planar problems, but it is a critical value
for the spatial problems and thatµ(1− µ) is a bifurcation value for the topology for the
spatial problem. Thus, the Birkhoff conjecture is true in both of the planar problems and
false in both of the spatial problems.

These tables also answer some questions on cross sections to the flow. LetM be a
connected manifold of dimensionm without boundary,8 : R ×M → M a flow andC
a submanifold ofM of dimensionm − 1 with boundary∂C of dimensionm − 2. Let
intC = C \ ∂C be the interior ofC. ThenC is across sectionif:

(1) the boundary∂C of C is invariant under the flow8;
(2) for each pointp ∈ M \ ∂C there is at (p) > 0 such that8(t(p), p) ∈ intC;
(3) there is a continuous function, thereturn time, τ : intC → R such that

(a) 8(t, p) /∈ intC for all p ∈ intC and 0< t < τ(p),
(b) 8(τ(p), p) ∈ intC for all p ∈ intC;

(4) there is an open neighborhoodU of intC × {0} in intC × R such that8|U is a
homeomorphism fromU to an open neighborhood of intC in M \ ∂C;

(5) the return timeτ extends continuously to∂C.

If ∂C = ∅ thenC is called aglobal cross section.

Given a manifoldM and a codimension two submanifoldB, we developed in [20]
necessary conditions in terms of the homology ofM andB for the existence of a cross
sectionC of finite type with∂C = B. These results can also be applied whenB = ∅,
providing the necessary conditions on the homology ofM for a global cross section of
finite type exist inM. ‘Of finite type’ means that the homology ofC is finitely generated.

With the homology tables of the restricted and regularized manifolds in hand, we can
apply these results to investigate the existence of global cross sections of finite type for
each of the four manifolds. Furthermore, sincem andr are codimension two submanifolds
of M andR respectively, we can also examine whether either of the planar manifolds can
serve as the boundary of a cross section of finite type of the corresponding spatial manifold.

The details of this investigation are given in §5, but the results can be easily summarized.
Table 5 displays the results. An entry of ‘N’ indicates that no cross section of finite type
can exist and an entry of ‘Y’ means that all of the homological information is consistent
with the existence of a cross section.

On the one hand, a ‘N’ still allows the possibility of a cross section whose homology
is infinitely generated. While we cannot rule out such cross sections by homological
arguments, the existence of such a cross section would seem to be of little practical value.
Since cross sections are sought to reduce the complexity of the dynamics there would be
no advantage in moving the investigation to a space with an infinitely complex topology.
On the other hand, much more than homological consistency is required to demonstrate
the existence of a cross section, so a ‘Y’ should be considered as an invitation to further
investigation.
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TABLE 5. Homological admissibility of cross sections.

Global cross section Cross section

m M r R m inM r inR

I Y N Y N N N
II Y N Y N N N
III Y N Y Y N Y
IV Y N Y Y N Y
V Y N N N N Y
V.b Y N N N N Y
V.u Y Y Y Y Y Y
VI Y N N N N Y
VI.1 Y N N N N Y
VI.2 Y N N N N Y
VI.u Y Y Y Y Y Y

1.3. History of the problem. The restricted problem has a long history dating back to
Euler’s 1772 treatise [10] on the motion of the moon. Euler wrote the equations in sidereal
coordinates; it was only later when Jacobi [17] wrote the equations in synodical coordinates
that the integral was found.

Hill [ 11] discussed the zero velocity curves and Hill’s regions for a limiting case of the
restricted problem is known as Hill’s lunar problem. In his simplified model he was able
to assert that the orbit of the moon was bounded.

Darwin [7] obtained grants from the British government and the Royal Society to pay
his computers (Messrs J. W. F. Allnutt, J. I. Craig and M. J. Berry) in order to calculate the
zero velocity curves for the planar restricted problem. Figure 1 (reproduced by permission
of the editors of Acta Mathematica) is the figure rendered by Mr Edwin Wilson. Darwin
says of his computers ‘. . . the trained computer, who is also a mathematician, is rare. I
have thus found myself compelled to forgo the advantages of the rapidity and accuracy
of the computer, for the higher qualities of mathematical knowledge and judgment’ [7,
p. 101].

The zero velocity surfaces for the spatial problem were first investigated by Picart
[27]. Excellent figures of the zero velocity surfaces are found in Lundberget al [16],
who forwent the advantages of mathematical knowledge for the rapidity of an electronic
computer. The zero velocity curves and surfaces are reproduced in many books on celestial
mechanics [6, 26, 31, 33].

The removal of the singularity in Kepler’s planar problem and the restricted problem
seems to have been first noted by Thiele [32] in 1895. The most well-known method
uses complex variables and it is due to Levi-Civita [14, 15]. Kustaanheimo and Stiefel
[18] regularized the spatial problem using quaternions. Easton [8] gives a very general
definition of regularization using Conley index ideas, but does not treat the spatial
problems. (It is clear that Easton’s general method would apply to the spatial problem.)
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FIGURE 1. Darwin’s figure.

The only general method which treats the planar and spatial problems in a unified way is
found in [2, 3], which will be summarized in §3.

The topology of the integral manifolds of the planar restricted and regularized problems
is discussed by Birkhoff [5] using complex variable methods for regularization and by
Lacomba [12, 13] using topological methods.

Hill’s regions and integral manifolds have been investigated in the full (unregularized)
three-body problem, see [21, 28] and the references therein.

2. The restricted problem
The planar and spatial integral manifolds are described by projecting them onto planar
regions. In the end, the only homology groups which must be explicitly calculated will
be those of subsets of the plane. For these, the homology groups can be derived from
inspection of Figure 2. Thus, with the few theorems expressing the relationships between
the homology groups of the various Hill’s regions and integral manifolds and these simple
planar calculations, all of the homology groups follow.

2.1. Decomposition of the integral manifolds.The projection of the integral manifolds
onto position space are calledHill’s regionsand are denoted by

h(c) = {x ∈ R
2 | ∃y ∈ R

2, (x, y) ∈ m(c)},
H(c) = {x ∈ R

3 | ∃y ∈ R
3, (x, y) ∈M(c)}.

Note that the planar manifold embeds in a natural way into the spatial manifold and
similarly for the Hill’s regions. We thus have the following diagram of embeddings and
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FIGURE 2. The planar Hill’s regions.

projections:

m(c) //

π

��

M(c)

π

��
h(c) // H(c)

The dimensions of these spaces are

dim(m(c)) = 3, dim(M(c)) = 5

dim(h(c)) = 2, dim(H(c)) = 3.

The planar manifoldm(c) is defined byC(x, y) = V (x) − |y|2 = c. Sincey appears
only in the term|y|2, we can reformulate the conditionC(x, y) = c as

|y|2 = V (x)− c.
That is, whenV (x) < c, there can be noy such that(x, y) ∈ m(c), and forV (x) = c the
only validy is y = 0. WhenV (x) > c, then(x, y) ∈ m(c) for all y in the circle of radius
V (x)− c. Thus the Hill’s region is

h(c) = {x ∈ R
2 | V (x) ≥ c, x 6= (−µ,0), (1− µ,0)}.

The zero velocity curve is its boundary∂h(c), which is simply the level setV (x) = c. The
planar Hill’s regions for each of the six cases are shown in Figure 2. There, the solid black
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regions are excluded from the Hill’s region; the white and shaded regions are included (the
shading is relevant only to the spatial problem, and will be explained below).

There is a natural projectionπ : m(c) → h(c). It is worth noting that this projection
admits a section. In fact, for any unit vectorv ∈ S1, there is a sectionsv : h(c) → m(c)

defined bysv(x) = (x, (V (x)− c)v).
We can summarize this by describingm(c) overh(c), both locally and globally. Locally,

we have the following.

PROPOSITION2.1. The projectionπ : m(c)→ h(c) is an orientable singularS1-bundle.
That is, forx ∈ h(c), the preimageπ−1(x) is a circle whenV (x) > c, and a single point
whenV (x) = c. TheS1-bundle over the interior ofh(c) is trivial.

Globally, this can be used to describe the integral manifold as a quotient of a product
space.

PROPOSITION2.2. The integral manifoldm(c) is a quotient space of the producth(c)×
S1, obtained by collapsing the circle over each point in the boundary∂h(c) to a point.

The structure of the spatial manifold and its projectionπ : M(c) → H(c) are very
similar to those of the planar manifold. The Hill’s region is the set

H(c) = {x ∈ R
3 | x 6= (−µ,0,0), (1− µ,0,0), V (x) ≥ c},

and its boundary∂H(c) is the level setV−1(c) in R
3. For everyv ∈ S2 there is a section

sv : H(c)→ M(c). In exactly the same manner as Propositions 2.1 and 2.2, we have the
following.

PROPOSITION2.3. The projectionπ :M(c)→ H(c) is an orientable singularS2-bundle.
That is, forx ∈ H(c), the preimageπ−1(x) is a sphere whenV (x) > c, and a single point
whenV (x) = c. TheS2-bundle over the interior ofh(c) is trivial.

PROPOSITION2.4. The integral manifoldM(c) is a quotient space of the productH(c)×
S2, obtained by collapsing the sphere over each point in the boundary∂h(c) to a point.

To further analyze the spatial problem, we follow Easton [9] and project the spatial
Hill’s region onto the planar Hill’s region. Leth+(c) = h(c) ∪ {(−µ,0), (1 − µ,0)},
and letρ : R

3 → R
2 be the projection onto the first two coordinates. To understand

the structure ofρ, we must understand thex3 dependence ofV . Fortunately, this is quite
simple. The quantityx3 appears only in the potential terms

µ√
(x1− 1+ µ)2+ x2

2 + x2
3

+ 1− µ√
(x1+ µ)2+ x2

2 + x2
3

.

This decreases monotonically to zero as|x3| goes to infinity, so for fixedx1 and x2,
V (x1, x2, x3) limits to the quadratic

W(x1, x2) = x2
1 + x2

2 + µ(1− µ).
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PROPOSITION2.5. ρ : H(c)→ R
2 maps ontoh+(c). The fiber of this projection is

ρ−1(x1, x2) =




∗, V (x1, x2) = c,
I, W(x1, x2) < c < V (x1, x2) <∞,
I \ {0}, W(x1, x2) < c < V (x1, x2) = ∞,
R, c ≤ W(x1, x2), V (x1, x2) <∞,
R \ {0}, c ≤ W(x1, x2), V (x1, x2) =∞.

Note that the fiberI should be understood to be an interval that is symmetric about the
origin, and the conditionV (x1, x2) = ∞ should be understood as a short-hand for the two
points(x1, x2) = (1−µ,0), (−µ,0). This local description can be globalized to describe
H(c) and∂H(c) in terms ofh(c) and∂h(c).

To do so, lets(c) be a pair of circles inh(c) about the two singularities(−µ,0) and
(1− µ,0), and letS(c) be a pair of spheres inH(c) about the singularities. Choose these
so that the circles ins(c) are the equators of the spheres inS(c), and so that they do not
intersect the boundary of the Hill’s region. With these definitions we can construct strong
deformation retracts of the spatial Hill’s region and integral manifold.

PROPOSITION2.6. The spatial Hill’s region H(c) has the homotopy type of
h(c)

⋃
s(c)S(c). The boundary of the spatial Hill’s region is homeomorphic to

∂h+(c)
⋃
∂h(c) h

+(c).

By combining Propositions 2.3 and 2.5, we have the following decomposition ofM(c).

PROPOSITION2.7. The projectionρ ◦ π :M(c)→ h+(c) is surjective, with fiber

π−1ρ−1(x1, x2) =




∗, V (x1, x2) = c,
S3, W(x1, x2) < c < V (x1, x2) <∞,
S3 \ S2, W(x1, x2) < c < V (x1, x2) = ∞,
R× S2, c ≤ W(x1, x2), V (x1, x2) <∞,
(R \ {0})× S2, c ≤ W(x1, x2), V (x1, x2) =∞.

Given the very simple form ofW(x1, x2), it is a simple matter to precisely identify how
the various regions change asc varies. First, forc < µ(1− µ), c < W(x1, x2) for all
(x1, x2). As c increases, the setW(x1, x2) < c is the open diskx2

1 + x2
2 < c − µ(1− µ).

At c = µ this passes through the point(−µ,0) and atc = 1−µ it passes through the point
(1−µ,0). At c = 3 an excluded region appears inside this open disk, and continues to grow
asc increases, just as in the planar problem. The evolution of the boundaryW(x1, x2) = c
is displayed in Figure 2, where the shaded region represents the set{c < W(x1, x2)}.

Thus, the only parameter values at which the topology ofH(c) andM(c) could possibly
change are the values that already arose in the planar problem, 3,c1, c2 andc3, and the new
valuesµ(1−µ),µ and 1−µ. At all of these values Proposition 2.4 implies that the topology
of M(c) can only change if the topology ofH(c) changes. We will see that the topology of
H(c) does change atµ(1− µ) and at 3,c1, c2 andc3. However, atµ and 1− µ it is only
the projection ofH(c) ontoh(c) that changes, not the topology of the spaceH(c) itself.
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PROPOSITION2.8. For all µ(1− µ) < c < 3, H(c) ∼= (B2× I) \ {2 pts.}.
Proof. For allc in this range, there is a positive functionh(x1, x2) defined on the open ball
x2

1 + x2
2 < c − µ(1− µ), with

lim
x2

1+x2
2→c−µ(1−µ)

h(x1, x2) = ∞,

such that the complement ofH(c) in R
3 consists of the set{|x3| > h(x1, x2)} and

the two points{(−µ,0,0), (1− µ,0,0)}. Applying (2/π) tan−1 to all coordinates, we
can map this into[−1,1]3, and then scalex3 by π/2 tan−1(h(x1, x2)) to map the set
{x2

3 > h(x1, x2)} into the top and bottom faces. The resulting set, an open cube with
two open disks appended to the top and bottom and two points deleted from the interior, is
clearly homeomorphic to(B2 × I) \ {2 pts.}. 2

COROLLARY 2.1. The homeomorphism type ofM(c) does not change on the parameter
intervalµ(1− µ) < c < 3.

2.2. Homology of the restricted manifolds.In the previous section we showed that the
topology of the integral manifolds could be understood in terms of the topology of the
Hill’s regions and that the topology of the spatial Hill’s region could be understood in
terms of the planar Hill’s region. In this section we pursue the homological implications
of these reductions. We will show that the homology groups ofm(c) and M(c) can
be calculated from the homology ofh(c), h+(c) and ∂h(c) and the inclusion map
ι : s(c) → h(c). Specifically, we will require knowledge of the homology groups
H∗(h(c)) andH∗(h(c), ∂h(c)) and the homomorphismsι∗ : H∗(s(c)) → H∗(h(c)) and
ι∗ : H∗(s(c))→ H∗(h(c), ∂h(c)). As all of these spaces are 1-complexes (or retract onto
1-complexes), these groups and homomorphisms are easily computed from Figure 2.

PROPOSITION2.9. In all cases, the homology groups ofh and(h(c), ∂h(c)) are torsion-
free. The Betti numbers and the ranks of the mapsι∗ : Hp(s(c)) → H∗(h(c)) and
ι̂∗ : Hp(s(c))→ H∗(h(c), ∂h(c)) are given in Table 6.

TABLE 6. Homology of the planar Hill’s regions.

H∗(h) rank(ιp∗) H∗(s) rank(ι̂p∗) H∗(h, ∂h)
0 1 0 1 0 1 0 1 0 1

I 1 2 1 2 2 2 1 2 1 2
II 1 2 1 2 2 2 1 2 1 2
III 1 4 1 2 2 2 0 2 0 3
IV 1 3 1 2 2 2 0 2 0 2
V 2 3 1 2 2 2 0 1 0 1
VI 3 3 2 2 2 2 0 0 0 0

With these values in hand, we can now compute the homology groups of the Hill’s
regions and integral manifolds.
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PROPOSITION2.10. The homology of the spatial Hill’s region is

Hp(H(c)) ∼= coker(ιp∗)⊕ H̃p(S(c)).
For c > µ(1− µ), the homology of the pair(H(c), ∂H(c)) is

Hp(H(c), ∂H(c)) ∼= Hp−1(h(c), ∂h(c)).

For c < µ(1− µ), ∂H(c) = ∅ and

Hp(H(c), ∂H(c)) ∼= Hp(H(c)).

Proof. Both formulae are established via Mayer–Vietoris arguments. ForH(c),
Proposition 2.6 supplies the decompositionh(c) andS(c), which have overlaps(c). The
homology sequence is

→ Hp(s)


ι∗
i∗




−−−→ Hp(h)⊕Hp(S)→ Hp(H)→ .

Except forp = 0, ip∗ : Hp(s)→ Hp(S) is trivial, soIp∗ : Hp(S)→ Hp(H) is injective.
Thus, the sequence breaks up as

0→ coker(ιp∗)⊕Hp(H(c))→ ker(ιp−1∗)→ 0.

Since ker(ιp−1∗) is always torsion-free, the sequence splits.
In dimension 0, I0∗ is not injective, but taking reduced homology supplies the

appropriate correction.
For the homology of pairs, we employ a different Mayer–Vietoris argument. Let

H+ = {(x1, x2, x3) ∈ H(c)|x3 ≥ 0},
H− = {(x1, x2, x3) ∈ H(c)|x3 ≤ 0}.

and let∂H± = H± ∩ ∂H. Then the pairs(H+, ∂H+) and(H−, ∂H−) give a decomposition
of (H+, ∂H+) and(H−, ∂H−) with intersection(H+, ∂H+) and(H−, ∂H−).

The crucial observation is that, whenc > µ(1 − µ), H± retracts onto∂H±, so
H∗(H±, ∂H±) = 0. Thus, the Mayer–Vietoris sequence of the pairs becomes

0→ Hp(H(c), ∂H(c))→ Hp−1(h(c), ∂h(c))→ 0. 2

COROLLARY 2.2. There is a commutative diagram

Hp(S)

∂

��

Îp∗ // Hp(H, ∂H)

∂

��
Hp−1(s)

ι̂p−1∗ // Hp−1(h, ∂h)

For convenience, we will denote the preimageπ−1(∂h(c)) as∂m(c). It follows from
Proposition 2.1 thatπ : ∂m(c)→ ∂h(c) is a homeomorphism.
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THEOREM 2.1. The homology of the planar integral manifold is given by

Hp(m(c)) ∼= Hp(h(c))⊕Hp−1(h(c), ∂h(c)).

The homology of the spatial integral manifold is given by

Hp(M(c)) ∼= Hp(H(c))⊕Hp−2(H(c), ∂H(c)).

Proof. The two arguments are identical, so it suffices to describe the planar case. We will
suppress all of the dependence on(c), and simply writem, etc.

Consider the exact sequences of the pairs(m, ∂m) and(h, ∂h).
// Hp(∂m) //

π∗
��

Hp(m)

π∗
��

// Hp(m, ∂m)

π∗
��

//

// Hp(∂h) // Hp(h) // Hp(h, ∂h) // .

Sinceπ admits the sections, π∗ is surjective. Sinceπ : ∂m → ∂h is one-to-one, the
resulting map on homology is an isomorphism.

The pairπ : (m, ∂m)→ (h, ∂h) is an orientable relativeS1-bundle, so there is a Gysin
sequence

→ Hp−1(h, ∂h)→ Hp(m, ∂m)→ Hp(h, ∂h)→ Hp−2(h, ∂h)→ .

The existence of the sections implies that this sequence splits, with

Hp(m, ∂m) ∼= Hp(h, ∂h)⊕Hp−1(h, ∂h),

with π∗ : Hp(m, ∂m)→ Hp(h, ∂h) surjective.
Thus, the sequences of the pairs(m, ∂m) and(h, ∂h) can be written as

// Hp(∂h)

id
��

// Hp(m)

π∗
��

// Hp(h, ∂h)⊕Hp−1(h, ∂h)

pr1

��

//

// Hp(∂h) // Hp(h) // Hp(h, ∂h) // .

From this, it is a simple diagram chase to see thatπ∗ : H∗(m)→ H∗(h) is surjective, with
the kernel isomorphic toH∗(h, ∂h). 2

Note that both the statement and proof of Theorem 2.1 parallel those of [19,
Theorem 1.3]. With the values for the homology of the Hill’s regions computed, the
homology of the integral manifolds can be read off directly.

COROLLARY 2.3. For all values ofc, the homology groups of the planar and spatial
integral manifolds are torsion-free. The Betti numbers for the planar manifold are given
by

βp(m(c)) = βp(h(c))+ βp−1(h(c), ∂h(c)).

For c > µ(1− µ), the Betti numbers of the spatial manifold are given by

βp(M(c)) = βp(h(c))+ βp−3(h(c), ∂h(c))− rank(ιp∗)+ δp,0+ 2δp,2.

For c > µ(1− µ), the Betti numbers of the spatial manifold are given by

βp(M(c)) = βp(h(c))+ βp−2(h(c))− rank(ιp∗)− rank(ιp−2∗)+ δp,0+ 3δp,2+ 2δp,4.

The homology groups so computed are given in Tables 1 and 2.
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3. The regularized problem
Belbruno [2, 3] showed that the Kepler problem inRn can be regularized and the
regularized flow on an energy levelE is equivalent to the geodesic flow on a manifold
of constant curvature−E. (Also see the survey [24].) His theorem extends the work
of Conley and Moser [25] who showed that the Kepler problem with negative energy
can be regularized and the regularized flow is equivalent to the geodesic flow on the unit
tangent bundle of then-sphere. The regularization is accomplished by the construction of
a symplectomorphism which can also be used to remove the singularities of the restricted
problem. We have chosen this approach to regularization over the many others since in this
approach the planar and spatial problems are treated in a unified way.

Here we shall summarize the salient points of this method. In our summary we have
changed the order to simplify the presentation. We took the square root of the Hamiltonian
and reversed the roles ofx andy at the start of the discussion instead of at the end, as in
[2, 25].

3.1. Negative energy. Let ξ = (ξ0, ξ1, . . . , ξn) andη = (η0, η1, . . . , ηn) be coordinates
onR

n+1 × R
n+1. Let Sn be the unit sphere inRn+1, T Sn its tangent bundle andTδSn the

δ-sphere bundle of the unit sphere. So

Sn = {|ξ | = 1}, T Sn = {|ξ | = 1, ξ · η = 0}, TδS
n = {|ξ | = 1, ξ · η = 0, |η| = δ}.

The geodesic flow on an embedded manifold is such that the acceleration is normal to
the manifold, so the geodesic flow onSn is defined by the equation

ξ̈ = λξ.
Since this flow must satisfy|ξ |2 = ξ · ξ = 1 we have, by differentiating twice, that
λ = −|ξ̇ |2. This can be written as a Hamiltonian system with Hamiltonian|ξ |2|η|2/2 [25],
but we shall take the square root and consider the system with Hamiltonian

G = |ξ ||η|, (3)

with equations of motion on theδ-sphere bundle

ξ̇ = ∂G

∂η
= δ−1η, η̇ = −∂G

∂ξ
= −δξ.

The flows ofG andG2/2 on the unit sphere bundle are precisely the same—on other level
sets they are reparameterizations of one another.

Let Ŝn denote the sphere punctured at the north pole, i.e.Ŝn = Sn \ {(1,0, . . . ,0)}. The
stereographic projection of̂Sn ontoR

n is given by

yk = ξk

1− ξ0 , k = 1, . . . , n (4)

whereξ ∈ Ŝn andy ∈ R
n. The inverse is given by

ξ0 = |y|
2− 1

|y|2+ 1
, ξk = 2yk

|y|2+ 1
, k = 1, . . . , n. (5)
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(In the Kepler problem at a collision, as positionx → 0 the velocityy →∞. This is why
it is they space that is projected onto the sphere.)

Moser extends the stereographic projection (4) to a mappingψ : Rn ×R
n → T Ŝn by

η0 = x · y, ηk = |y|
2+ 1

2
xk − (x · y)yk, k = 1, . . . , n (6)

with inverse

xk = ηk(1− ξ0)+ ξkη0, k = 1, . . . , n. (7)

PROPOSITION3.1. The extended stereographic mappingψ : Rn × R
n → T Ŝn given by

formulas (4), (5), (7) and (6) is a symplectomorphism.

The Hamiltonian (3) of the flow onT Ŝn in the symplectic coordinates(x, y) ∈ R
n×R

n

becomes

G = 1
2(|y|2+ 1)|x|.

In order to treat all negative energy levels (−h) we need to scale the variables byx → x,
y → (2h)−1/2y which is symplectic with multiplier(2h)1/2. Now

G = 1
2(2h)

−1/2(|y|2+ 2h)|x|.
Let δ = µ(2h)−1/2 and observe

G− δ = (2h)−1/2|x|{L+ h}, whereL = 1

2
|y|2− µ

|x| ,

andL is the Hamiltonian of the Kepler problem with central massµ.
For the moment letz = (x, y), φ(z) = (2h)−1/2|x| andJ be the usual skew symmetric

matrix of Hamiltonian theory. Now define a new timeτ by dτ = (2h)−1/2|x| dt = φ(z) dt
and′ = d/dτ . Then

ż = J∇(G− δ) = {L+ h}J∇φ + φJ∇L.
On the setG = δ orL = −h this says

z′ = J∇L,
i.e. the flow onG = δ is a reparameterization of the Kepler flow onL = −h. The flow
on theδ-sphere bundle of the unit sphere is by definition the flow of the regularized Kepler
problem.

This symplectomorphism can be used to define local coordinates about each primary of
the restricted problem and thus regularize the singularities one at a time. The flow will no
longer be the same as the flow defined byG but a perturbation thereof.

Consider the restricted problem where one primary is at the origin, i.e. replacex1 by
x1+ 1− µ andy2 by y2+ 1− µ. The Hamiltonian (1) becomes

H = 1

2
|y|2− µ

|x| − x
TKy − µ− 1

d2
+−(1− µ)x1− 1

2
(1− µ)2, (8)
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whered2
2 = (x1+ 1)2+ x2

2 + x3
3. Change to(ξ, η) coordinates so that

φ(H + h) = |ξ ||η| − δ + φ(ξ, η)
{
−ξ2η1 + ξ1η2− 1− µ

d2
− 1

2
(1− µ)2

}

= |ξ ||η| − δ +O(ε),
whereε = |x|. As in the Kepler problem the change of timedτ = φ dt shows that
the flow of the restricted problem onH = −h is a reparameterization of the flow on
|ξ ||η| = δ + O(ε) which is a small perturbation of the geodesic flow on theδ-sphere
bundle. Thus, the singularity of the restricted problem has been regularized.

Performing the sequence of transformation used for the Kepler problem on the
neighborhood{|x| ≤ ε2, |y| ≥ ε−1} of the singularity yields a perturbation of the geodesic
flow on a neighborhood of the north pole. Thus, the regularization of this singularity
can be viewed as excising this neighborhood of the singularity and attaching the northern
hemisphere of the unit tangent bundle of the sphere.

Let us look closely at the operation of excising and attaching. Since the geometry is the
same as that of the Kepler problem, we may rescale the variables so thatµ = 1, h = 1/2.
We then rescale the dimensions byx → ε2x, y → ε−1y so that the neighborhood is of the
form {|x| ≤ 1, |y| ≥ 1}. LetN = {(x, y) ∈ (Rn \ {0})×R

n : L(x, y) = −1/2}, soN is a
negative energy level of the Kepler problem. Let

A = {1≤ |x| ≤ 2,0≤ |y| ≤ 1} ∩N, B = {0 ≤ |x| ≤ 1,1≤ |y| <∞} ∩N,
T = A ∩ B = {(x, y) ∈ R

n ×R
n : |x| = |y| = 1},

and

A† = {(ξ, η) ∈ T1S
n : −1≤ ξ0 ≤ 0}, B† = {(ξ, η) ∈ T1S

n : 0≤ ξ0 ≤ 1},
T † = A† ∩ B† = {(ξ, η) ∈ T Sn : ξ0 = 0}.

The symplectomorphismσ takesA,B, T toA†, B†, T † respectively,B ∼= Dn \{0}×Sn−1

is a neighborhood of the singularity inH = 0 andB† ∼= Dn × Sn−1 is a neighborhood of
the north pole inT1S

n. Thus, our definition of regularization is excising two copies ofB,
one about each singularity, and attaching two copies ofB† using the symplectomorphism.
The details of the attaching map are important for our computations.

The symplectomorphism takesT ∼= Sn−1 × Sn−1 diffeomorphically toT †. To
understand the structure of the corresponding homology mapν∗, we first look at the
symplectomorphism on the boundariesT andT † in the planar case whenn = 2. We
place angular coordinatesθ, φ onT by

x1 = cosθ, x2 = sinθ,

y1 = cosφ, y2 = sinφ.

The symplectomorphism onT in these coordinates is

ξ0 = 0, ξ1 = cosφ, ξ2 = sinφ,

η0 = cos(θ − φ), η1 = cosθ − cos(θ − φ) cosφ, η2 = sinθ − cos(θ − φ) sinφ.
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We place angular coordinatesθ†, φ† onT † by

ξ1 = cosφ†, ξ2 = sinφ†


η0

η1

η2


 =


1 0 0

0 cosφ† −sinφ†

0 sinφ† cosφ†





 cosθ† 0 sinθ†

0 1 0
−sinθ† 0 cosθ†





0

0
1


 .

Let α = {θ arbitrary, φ = 0} andβ = {θ = 0, φ arbitrary} be the generators of
Hn−1(T ) and similarly letα† = {θ† arbitrary, φ† = 0} andβ† = {θ† = 0, φ† arbitrary} be
the generators ofHn−1(T

†). These generators have the usual orientation in mathematics,
i.e. the generators are traversed by increasing the angles.

The symplectomorphism onα is

ξ0 = 0, ξ1 = 1, ξ2 = 0, η0 = cosθ, η1 = 0, η2 = sinθ
η0

η1

η2


 =


cosθ

0
sinθ


 =


1 0 0

0 1 0
0 0 1





 cos(π/2− θ) 0 sin(π/2− θ)

0 1 0
−sin(π/2− θ) 0 cos(π/2− θ)





0

0
1


 .

Soφ† = 0, θ† = π/2− θ or α→−α†.
The symplectomorphism onβ is

ξ0 = 0, ξ1 = cosφ, ξ2 = sinφ


η0

η1

η2


 =


 cosφ

sin2 φ

−cosφ sinφ




=

1 0 0

0 cosφ −sinφ
0 sinφ cosφ





 cos(φ + π/2) 0 sin(φ + π/2)

0 1 0
−sin(φ + π/2) 0 cos(φ + π/2)





0

0
1


 .

Thusφ† = φ, θ† = φ + π/2 orβ → α† + β†. Thus the homology mapν∗ : H1(T ) →
H1(T

†) is [−1 1
0 1

]
.

In the spatial case we take generators ofT andT † consistent with the definitions given
in the planar case. Let

α = {|x| = 1, y1 = 1, y2 = y3 = 0}, β = {x1 = 1, x2 = x3 = 0, |y| = 1},
α† = {ξ0 = 1, ξ0 = ξ2 = ξ3 = 0, η1 = 0, η2

0 + η2
2 + η2

3 = 1},
β† = {ξ0 = 0, ξ2

1 + ξ2
2 + ξ2

3 = 1, η0 = 1, η1 = η2 = η3 = 0}.
Each of these two-spheres generators have a great circle with the same name as a generator
for the planar problem. These generators are oriented in a manner consistent with the
planar convention and usual mathematical practice. That is, as we traverse the great
circle of the planar problem in the positive sense, using the right-hand rule the thumb
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will point in the direction of the positive third coordinate. By (6) the mapping onα is
η0 = x1, η1 = 0, η2 = x2, η3 = x3, but the coordinates onα areη0, η3, η2 in that order,
and soα→−α†.

To understand the mapping onβ observe that the choice of how the great circles of the
planar problem sit in the spatial problem is arbitrary and that any consistent choice of the
orientation of the circle will yield the same results for the planar problem. Any great circle
in β is mapped onto a great circle ofα† and ofβ†, thusβ → ±α† ± β†. The point where
x1 = 1, x2 = x3 = 0, y1 = 0, y2 = y3 = 0 is mapped to the point whereξ0 = 0, ξ1 = 1,
ξ2 = 0, ξ3 = 0, η0 = 1, η1 = 0, η2 = 0, η3 = 0. At these points we choose oriented
coordinates in the generators as follows:x2, x3 for α; y2, y3 for β; η3, η2 for α† andξ2, ξ3
for β† in that order. The Jacobian determinants at these points are

∂(η3, η2)

∂(y2, y3)
= −1,

∂(ξ2, ξ3)

∂(y2, y3)
= 1.

Therefore,β → −α†+ β† and the homology mapν∗ : H2(T )→ H2(T
†) is

[−1 −1
0 1

]
.

We will also need to understand the inclusionT †→ B†. That is, we need to determine
the homology mapHn−1(T

†) → Hn−1(B
†). Let α†

1, β†
1 be the projections ofα† andβ†

ontoSn, and letα†
2, β†

2 be the tangential components. Let

R′(t) =
[

cos(πt/2) sin(πt/2)
−sin(πt/2) cos(πt/2)

]
, R(t) =

[
R′(t) 0

0 In−1

]
,

whereIn−1 is the(n− 1)× (n− 1) identity matrix. DefineF,G : Sn−1→ T1S
n by

F(q, t) = (R(t)α†
1(q), R(t)α

†
2(q))

G(q, t) =
(
cos

(
πt

2

)
β

†
1(q)+ sin

(
πt

2

)
β

†
2(q),−sin

(
πt

2

)
β

†
1(q)+ cos

(
πt

2

)
β

†
2(q)

)
.

ThenF0 = α†,G0 = β†, while

F(q,1) = (1,0, . . . ,0, α†
21(q),−α†

20(q), α
†
22(q), . . . , α

†
2n(q))

G(q,1) = (1,0, . . . ,0,−β†
10(q),−β†

11(q), . . . ,−β†
1n(q)).

Whenn = 2, we can evaluateα†
2 andβ†

1 directly to see thatF1 = G1. That is,α† andβ†

have the same image inH1(B
†), and the inclusion mapH1(T

†) → H1(B
†) can be taken

as[1 1]. In the spatial case, we can use spherical coordinates to write

α2(φ
†, γ †) = (cos(φ†) sin(γ †),0,−sin(φ†) sin(γ †),−cos(γ ))

β1(φ
†, γ †) = (0, cos(φ†) sin(γ †), sin(φ†) sin(γ †), cos(γ )),

with the signs chosen to embed the planar case as{γ † = π/2} and preserve the right-hand
rule. With these choices, we again see thatF1 = G1, so thatH1(T

†)→ H1(B
†) is given

by [1 1].
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3.2. Positive energy. Refer to [2, 3] for the details that are summarized here. As
before letξ, η be coordinates inRn+1 × R

n+1, but define an Lorentz inner product
〈ξ, η〉 = −ξ0η0 + ξ1η1 + · · · + ξnηn = ξT 3η where3 is the(n + 1) × (n + 1) square
matrix3 = diag(−1,1, . . . ,1). This inner product is positive definite on the hyperboloid
〈ξ, ξ〉 = −1 and defines a Riemannian metric with constant negative curvature. LetSn be
one sheet of this hyperboloid,T Sn its tangent bundle andTδSn its δ-sphere bundle, so

Sn = {ξ ∈ R
n+1 | 〈ξ, ξ〉 = −1, ξ0 > 0},

T Sn = {(ξ, η) ∈ R
n+1× R

n+1 | 〈ξ, ξ〉 = −1, ξ0 > 0, 〈ξ, η〉 = 0},
TδSn = {(ξ, η) ∈ R

n+1× R
n+1 | 〈ξ, ξ〉 = −1, ξ0 > 0, 〈ξ, η〉 = 0, 〈η, η〉 = δ2}.

The geodesic flow onSn is defined by the equation̈ξ = λξ whereλ = 〈ξ̇ , ξ̇ 〉. This can
be written as a Hamiltonian system with Hamiltonian−1

2〈ξ, ξ〉〈η, η〉, but we shall take the
square root and consider the system with Hamiltonian

G = {−〈ξ, ξ〉〈η, η〉}1/2, (9)

with equations of motion on theδ-sphere bundle

ξ̇ = 3∂G
∂η
= δ−1η, η̇ = −3∂G

∂ξ
= δξ.

The flows ofG andG2/2 on the unit sphere bundle are precisely the same—on other level
sets they are reparameterizations of one another.

Let Ŝn denote the hyperboloid punctured at the pointξ† = (1,0, . . . ,0), i.e. Ŝn =
Sn \ {(1,0, . . . ,0)}. The desired projection of̂Sn ontoD = {y ∈ R

n | |y| > 1} is given
by

yk = ξk

ξ0− 1
, k = 1, . . . , n. (10)

The inverse is given by

ξ0 = |y|
2+ 1

|y|2− 1
, ξk = 2yk

|y|2− 1
, k = 1, . . . , n. (11)

Belbruno extends the stereographic projection (10) to a mappingω : Rn × D → T Ŝn
by

η0 = −x · y, ηk = |y|
2− 1

2
xk − (x · y)yk, k = 1, . . . , n (12)

with inverse

xk = ηk(ξ0 − 1)− ξkη0, k = 1, . . . , n. (13)

PROPOSITION3.2. The extended stereographic mappingω : R
n × D → T Ŝn given by

formulae (10), (11), (13) and (12) is a symplectomorphism ofR
n ×D andT Ŝn.
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The Hamiltonian (9) of the flow onT Ŝn in the symplectic coordinates(x, y) ∈ R
n×D

becomes
G = 1

2(|y|2− 1)|x|.
In order to treat all positive energy levels we need to scale the variables byx → x,
y → (2h)−1/2y which is symplectic with multiplier(2h)1/2. Now

G = 1
2(2h)

−1/2(|y|2− 2h)|x|.
Let δ = µ(2h)−1/2 and observe,

G− δ = (2h)−1/2|x|{L− h}, whereL = 1

2
|y|2− µ

|x| ,

andL is the Hamiltonian of the Kepler problem with central massµ.
As in the previous case define a new timeτ by dτ = φ(x) dt whereφ = (2h)−1/2|x|.

Then the flow onG = δ is a reparameterization of the Kepler flow onL = h. The flow on
theδ-sphere bundle of theSn is by definition the flow of the regularized Kepler problem.

Consider the restricted problem where one primary is at the origin, i.e. equation (8).
Change to(ξ, η) coordinates so that

φ(H − h) = {−〈ξ, ξ〉〈η, η〉}1/2 − δ
+ φ(ξ, η)

{
−ξ2η1+ ξ1η2− 1− µ

d2
− 1

2
(1− µ)2

}

= {−〈ξ, ξ〉〈η, η〉}1/2 − δ +O(ε),
whereε = |x|. As in the Kepler problem the change of timedτ = φ dt shows that
the flow of the restricted problem onH = h is a reparameterization of the flow on
{−〈ξ, ξ〉〈η, η〉}1/2 = δ + O(ε) which is a small perturbation of the geodesic flow on the
δ-sphere bundle. Thus, the singularity of the restricted problem has been regularized.

Performing the sequence of transformations used for the Kepler problem on a neigh-
borhood of the singularity yields a perturbation of the geodesic flow on a neighborhood
of the ξ†. Thus, the regularization of this singularity can be viewed as excising this
neighborhood of the singularity and attaching a neighborhood ofξ† in theδ-sphere bundle
of the hyperboloid.

Let us look closely at the operation of excising and attaching. For purposes of discussing
the geometry of the Kepler problem we may assume thatµ = 1, h = 1/2 and rescale
the dimensions so that the neighborhood is of the form{|x| ≤ 2, |y|2 ≥ 2}. Let
P = {(x, y) ∈ (Rn \ {0}) × R

n : L(x, y) = 1/2}, soP is a positive energy level of
the Kepler problem. Let

A = {2≤ |x| <∞,1< |y|2 ≤ 2} ∩ P, B = {0≤ |x| ≤ 2,2≤ |y|2 <∞} ∩ P,
T = A ∩ B = {(x, y) ∈ R

n ×R
n : |x| = 2, |y|2 = 2},

and

A† = {(ξ, η) ∈ T1Sn : 3≤ ξ0 <∞}, B† = {(ξ, η) ∈ T1Sn : 1 ≤ ξ0 ≤ 3},
T † = A† ∩ B† = {(ξ, η) ∈ T Sn : ξ0 = 3}.
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The symplectomorphism takesA,B, T toA†, B†, T † respectively,B ∼= Dn \ {0} × Sn−1

is a neighborhood of the singularity inL = 1/2 andB† is a neighborhood of the
ξ† ∼= Dn × Sn−1 in T1Sn.

The symplectomorphism takesT ∼= Sn−1 × Sn−1 diffeomorphically toT †. As in the
negative energy case, we first look at the symplectomorphism on the boundariesT andT †

in the planar casen = 2. We take coordinatesθ, φ onT by

x1 = 2 cosθ, x2 = 2 sinθ

y1 =
√

2 cosφ, y2 =
√

2 sinφ

and angular coordinatesθ†, φ† onT † by

ξ0 = 3, ξ1 = 2
√

2 cosφ†, ξ2 = 2
√

2 sinφ†

η = ψR3(φ
†)R−1

1 R2(θ
†)R1v,

where

η =

η0

η1

η2


 , v =


0

0
1


 , R1 =



− 3√

17
2
√

2√
17

0

−2
√

2√
17
− 3√

17
0

0 0 1


 ,

R2(θ
†) =


1 0 0

0 cosθ† sinθ†

0 −sinθ† cosθ†


 , R3(φ

†) =

1 0 0

0 cosφ† −sinφ†

0 sinφ† cosφ†


 .

The vectorv is a tangent vector toSn at the point(3,2
√

2,0), R−1
1 R2(θ

†)R1 rotatesv
about the normal(−3,2

√
2,0) by an angleθ†, so it is still a tangent vector. The matrix

R3(φ
†) rotates this tangent vector about theξ0 axis by an angleφ†.

In this case we are dealing with both Euclidian and Lorentzian geometry.η is a unit
vector in the Lorentz metric (〈η, η〉 = 1) whereas the vectorv is a unit vector in Euclidian
geometry and the matricesR1, R2, R3 are orthogonal matrices. The positive scalarψ is
the Euclidean norm ofη. Both η and the rotations ofv lie in the tangent plane of the
hyperboloid and so givenη andφ† one can solve forθ†.

The symplectomorphism onT in these coordinates is

ξ0 = 3, η0 = −2
√

2 cos(θ − φ),
ξ1 = 2

√
2 cosφ, η1 = cosθ − 4 cos(θ − φ) cosφ,

ξ2 = 2
√

2 sinφ, η2 = sinθ − 4 cos(θ − φ) sinφ.

Let α = {θ arbitrary, φ = 0} andβ = {θ = 0, φ arbitrary} be the generators ofHn−1(T )

and, similarly, letα† = {θ† arbitrary, φ† = 0} andβ† = {θ† = 0, φ† arbitrary} be the
generators ofHn−1(T

†). These generators have the usual orientation in mathematics, i.e.
the generators are traversed by increasing the angles.

The symplectomorphism onα is

ξ0 = 3, ξ1 = 2
√

2, ξ2 = 0, η0 = −2
√

2 cosθ, η1 = −3 cosθ, η2 = sinθ.
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Unlike the case of negative energy we cannot identifyθ andθ†, since we are dealing with
two geometries. Therefore we must consider the equation


−2
√

2 cosθ
−3 cosθ

sinθ


 = ψR−1

1 R2(θ
†)R1v = ψ



−2
√

2√
17

sinθ†

− 3√
17

sinθ†

cosθ†


 = ψ



−2
√

2√
17

cos(π/2− θ†)

− 3√
17

cos(π/2− θ†)

sin(π/2− θ†)


 .

Although they are not equal asθ completes one revolution in the positive senseθ†

completes one revolution in the negative sense, soα→ −α†.
The symplectomorphism onβ is

ξ0 = 3, ξ1 = 2
√

2 cosφ, ξ2 = 2
√

2 sinφ,

η̃(φ) =

η0

η1

η2


 =


 −2

√
2 cosφ

1− 4 cos2φ
−4 cosφ sinφ


 .

We must consider
ψR1R

−1
3 (φ)η̃(φ) = R2(θ

†)R1v

or

ψ


 0√

17 cosφ
−sinφ


 =


 0

sinθ†

cosθ†


 =


 0

cos(θ†− π/2)
−sin(θ†− π/2)


 .

Thus, asφ makes one complete revolution so doesθ† or β → α† + β†.
In the spatial case we take generators ofT andT † consistent with the definitions given

in the planar case. Let

α = {|x| = 2, y1 =
√

2, y2 = y3 = 0}, β = {x1 = 2, x2 = x3 = 0, |y|2 = 2},
α† = {ξ0 = 3, ξ1 = 2

√
2, ξ2 = ξ3 = 0, 〈ξ, η〉 = 0, 〈η, η〉 = 1},

β† = {ξ0 = 3, 〈ξ, ξ〉 = −1, η0 = η3 = 0, 〈ξ, η〉 = 0, 〈η, η〉 = 1}.
Each of these two-sphere generators have a great circle with the same name as a generator
for the planar problem. These generators are oriented in a manner consistent with the
planar convention and usual mathematical practice. That is, as we traverse the great circle
of the planar problem in the positive sense, using the right-hand rule the thumb will point
in the direction of the positive third coordinate. By (12) the mapping onα is ξ0 = 3,
ξ1 = 2

√
2, ξ2 = ξ3 = 0, η0 = −

√
2x1, η1 = −3

2x1, η2 = −1
2x2, η3 = 1

2x3, but the
coordinates onα areη0, η3, η2 in that order, and soα→−α†.

The point wherex1 = 2, x2 = x3 = 0, y1 =
√

2, y2 = y3 = 0 is mapped to the point
whereξ0 = 3, ξ1 =

√
2, ξ2 = ξ3 = 0, η0 = −2

√
2, η1 = −3, η2 = η3 = 0. At these

points we choose oriented coordinates in the generators as follows:x2, x3 for α; y2, y3 for
β; η3, η2 for α† andξ2, ξ3 for β† in that order. The Jacobian determinants at these points
are

∂(η3, η2)

∂(y2, y3)
= −8,

∂(ξ2, ξ3)

∂(y2, y3)
= 4

9
.
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Therefore,β → −α†+ β† and the homology mapν∗ : H2(T )→ H2(T
†) is[−1 −1

0 1

]
.

That is, the homological results for positive energy are the same as those for negative
energy:Hn−1(T )→ Hn−1(T

†) andHn−1(T
†)→ Hn−1(B

†) are given by
[−1 (−1)n

0 1

]
and

[1 1] respectively.
The case of zero energy can be handled in the same way using the regularization in [3],

or one can consider it as a small perturbation of the previous cases.

3.3. Construction of the regularized manifolds.We are now ready to construct the
regularized manifoldsr(c) andR(c). We describe in detail the construction for the spatial
problem—the planar problem will simply be the restriction to the appropriate planar
subspaces. For the spatial problem, choose small balls about the singularities(−µ,0),
(1− µ,0) in the Hill’s regionH(c). The boundaries of these disks are the spheresS(c)

introduced in §2.1. LetN be the preimage of these balls inM(c). Then (up to a rescaling),
N is conjugate to the setsB constructed in §3.1 and §3.2. Then takeD = B†. For the
attaching mapσ : N→ D, takeν (as in §3.1) forc > µ(1− µ), and takeω (as in §3.2)
for c < µ(1− µ). In either case, the regularized manifold is

R(c) =M(c) ∪σ D.

The construction for the planar problem can be viewed in two ways. On the one hand,
the same construction can be employed, choosing disks inh with boundary circless(c),
taking the preimagen in m(c) and attachingd ∼= D2 × S1 via eitherν orω to produce

r(c) = m(c) ∪σ d.

On the other hand,r(c) can also be viewed as a submanifold ofR(c), obtained by
restricting bothM(c) andD to the appropriate invariant submanifolds.

4. Homology of the regularized manifolds
We are now ready to compute the homology groups for the integral manifolds in the
regularized problem. Having observed thatr(c) = m(c) ∪σ d andR(c) =M(c) ∪6 D, it
is natural to use these as Mayer–Vietoris decompositions. The sequences have the form

→ Hp(n)
j∗→ Hp(m)⊕Hp(d)→ Hp(r)→

and
→ Hp(N)

J∗→ Hp(M)⊕Hp(D)→ Hp(R)→ .

Since the homology groups ofn, N, m, M, d andD are all known, we only need to
determine the mapsj∗ andJ∗ to compute the homology ofr andR. That is, there are short
exact sequences

0 −−−−→ coker(jp∗) −−−−→ Hp(r) −−−−→ ker(jp−1∗) −−−−→ 0

0 −−−−→ coker(Jp∗) −−−−→ Hp(R) −−−−→ ker(Jp−1∗) −−−−→ 0.
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Moreover, since ker(j∗) and ker(J∗) are torsion-free, these sequences split and

Hp(r) ∼= coker(jp∗)⊕ ker(jp−1∗)
Hp(R) ∼= coker(Jp∗)⊕ ker(Jp−1∗).

The mapsj∗ andJ∗ are simply the induced homomorphisms of the inclusion maps
m← n→ d andM← N→ D. To assemble the information on these homomorphisms,
we need to use the decompositions

Hp(n) ∼= Hp(s)⊕Hp−1(s), Hp(m) ∼= Hp(h)⊕Hp−1(h, ∂h)

Hp(N) ∼= Hp(S)⊕Hp−2(S), Hp(M) ∼= Hp(H)⊕Hp−1(H, ∂H).

The attaching mapsσ∗ : H∗(n) → H∗(d) and6 : H∗(N) → H∗(D) are simply the
compositionsT → T †→ B† of §§3.1 and 3.2. That is,

σ∗ = [1 1]
[−1 1

0 1

]
= [−1 2]

6∗ = [1 1]
[−1 −1

0 1

]
= [−1 0].

Using the decompositions ofH∗(n) andHp(N) (with the mapsH1(n) → H1(s) and
H2(N)→ H2(S) both mappingα to the generator), the maps

σ 1∗ : Hp(s)→ Hp(d), σ 2∗ : Hp−1(s)→ Hp(d)

61∗ : Hp(S)→ Hp(D), 62∗ : Hp−2(S)→ Hp(D)

can be written explicitly as:

σ 1
0∗ =

[
1 0
0 1

]
, σ 2

0∗ = 0, σ 1
1∗ =

[−1 0
0 −1

]
, σ 2

1∗ =
[
2 0
0 2

]

61
0∗ =

[
1 0
0 1

]
, 62

0∗ = 0, 61
2∗ =

[−1 0
0 −1

]
, 62

2∗ = 0.

Similarly, the homology maps induced by the inclusionsn → m andN → M can be
derived from Theorem 2.1. Considern→ m(c) first. The diagram

0 // Hp−1(s) //

ι̂p−1∗
��

Hp(n)

��

// Hp(s)

ιp∗
��

//
se1oo

0

0 // Hp−1(h, ∂h) // Hp(m) // Hp(s) //
se1oo

0

commutes and splits naturally, so there is a commutative diagram

Hp(n) //

∼=
��

Hp(m)

∼=
��

Hp(s)⊕Hp−1(s)


ιp∗ 0

0 ι̂p−1∗



// Hp(h)⊕Hp−1(h, ∂h)
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In exactly the same fashion, there is a commutative diagram

Hp(N) //

∼=
��

Hp(M)

∼=
��

Hp(S)⊕Hp−2(S)


Ip∗ 0

0 Îp−2∗



// Hp(H)⊕Hp−2(H, ∂H)

Combining these, the homomorphismsj∗ : Hp(n) → Hp(m) ⊕ Hp(d) and J∗ :
Hp(N)→ Hp(M)⊕Hp(D) can be expressed as

Hp(s)⊕Hp−1(s)



ιp∗ 0
0 ι̂p−1∗
σ 1
p∗ σ 2

p∗




−−−−−−−−−−→ Hp(h)⊕Hp−1(h, ∂h)⊕Hp(d)
and

Hp(S)⊕Hp−2(S)



Ip∗ 0
0 Îp−2∗
61
p∗ 62

p∗




−−−−−−−−−−→ Hp(H)⊕Hp−2(H, ∂H)⊕Hp(D)
For the planar problem,j∗ can only be non-trivial in dimensions 0, 1 and 2. In these

dimensions,H∗(n) has rank 2, 4 and 2 respectively, and

j0∗ =
[
ι0∗
id

]
, j1∗ =


 ι1∗ 0

0 ι̂0∗
−id 2id


 , j2∗ = ι̂1∗.

Clearly,j0 is injective for allc. Consulting Table 6 shows thatι1∗ is injective for allc,
ι̂0∗ is surjective for allc andj2 has full rank for allc.

For c > 3,H0(h, ∂h) = 0, so

j1∗ =
[
ι1∗ 0
−id 2id

]
,

with ι1∗ injective. Thusj1∗ is injective, but the two generators ofH0(s) each map to twice
a generator. Forc < 3, ι̂0∗ is an isomorphism, soj1∗ can be row-reduced (overZ) to

[
I4
0

]
.

The result of all this is that there is 2-torsion inH1(r) for c > 3, and the Betti numbers
for r are

β0(r) = β0(h)

β1(r) = β1(h)+ β0(h, ∂h)− 2

β2(r) = β1(h, ∂h)− rank(ι̂1∗)
β3(r) = 2− rank(ι̂1∗)

The values are shown in Table 3.
The calculations forR are simpler, becauseJ∗ only occurs in even dimensions. For

p = 0,2,4,Hp(R) ∼= coker(Jp∗), while forp = 1,3,5,Hp(R) ∼= Hp(M)⊕ker(Jp−1∗).



Integral manifolds of the restricted three-body problem 911

The values forJ∗ are:

J0∗ =
[
I0∗
id

]
, J2∗ =


 I2∗ 0

0 Î0∗
−id 0


 , J4∗ = Î2∗.

We need to consider the casesc < µ(1 − µ) and c > µ(1 − µ) separately. For
c > µ(1− µ),Hp(H, ∂H) ∼= Hp−1(h, ∂h) andÎp∗ is conjugate tôιp−1∗. That is,

J0∗ =
[
I0∗
id

]
, J2∗ =

[
I2∗ 0
−id 0

]
, J4∗ = ι̂1∗,

so noJ∗ creates torsion and rank(J0∗) = rank(J2∗) = 2, rank(J4∗) = rank(ι̂1∗).
There is no torsion inH∗(R(c)) and the Betti numbers are:

β0(R) = β0(H)

β1(R) = β1(M)

β2(R) = β2(H)

β3(R) = β3(M)+ 2

β4(R) = β1(h, ∂h)− rank(ι̂1∗)
β5(R) = β5(M)+ 2− rank(ι̂1∗).

These are the formulae obtained by direct evaluation. It is worth noting that these can
be reformulated, by comparing them to the Betti number formulae forM(c). That is,
β0(H) = β0(M) andβ2(H) = β2(M), whileβ1(h, ∂h) = β4((M)). That is,

β0(R) = β0(M)

β1(R) = β1(M)

β2(R) = β2(M)

β3(R) = β3(M)+ 2

β4(R) = β4(M)− rank(ι̂1∗)
β5(R) = β5(M)+ 2− rank(ι̂1∗).

These values are listed in Table 4.
For c < µ(1 − µ), Hp(H, ∂H) ∼= Hp(H) and Îp∗ is conjugate toIp∗. Clearly,

I0∗ = [1 1], while I2∗ is an isomorphism. The matrices are then (up to a choice of
bases inH2(H))

J0∗ =

1 1

1 0
0 1


 , J2∗ =




1 0 0 0
0 1 0 0
0 0 1 1
−1 0 0 0
0 −1 0 0



, J4∗ =

[
1 0
0 1

]
.

Thus none of theJ∗ homomorphisms create torsion, and rank(J0∗) = rank(J4∗) = 2,
rank(J0∗) = 3. SinceN, M andD all have non-trivial homology only in dimensions 0, 2
and 4, it is a simple matter to now read off the Betti numbers ofR. These values are listed
in Table 4.
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5. Cross sections
Typically, the homology of a manifold can only be directly related to the dynamics on the
manifold when the manifold is compact. One exception is the existence of a cross section.
For any space (compact or not), the existence of a cross section imposes restrictions on the
homology of the space. These were formulated in [20] as the following.

THEOREM 5.1. If the flow8 : R×M → M on the manifoldM admits a cross sectionC,
then:
• M \ ∂C is a fiber bundle overS1 with fiberC \ ∂C;
• there is a long exact homology sequence

→ Hk+1(M, ∂C)→ Hk(C, ∂C)
id−P∗−→ Hk(C, ∂C)→ Hk(M, ∂C)→;

• if M, C and∂C are of finite type, then there exists a polynomialQ(t) with

−min{P∂C(t), tP(C,∂C)(t)} ≤ Q(t) ≤ P(C,∂C)(t)
such thatPM(t)− P∂C(t) = (1+ t)Q(t);

• if M and∂C are of finite type, thenχ(M) = χ(∂C).
In the case of a global cross section when∂C = ∅, this theorem impliesχ(M) = 0,

H1(M)must have a factorZ and the polynomialQ(t)must have non-negative coefficients.
Sincem, M, r andR all have finitely generated homology, the only hypothesis required

to apply the theorem is that the cross sectionC is of finite type. As described in §1.2, these
can be interpreted as necessary conditions for any of the four manifoldsm, M, r, R to
admit a global cross section of finite type; and also as necessary conditions form andr to
be the boundaries of cross sections of finite type toM andR.

If we look first for global cross sections, the Euler characteristic requirement shows that
the spatial restricted manifoldM can never admit a global cross section, nor can the spatial
regularized manifoldR in case I. The requirement thatH1 has a factor ofZ further rules
out a global cross section forR in case II. When the manifolds are disconnected, these
requirements must be satisfied on all components; but in cases V and VI, the bounded
components of bothr andR fail to have a factor ofZ in H1. Thus global cross sections are
ruled out for bothr andR in cases V and VI.

A priori, the requirement that the Poincar´e polynomial factors as(1+ t)Q(t), withQ(t)
positive, is a stronger requirement that might exclude further cases. In this instance, it does
not. In all remaining cases, the Poincar´e polynomial is divisible by(1+ t), and the quotient
has positive coefficients. So, form in all cases, forr in cases I–IV and forR in cases III
and IV, there is no homological obstruction to the existence of a global cross section.

We next consider if the planar manifolds can serve as boundaries for cross sections to
the spatial manifolds. Since the Euler characteristics of the planar and spatial restricted
manifolds are never equal,m is never the boundary of a cross section to the flow ofM. For
the regularized problem, the results are more equivocal. In case I the Euler characteristics
of the planar and spatial manifolds are different, ruling out a cross section forR with
boundaryr. In all other cases the Euler characteristics of the planar and spatial manifolds
are both zero. In case II some of the finer structure of Theorem 5.1 can be used to rule out
a cross section with boundaryr.
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Namely, if there were a sectionC with boundaryr, thenH0(C, r) = 0. For, if not, then
there must be a componentC0 to C which does not intersectr. As the image ofC0 under
the flow is clearly connected and disjoint fromr, there must be a component toR which
is disjoint fromr; but there is no such component, soH0(C, r) = 0. Thus the Poincar´e
polynomial of any such pair(C, r) must have constant term zero. On the other hand,

PR(t)− Pr(t) = −t + 2t2+ 3t3 = (1+ t)(−t + 3t2).

The inequality−tPC,r(t) ≤ Q(t) would then require the constant term ofPr(t) to be at
least 1.

In the remaining cases, III–VI, there is no homological obstruction. Indeed, in case VI,
there is a very natural candidate for a cross sectionC. Bothr andR have three components:
one around each of the regularized singularities and one unbounded component. Each
of the bounded components ofR is conjugate to the geodesic flow onT1S

3, with the
corresponding component ofr conjugate to the geodesic flow onT1S

2. If T1S
2 = {(ξ, η) ∈

T1S
3 | ξ3 = 0, η3 = 0}, then letC = {(ξ, η) ∈ T1S

3 | ξ3 = 0, η3 ≥ 0}. ThenC is a cross
section for the geodesic flow onT1S

3, and has boundaryT1S
2.

On the unbounded component, letCu(c) = {(x, y) ∈ Mu(c)|x3 = 0, y3 ≥ 0}. Then
∂Cu(c) = mu(c), andẋ3 = y3 ≥ 0, so the flow is transverse toCu onCu \ mu. What
remains open is whether or not all orbits inMu(c) intersectCu(c). If they do, thenCu(c)
is a cross section toMu(c). It would suffice to show that the forward orbit of every point
in Cu(c) intersects the set{(x, y) ∈Mu(c) | x3 ≥ 0, y3 = 0}. This is an open question at
the moment.
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