Ergod. Th. & Dynam. Sy$2001),21, 885-914
Printed in the United Kingdom © 2001 Cambridge University Press

Integral manifolds of the restricted
three-body problem

CHRISTOPHER K. McCORD and KENNETH R. MEYER

Department of Mathematical Sciences, University of Cincinnati, Cincinnati,
OH 45221-0025, USA
(e-mail: {chris.mccord,ken.meye@uc.edu)

(Receive®@1 Decembefl999and accepted in revised forgb May 2000)

Abstract We compute the homology of the integral manifolds of the restricted three-body
problem—planar and spatial, unregularized and regularized. Holding the Jacobi constant
fixed defines a three-dimensional algebraic set in the planar case and a five dimensional
algebraic set in the spatial case (the integral manifolds). The singularities of the restricted
problem due to collusions are removable, which defines the regularized problem.

There are five positive critical values of the Jacobi constant: one is due to a critical point
at infinity, another is due to the Lagrangian critical points and three are due to the Eulerian
critical points. The critical point at infinity occurs only in spatial problems. We compute
the homology of the integral manifold for each regular value of the Jacobi constant. These
computations show that at each critical value the integral manifolds undergo a bifurcation
in their topology. The bifurcation due to a critical point at infinity shows that Birkhoff's
conjecture is false even in the restricted problem.

Birkhoff also asked if the planar problem is the boundary of a cross section for the
spatial problem. Our computations and homological criteria show that this can never
happen in the restricted problem, but may be possible in the regularized problem for some
values of the Jacobi constant. We also investigate the existence of global cross sections in
each of the problems.

1. Introduction
We study the topology and bifurcations of the integral manifolds of the restricted three-
body problem—planar and spatial, unregularized and regularized. The restricted problem
is a Hamiltonian system with one integral—the Hamiltonian or the Jacobi constant.
Holding this integral fixed defines a three-dimensional algebraimdatthe planar case
and a five-dimensional algebraic $8t in the spatial case. We will refer to these as the
integral manifolds.

The restricted problem has two singularities corresponding to the collision of the
infinitesimal with the primaries. These singularities are removable by a process known
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as regularization, which is discussed in 83. The unregularized system will be called the
restricted problento differentiate it from theegularized problemThe integral manifolds
of the planar and spatial regularized problem will be denoteddnydfR, respectively.

There are five positive critical values of the Jacobi constaft,— 1) < 3 < ¢1 <
c2 < c3, Whereu (1 — w) is due to a critical point at infinity, 3 is due to the Lagrangian
equilateral triangular point and, ¢ andcs are due to the Eulerian collinear critical points.

(1 — w) is a critical value only in the spatial problem. We compute the homology of the
integral manifold for each regular value of the Jacobi constant for the planar and spatial,
unregularized and regularized problems. From these computations we will show that at the
critical values the integral manifolds undergo bifurcations in their topology.

In his discussion of the integral manifolds of the full three-body problem Birkhgff [
stated that the only bifurcations of the integral manifolds are due to the critical points
that correspond to relative equilibrium solutions. Although this is true in the planar
case 9, 29, 3Q it is false in the spatial problen2fl]. Our computations show that the
same conclusions hold in the simpler restricted and regularized problems, i.e. ‘Birkhoff’s
conjecture’ is true in the planar problems and false in the spatial problems.

In the same discussion Birkhoff observes that the integral manifold for the planar three-
body problem is a codimension two invariant subset of the integral manifold of the spatial
three-body problem. He then asks if the planar problem is the boundary of a cross section
in the spatial problem. Iri20] we develop some homological criteria for an invariant set of
a flow to be the boundary of a cross section and answer Birkhoff’s question in the negative.

As the planar restricted and regularized manifolds are also closed invariant codimension
two subspaces of the spatial restricted and regularized manifolds, we can also ask if they
could be the boundary of a cross section. By applying the homological criteria we will
show that the planar restricted manifold can never be the boundary of a cross section of
finite type in the spatial restricted manifold; but that for some energy levels, the planar
regularized manifold may be the boundary of a cross section in the spatial regularized
manifold.

As a separate issue, we also give 2@][some criteria for the existence of global cross
sections to a flow. In the restricted problem there are no homological obstructions to
the existence of a global cross section in the planar manifold; but there can never be a
global cross section of finite type in the spatial manifold. The analysis for the regularized
manifolds is less decisive—global cross sections are ruled out in some energy ranges and
may exist in others.

1.1. The integral manifolds. The restricted three-body problem is defined by the
Hamiltonian

H=3ly*-x"Ky-U, (1)
whereU is the self-potential
1-—
v="2 & ®)
d1 do

and O< p < 1is the mass ratio parameter, sée 22, 2. The vectorx is a Cartesian
coordinate of an infinitesimal particle (theatellitd in a synodical coordinate system
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which leaves the two primaries of magsand 1— u fixed on thex; axis andy is the
momentum conjugate te. In the planar problem, y € R?, d? = (x1 — 1 + 1) + x2,
d? = (x1+p)?+xZ and in the spatial problem y € R3, d? = (x1 — 1+ p)? +x3 +x2,
d5 = (x1+ 1) + x5 + x3. The matrixkK is

0O 1 0
K:[_Ol (1)} or K=(-1 0 O
0O 0O

in the planar and spatial problems, respectively. These problems have two singularities at
the primaries, i.e. the singular sets for the planar and spatial restricted problems are

§={(—pn,0),1—p,0} xR% A={(—u,0,0),(1—u00) xRS

The equations of motion are

oH
x——:y+KX
dy
. aH_K oUu
r= ax Y ax

The HamiltonianH is the only known integral of these equations. Insteadi@f, y)
one often considers the Jacobi constéiit, x) as the integral of motion wher€ =
—2H+p(@d—p), ie.

C(x, %) =V(x) — %%, whereV(x) =x2+x342U 4+ u(1— ),

is the amended potential.
The integral manifolds for the restricted problem are

m(c) = {(x,y) e RZx R?\ 8 | C(x,y) = c},
M) ={(x,y) e REx R\ A | C(x,y) =c}.

The finite critical points fov are equilibrium points for the equations of motion. There
are five equilibrium points for the restricted problem, denotedy = 1,...,5. L1, £2
and L3 lie on thex; axis and are called the Eulerian collinear equilibrium points Apnd
andLs are at the vertices of an equilateral triangle with base vertices at the two primaries
and are called the Lagrangian points. Note that in the spatial problaes a critical point
at infinity with critical valuew (1 — w), sincevvV — 0andV — (1 — u) asxz — oo.

The critical value due to the Lagrangian points is 3. tgtc2 andcs denote the critical
values due to the Eulerian points. One verifies fhélt — 1) < 3 < ¢1 < ¢2 < c3. (The
valuecs corresponds to the critical point between the two primaries.) By classical Morse
theory R3], the topology of the integral manifolds can only change as the parameter
passes through a critical value, i.e. if there are no critical valugs,ih] thenM1(a) is
diffeomorphic todt(b). Our homology computations show that each of the critical values
gives rise to distinct topologies.

By the process called regularization, the singularities due to the collision of the satellite
with the primaries can be removed. The analytic details of this process will be discussed
in 83, but the geometry is easy to state. Let

2= (ST x D) U (St x D?), D= (5% x D3 U(S? x D3,
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where " is the n-sphere andD” is the closedr-ball. There is a neighborhooft

of the singular setA in M(c) and an embeddin@& : 9% — 2 whose image is
(52 x (D3\{0}))U(S2x (D3\{0})). Furthermore, there is a smooth non-singular fljoan

D, andX takes the orbits of the restricted problem to orbitg ofAfter the flow on9Jt(c)

is reparameterized the diffeomorphi&irtakes parameterized trajectories of the restricted
problem to parameterized trajectorigs Thus, there is a well defined non-singular flow
defined orMi(c) Ug ® which is an extension of the flow of the restricted problem. The
planar problem is regularized in the same way. In fact, theisatsld used to regularize
the planar problem are simply the restrictiorddfind® to their planar subsets. Thus, the
regularized manifolds are defined by

tic) =m(c) Uy 0, fR(c) =M(c)Us D.

1.2. Summary of results. The five critical values divide the real line into six intervals
denoted by

| = (_OO, /L(l_ /’L))v Il = (/L(l_ /’L)s 3)1 = (37 Cl)v
IV = (c1,c2), V =(c2,¢3), VI=((c3, 00).

Our main results are summarized in the four tables of homology, Tables 1-4. The body of
these tables give the integral homology groups and Euler—Peiobaracteristig in each
range of regular values, for each of the four problems.

One feature reflected in the tables is that for large values of the Jacobi constant (cases V
and V1), these manifolds are disconnected. In case V, each of the four manifolds splits into
two components, one a bounded neighborhood of the primaries, the other unbounded. In
case VI, the bounded component further decomposes into disjoint neighborhoods around
the two primaries. In case V, the bounded component is denoted by the subsaripthe
unbounded component by the subscrif§e.g.2, (¢) ort,(c)). In case VI, the unbounded
component is again denoted by the subscaiptind the two bounded components are
denoted by the subscripts 1 and 2 (€Xr(c) or t2(c)).

TaBLE 1. Homology of the planar integral manifolds.

Hp(m) 0 1 2 x(m)

I 7 73 72 0
I 7 73 72 0
I 7z 74 73 0
[\, 7z 73 72 0
Vv 72 73 7 0
V.b 7 72 7 0
V.u 7 Z 0 0
\Y/ 73 73 0 0
VIl Z 7 0 0
VI.2 Z 7 0 0
Viu Z Z 0 0
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TABLE 2. Homology of the spatial integral manifolds.

HyM 0 1 2 3 4 xo
[ Z 0 73 o 72 6
I Z 0 72 7 72 4
11 7 z7? 72 0 73 4
\Y; 7 7 72 0 72 4
Y 72 7 72 0 Z 4
V.b Z 0 72 0 Z 4
V.u Z Z 0 0 0 0
Y 73 7 72 0 0 4
VI.1 Z 0 Z 0 0 2
VI.2 Z 0 Z 0 0 2
Viu Z Z 0 0 0 0

TABLE 3. Homology of the regularized planar integral manifolds.

Hp(x) O 1 2 3 x(v
| Z Z 0 0 0
I Z Z 0 0 0
I Z 7?75 Z 0 0
\% Z zZe®7Z5 0 0 0
Vv 7?2 ze75 0 Z 0
Vb Z Z5 0 Z 0
Vu  Z v/ 0 0 0
Vi 73 zez5 0 72 0
VIl Z Z, 0 Z 0
V2 Z Z, 0 Z 0
Viu  Z v 0 0 0

TABLE 4. Homology of the regularized spatial integral manifolds.

H® 0 1 2 3 4 5 x®™
I Z 0 72 7Z 0 0 2
I Z 0 72 73 0 O 0
1 7 72 72 72 7 0 0
v Z 7 72 72 0 0 0
Y 72 7 7?2 72 0 Z 0
V.b Z 0 72 72 0 Z 0
V.u Z 7Z 0 0 0 0 0
VI 73 7 7?2 72 0 72 0
VIl Z 0 Z Z 0 Z 0
V1.2 Z 0 Z Z 0 Z 0
Viu Z 7Z 0 0 0 0 0
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In Tables 1 and 3 for the two planar problems there is no difference in the homology in
cases | and Il. It will be shown in §2.1 that there is, in fact, no difference in the topology
of the planar manifolds in cases | and Il. On the other hand, for the two spatial problems,
Tables 2 and 4 show that there is a difference in the homology in cases | and Il. This reflects
the fact thajt (1 — w) is not a critical value for the planar problems, but it is a critical value
for the spatial problems and that1l — w) is a bifurcation value for the topology for the
spatial problem. Thus, the Birkhoff conjecture is true in both of the planar problems and
false in both of the spatial problems.

These tables also answer some questions on cross sections to the flowd heeta
connected manifold of dimension without boundary® : R x M — M a flow andC
a submanifold ofM of dimensionm — 1 with boundarydC of dimensionm — 2. Let
intC = C \ 3C be the interior ofC. ThenC is across sectiofif:

(1) the boundaryC of C is invariant under the flowb;

(2) foreach poinp € M \ 3C there is & (p) > 0 such thatb(¢(p), p) € intC;

(3) thereis a continuous function, theturn time z : intC — R such that
@ @@, p)¢intCforall peintCandO<1t < 7(p),
(b) @(r(p),p) eintCforall p €intC;

(4) there is an open neighborhoddof intC x {0} in intC x R such that®|y is a
homeomorphism front/ to an open neighborhood of i6tin M \ 4C;

(5) the return time extends continuously t&C.

If 9C = @ thenC is called aglobal cross section

Given a manifoldM and a codimension two submanifoR] we developed inZ0|
necessary conditions in terms of the homologyhfand B for the existence of a cross
sectionC of finite type withdC = B. These results can also be applied wier= 0,
providing the necessary conditions on the homologwbfor a global cross section of
finite type exist inM . ‘Of finite type’ means that the homology 6fis finitely generated.

With the homology tables of the restricted and regularized manifolds in hand, we can
apply these results to investigate the existence of global cross sections of finite type for
each of the four manifolds. Furthermore, simcandr are codimension two submanifolds
of 9t andfR respectively, we can also examine whether either of the planar manifolds can
serve as the boundary of a cross section of finite type of the corresponding spatial manifold.

The details of this investigation are given in 85, but the results can be easily summarized.
Table 5 displays the results. An entry of ‘N’ indicates that no cross section of finite type
can exist and an entry of 'Y’ means that all of the homological information is consistent
with the existence of a cross section.

On the one hand, a ‘N’ still allows the possibility of a cross section whose homology
is infinitely generated. While we cannot rule out such cross sections by homological
arguments, the existence of such a cross section would seem to be of little practical value.
Since cross sections are sought to reduce the complexity of the dynamics there would be
no advantage in moving the investigation to a space with an infinitely complex topology.
On the other hand, much more than homological consistency is required to demonstrate
the existence of a cross section, so a ‘Y’ should be considered as an invitation to further
investigation.
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TaBLE 5. Homological admissibility of cross sections.

Global cross section Cross section
m M ¢ R minM tinR

| Y N Y N N N
Il Y N Y N N N
11l Y N Y Y N Y
1\ Y N Y Y N Y
\% Y N N N N Y
V.b Y N N N N Y
V.u Y Y Y Y Y Y
\ Y N N N N Y
VL1 'Y N N N N Y
V2 Y N N N N Y
Viu Y Y Y Y Y Y

1.3. History of the problem. The restricted problem has a long history dating back to
Euler's 1772 treatisel0] on the motion of the moon. Euler wrote the equations in sidereal
coordinates; it was only later when Jacdbiwrote the equations in synodical coordinates
that the integral was found.

Hill [ 11] discussed the zero velocity curves and Hill’s regions for a limiting case of the
restricted problem is known as Hill’s lunar problem. In his simplified model he was able
to assert that the orbit of the moon was bounded.

Darwin [7] obtained grants from the British government and the Royal Society to pay
his computers (Messrs J. W. F. Allnutt, J. I. Craig and M. J. Berry) in order to calculate the
zero velocity curves for the planar restricted problem. Figure 1 (reproduced by permission
of the editors of Acta Mathematica) is the figure rendered by Mr Edwin Wilson. Darwin
says of his computers.’.. the trained computer, who is also a mathematician, is rare. |
have thus found myself compelled to forgo the advantages of the rapidity and accuracy
of the computer, for the higher qualities of mathematical knowledge and judgnrent’ [

p. 101].

The zero velocity surfaces for the spatial problem were first investigated by Picart
[27]. Excellent figures of the zero velocity surfaces are found in Lundeérg [16],
who forwent the advantages of mathematical knowledge for the rapidity of an electronic
computer. The zero velocity curves and surfaces are reproduced in many books on celestial
mechanics§, 26, 31, 3R

The removal of the singularity in Kepler's planar problem and the restricted problem
seems to have been first noted by Thied@][in 1895. The most well-known method
uses complex variables and it is due to Levi-Civii#[19. Kustaanheimo and Stiefel
[18] regularized the spatial problem using quaternions. Easpgiyes a very general
definition of regularization using Conley index ideas, but does not treat the spatial
problems. (It is clear that Easton’s general method would apply to the spatial problem.)
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Curves of zero velocity, IO(?’2 + ;) + <,o2 +;> = (.

FIGURE 1. Darwin’s figure.

The only general method which treats the planar and spatial problems in a unified way is
found in 2, 3, which will be summarized in §3.

The topology of the integral manifolds of the planar restricted and regularized problems
is discussed by Birkhoffq] using complex variable methods for regularization and by
Lacomba 2, 13 using topological methods.

Hill's regions and integral manifolds have been investigated in the full (unregularized)
three-body problem, se@1, 2§ and the references therein.

2. The restricted problem

The planar and spatial integral manifolds are described by projecting them onto planar
regions. In the end, the only homology groups which must be explicitly calculated will
be those of subsets of the plane. For these, the homology groups can be derived from
inspection of Figure 2. Thus, with the few theorems expressing the relationships between
the homology groups of the various Hill's regions and integral manifolds and these simple
planar calculations, all of the homology groups follow.

2.1. Decomposition of the integral manifoldsThe projection of the integral manifolds
onto position space are callétll's regionsand are denoted by

h(c) = {x e R? | Iy e R?, (x, y) € m(c)},
H(c) = {x e R® |3y e R®, (x, y) € M(0)}.

Note that the planar manifold embeds in a natural way into the spatial manifold and
similarly for the Hill's regions. We thus have the following diagram of embeddings and
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FIGURE 2. The planar Hill's regions.

projections:
m(c) —— M(c)

l?‘[ l?‘[
hlc) —— H(c)
The dimensions of these spaces are

dimm(c)) =3, dim@®(c)) =5
dim(h(c)) =2, dim($(c)) = 3.

The planar manifoldn(c) is defined byC(x, y) = V(x) — |y|2 = ¢. Sincey appears
only in the term|y|2, we can reformulate the conditi@h(x, y) = ¢ as

Iy = V(x) —c.

That is, whenV (x) < c, there can be ng such thatx, y) € m(c), and forV (x) = c the
onlyvalidy isy = 0. WhenV (x) > ¢, then(x, y) € m(c) for all y in the circle of radius
V(x) — c. Thus the Hill's region is

hlc) ={x e R? | V(x) > ¢, x # (—p, 0), (1 — p, 0)}.

The zero velocity curve is its boundaiij(c), which is simply the level sét (x) = c¢. The
planar Hill's regions for each of the six cases are shown in Figure 2. There, the solid black
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regions are excluded from the Hill's region; the white and shaded regions are included (the
shading is relevant only to the spatial problem, and will be explained below).

There is a natural projection : m(c) — bh(c). It is worth noting that this projection
admits a section. In fact, for any unit vectore S, there is a sectiom, : h(c) — m(c)
defined bys, (x) = (x, (V(x) — ¢)v).

We can summarize this by describimgc) overh(c), both locally and globally. Locally,
we have the following.

PROPOSITION2.1. The projectiont : m(c) — h(c) is an orientable singulas®-bundle.
That is, forx € h(c), the preimager —1(x) is a circle whenV (x) > ¢, and a single point
whenV (x) = ¢. TheS-bundle over the interior ofy(c) is trivial.

Globally, this can be used to describe the integral manifold as a quotient of a product
space.

PROPOSITION2.2. The integral manifoldn(c) is a quotient space of the produgtc) x
$1, obtained by collapsing the circle over each point in the boundgiy) to a point.

The structure of the spatial manifold and its projection Mi(c) — H(c) are very
similar to those of the planar manifold. The Hill's region is the set

9(e)={x eR®|x # (-1, 0,0), (1 —1,0,0), V(x) > c},

and its boundary$(c) is the level set ~1(c) in R3. For everyv € S? there is a section
sy : H(c) = M(c). In exactly the same manner as Propositions 2.1 and 2.2, we have the
following.

PROPOSITION2.3. The projectionr : Mi(c) — $H(c) is an orientable singulas2-bundle.
That s, forx € $(c), the preimager ~1(x) is a sphere whel (x) > ¢, and a single point
whenV (x) = ¢. TheS2-bundle over the interior ofy(c) is trivial.

PROPOSITION2.4. The integral manifoldli(c) is a quotient space of the produgtc) x
52, obtained by collapsing the sphere over each point in the bouriifgiy to a point.

To further analyze the spatial problem, we follow Eastéhdnd project the spatial
Hill's region onto the planar Hill's region. Lef™(c) = h(c) U {(—u, 0), (1 — u, 0)},
and letp : R® — R? be the projection onto the first two coordinates. To understand
the structure op, we must understand the dependence o . Fortunately, this is quite
simple. The quantityxz appears only in the potential terms

1—
n N I .
\/(xl—1+u)2+x§+x§ \/(x1+u)2+x§+x§

This decreases monotonically to zero |as| goes to infinity, so for fixedc; and xo,
V (x1, x2, x3) limits to the quadratic

W(x1, x2) = x3 + x5 4+ u(l — ).
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PROPOSITION2.5. p : (c) — R? maps ontdy™ (c). The fiber of this projection is

*, V(x1,x2) = c,

1, Wi(x1,x2) <c < V(x1,x2) < o0,
p 1, x2) = Y1\ {0}, W(x1,x2) <c < V(x1,x2) = 00,
R, c < W(x1, x2), V(x1, x2) < 00,
R\ {0}, ¢ < W(x1,x2), V(x1, x2) = 00.

Note that the fibed should be understood to be an interval that is symmetric about the
origin, and the conditiof¥ (x1, x2) = oo should be understood as a short-hand for the two
points(x1, x2) = (1 — u, 0), (—u, 0). This local description can be globalized to describe
$H(c) andasH(c) in terms offy(c) andah(c).

To do so, lets(c) be a pair of circles ifh(c) about the two singularitieé—u, 0) and
(1— 1, 0), and let&(c) be a pair of spheres ifiy(c¢) about the singularities. Choose these
so that the circles ia(c) are the equators of the spheresSiic), and so that they do not
intersect the boundary of the Hill’s region. With these definitions we can construct strong
deformation retracts of the spatial Hill's region and integral manifold.

PROPOSITION2.6. The spatial Hill's region $(c¢) has the homotopy type of
h(c) Us(c)e(c). The boundary of the spatial Hill's region is homeomorphic to
3hT(c) Uah(c) h* (o).

By combining Propositions 2.3 and 2.5, we have the following decompositigi(of.

PROPOSITION2.7. The projectione o 7 : M(c) — hT(c) is surjective, with fiber

*, Vi(x1,x2) =c,

S8, W(x1,x2) <c < V(x1,x2) < 00,
n_lp_l(xl,xz) =153\ §2, W(x1,x2) < ¢ < V(x1,x2) = 00,

R x S?, ¢ < W(x1, x2), V(x1, x2) < 00,

R\{0D) x 82, ¢ < W(x1, x2), V(x1, x2) = 0.

Given the very simple form oW (x1, x2), it is a simple matter to precisely identify how
the various regions change awvaries. First, forc < u(1 — w), ¢ < W(x, x2) for all
(x1, x2). Asc increases, the sé¥ (x1, x2) < c is the open diske? + x2 < ¢ — (1 — ).

At ¢ = p this passes through the poirtu, 0) and atc = 1— u it passes through the point
(1—pu, 0). At c = 3an excluded region appears inside this open disk, and continues to grow
asc increases, just as in the planar problem. The evolution of the boufidary, x2) = ¢

is displayed in Figure 2, where the shaded region represents thesa¥V (x1, x2)}.

Thus, the only parameter values at which the topology@) and9i(c) could possibly
change are the values that already arose in the planar problem¢3andcs, and the new
valuesu(1—u), n and - . Atall of these values Proposition 2.4 implies that the topology
of M(c) can only change if the topology 6f(c) changes. We will see that the topology of
$(c) does change at(1 — ) and at 3¢1, c2 andcz. However, afw and 1— p it is only
the projection ofy(c) ontoh(c) that changes, not the topology of the sp&ce) itself.
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PROPOSITION2.8. Forall u(1—pu) < ¢ < 3,9(c) = (B2 x 1)\ {2 pts}.

Proof. For all c in this range, there is a positive functibfxy, x2) defined on the open ball
x% +x§ <c¢— u(l—p),with
lim h(x1, x2) = 00,

xf+x§%c7,u(lf,u)
such that the complement df(c) in R3 consists of the setjx3] > h(x1,x2)} and
the two points{(—u, 0, 0), (1 — «, 0, 0)}. Applying (2/7)tan ! to all coordinates, we
can map this intd—1, 1], and then scalas by 7/2tam1(h(x1, x2)) to map the set
{x§ > h(x1,x2)} into the top and bottom faces. The resulting set, an open cube with
two open disks appended to the top and bottom and two points deleted from the interior, is
clearly homeomorphic toB? x 1) \ {2 pts}. O

COROLLARY 2.1. The homeomorphism type ¥t(c) does not change on the parameter
interval u(1— ) <c < 3.

2.2. Homology of the restricted manifoldsin the previous section we showed that the
topology of the integral manifolds could be understood in terms of the topology of the
Hill's regions and that the topology of the spatial Hill's region could be understood in
terms of the planar Hill’s region. In this section we pursue the homological implications
of these reductions. We will show that the homology groupsn¢f) and Mi(c) can

be calculated from the homology df(c), h+(c) and dh(c) and the inclusion map

t : s(c) — b(c). Specifically, we will require knowledge of the homology groups
H.(h(c)) and H.(h(c), dh(c)) and the homomorphisms : H.(s(c)) — H.(h(c)) and

tx » He(s(c)) — Hi(h(c), 9h(c)). As all of these spaces are 1-complexes (or retract onto
1-complexes), these groups and homomorphisms are easily computed from Figure 2.

PROPOSITION2.9. In all cases, the homology groupstpand (h(c), ah(c)) are torsion-
free. The Betti numbers and the ranks of the maps H,(s(c)) — H.(h(c)) and
It Hp(s(c)) — H«(h(c), 3h(c)) are given in Table 6.

TABLE 6. Homology of the planar Hill’s regions.

Hi(h) rank(ps) Hy(s) rank(ps) Hs(h,0h)
0 1 0 1 0 1

I
I
v

WNPRFRPPFPEPR| O
WwwhANON| R
NRRPRPRR
NNDNDNDND N
NPNDNDNDNNDN o
NNNNNDN| -
OO OO R
ORL NMNNNDN
[oNoNeR oI
OFRLrNWNN

Vi

With these values in hand, we can now compute the homology groups of the Hill's
regions and integral manifolds.
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PROPOSITION2.10. The homology of the spatial Hill’s region is
Hy,(5(c)) = cokelltpy) & Hp(S(c)).
For ¢ > u(1— ), the homology of the pai$(c), 39H(c)) is
Hp(9)(c), 05(c)) = Hp-1(h(c), 3h(c)).
Forc < u(1—pw), 95H(c) =Y and
H,(9(c), 09(c)) = Hp(9(0)).
Proof. Both formulae are established via Mayer—Vietoris arguments. $ar),

Proposition 2.6 supplies the decompositign) and&(c¢), which have overlap(c). The
homology sequence is

Lx

Ix

— Hy(s) —= Hy(h) © Hy(S) — Hy(9H) — .

Exceptforp = 0,i,+ : Hy(s) = Hp(6) istrivial, sol,. : Hy(8) — H,($) is injective.
Thus, the sequence breaks up as

0 — cokel(tps) ® Hp(H(c)) — ker(tp—14) — 0.

Since ke(:,_1.) is always torsion-free, the sequence splits.

In dimension O, Ip, is not injective, but taking reduced homology supplies the
appropriate correction.

For the homology of pairs, we employ a different Mayer—Vietoris argument. Let

4 = {(x1, x2, x3) € H(c)|x3 > 0},
- = {(x1, x2, x3) € H(c)|x3 < 0}

and leto$L = H1 NaH. Then the pairg$H, 9H4+) and($H—, 3H_) give a decomposition
of (94, 09H4) and(H_, 95H_) with intersection$, 9H+) and($H—, 39H-).

The crucial observation is that, when > u(1 — @), $H+ retracts ontod$H+, so
H.($H+, 09H+) = 0. Thus, the Mayer-Vietoris sequence of the pairs becomes

0— Hp(H(c), 39H(c)) = Hp-1(h(c), dh(c)) — O. O
COROLLARY 2.2. There is a commutative diagram

i

H,(S) Hy($),09)

al la
zp—il.*

H), 1(s) —— Hp_1(h, 9h)

For convenience, we will denote the preimagel(dh(c)) asdm(c). It follows from
Proposition 2.1 that : 9m(c) — 9h(c) is a homeomorphism.
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THEOREM2.1. The homology of the planar integral manifold is given by

Hp(m(c)) = Hp(h(c)) & Hp—1(h(c), dh(c)).
The homology of the spatial integral manifold is given by
Hp(M(c)) = Hp(H(c)) ® Hp—2(H(c), 39H(c)).

Proof. The two arguments are identical, so it suffices to describe the planar case. We will
suppress all of the dependence(on and simply writem, etc.
Consider the exact sequences of the pairsom) and(b, ah).

—— Hp(0m) —— Hp(m) —— H,(m, dm) ——
k)
— H,(0h) —— Hp(h)) —— Hp(h, 9h) ——-
Sincesr admits the sectiom, m, is surjective. Sincer : 9m — 9§ is one-to-one, the
resulting map on homology is an isomorphism.

The pairr : (m, dm) — (b, 3h) is an orientable relativé-bundle, so there is a Gysin
sequence

— Hp_1(h,0h) — H,p(m, 0m) — H,(h, oh) — H,_2(h, 9h) — .
The existence of the sectierimplies that this sequence splits, with
Hp(m, dm) = H)p(h, 9h) & Hp-1(h, 9h),
with m, : Hp(m, am) — H, (b, ah) surjective.
Thus, the sequences of the pdiis 9m) and(h, ah) can be written as
—— Hp(3h) —— H,(m) —— H,(h, 9h) & Hp-1(h, 0h) ——

lid l lm

— Hp(0h) —— Hp(h) ——— > H(h, 9h) ——-
From this, it is a simple diagram chase to see that H,.(m) — H,(h) is surjective, with
the kernel isomorphic téf, (b, 3h). a

Note that both the statement and proof of Theorem 2.1 parallel thosel3f [
Theorem 1.3]. With the values for the homology of the Hill's regions computed, the
homology of the integral manifolds can be read off directly.

COROLLARY 2.3. For all values ofc¢, the homology groups of the planar and spatial
integral manifolds are torsion-free. The Betti numbers for the planar manifold are given
by
Bpm(c)) = Bp(h(c)) + Bp-1(h(c), 3h(c)).
For ¢ > (1 — w), the Betti numbers of the spatial manifold are given by
BpM(c)) = Bp(h(e)) + Bp—-3(h(c), 3h(c)) — rankips) + 8p,0 + 28p 2.
For ¢ > (1 — ), the Betti numbers of the spatial manifold are given by

Bp(M(c)) = Bp(h(c)) + Bp-2(h(c)) — rankips) — rank(p—2+) + 8p,0+ 38p,2 + 28.4.

The homology groups so computed are given in Tables 1 and 2.
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3. Theregularized problem
Belbruno P, 3] showed that the Kepler problem iR" can be regularized and the
regularized flow on an energy levél is equivalent to the geodesic flow on a manifold
of constant curvature-E. (Also see the survey?f].) His theorem extends the work
of Conley and Moserd5] who showed that the Kepler problem with negative energy
can be regularized and the regularized flow is equivalent to the geodesic flow on the unit
tangent bundle of the-sphere. The regularization is accomplished by the construction of
a symplectomorphism which can also be used to remove the singularities of the restricted
problem. We have chosen this approach to regularization over the many others since in this
approach the planar and spatial problems are treated in a unified way.

Here we shall summarize the salient points of this method. In our summary we have
changed the order to simplify the presentation. We took the square root of the Hamiltonian
and reversed the roles ofandy at the start of the discussion instead of at the end, as in

[2,29.

3.1. Negative energy. Let& = (&g, &1, ..., &) andn = (no, 11, . . ., nn) be coordinates
onR"*t1 x R"*+1, Let $” be the unit sphere iR*+1, T§" its tangent bundle antk S" the
3-sphere bundle of the unit sphere. So

S"={§l=1, TS"={l=1¢&-n=0}, T:S"={§[=1¢&-n=0In/=23}

The geodesic flow on an embedded manifold is such that the acceleration is normal to
the manifold, so the geodesic flow 68f is defined by the equation

£ = AL.
Since this flow must satisfy¢|2 = £ - ¢ = 1 we have, by differentiating twice, that
A = —|£]2. This can be written as a Hamiltonian system with Hamiltongafin|2/2 [25)],
but we shall take the square root and consider the system with Hamiltonian

G = [&llnl, (3)
with equations of motion on th&sphere bundle
. 0G 1 ) G
= — = (S N - ——— = —8 .
3 o n, 0 o8 3

The flows ofG andG?/2 on the unit sphere bundle are precisely the same—on other level
sets they are reparameterizations of one another.

Let $” denote the sphere punctured at the north poleSt.ex 5"\ {(1,0, ..., 0)}. The
stereographic projection 67 ontoRR” is given by

&k
= , k=1,..., 4
=T 6 n 4
whereg¢ € §" andy € R”. The inverse is given by
21 2
& = b & 2 k=1,...,n. %)

R+ SR+
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(In the Kepler problem at a collision, as position— 0 the velocityy — oo. This is why
it is the y space that is projected onto the sphere.)
Moser extends the stereographic projection (4) to a mappin®” x R* — T 5" by

lyl2+1
n=x-Y, 77k=y2 k= -Wyk, k=1...,n (6)
with inverse
xp = m(l—%) +&no, k=1....n (7

PrRoPOSITION3.1. The extended stereographic mappihg R” x R* — T 8" given by
formulas (4), (5), (7) and (6) is a symplectomorphism.

The Hamiltonian (3) of the flow o $” in the symplectic coordinaté€s, y) € R" x R”
becomes

G = 3(y?+ Dlx|.

In order to treat all negative energy levelsi) we need to scale the variables by x,
y — (2h)~Y2y which is symplectic with multiplier2)%/2. Now

G = 1@y |? + 2n)|x).
Lets = u(2h)~Y2 and observe

1
G — 5= 2h)Y2x|{L +h), whereL = E|y|2 - ﬁ
X
andL is the Hamiltonian of the Kepler problem with central mass
For the moment let = (x, y), ¢(z) = (2h)~Y/2|x| andJ be the usual skew symmetric
matrix of Hamiltonian theory. Now define a new timéy dt = (2h)~Y2|x|dt = ¢ (z) dt

and’ =d/dz. Then
:=JV(G—8) ={L+h}JVp+¢JVL.
On the selG = § or L = —h this says
7 =JVL,

i.e. the flow onG = § is a reparameterization of the Kepler flow an= —h. The flow
on thes-sphere bundle of the unit sphere is by definition the flow of the regularized Kepler
problem.

This symplectomorphism can be used to define local coordinates about each primary of
the restricted problem and thus regularize the singularities one at a time. The flow will no
longer be the same as the flow defineddjut a perturbation thereof.

Consider the restricted problem where one primary is at the origin, i.e. repldug
x1+ 1 — pandyz by y» + 1 — . The Hamiltonian (1) becomes

nw—1

1 -5 n T 1 2
H=-|y?- 2% —xTgky -2~ 4+ 11— — 21— 2 8
2Iyl oKy & +—(1—p)x1 2( ) 8)
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whered? = (x1 + 1)2 + x3 + x3. Change tag, n) coordinates so that

11— 1 2
¢(H +h) = |§llnl =8+ @&, n) {—2n1 + 1nz — & 5(1—10

= |&llnl =8+ O(e),

wheree = |x|. As in the Kepler problem the change of tide = ¢ dr shows that
the flow of the restricted problem oH = —#h is a reparameterization of the flow on
I&lln] = § + O(e) which is a small perturbation of the geodesic flow on &hgphere
bundle. Thus, the singularity of the restricted problem has been regularized.

Performing the sequence of transformation used for the Kepler problem on the
neighborhood|x| < ¢2, |y| > ¢~1} of the singularity yields a perturbation of the geodesic
flow on a neighborhood of the north pole. Thus, the regularization of this singularity
can be viewed as excising this neighborhood of the singularity and attaching the northern
hemisphere of the unit tangent bundle of the sphere.

Let us look closely at the operation of excising and attaching. Since the geometry is the
same as that of the Kepler problem, we may rescale the variables go thdt h = 1/2.

We then rescale the dimensionsiby> ¢x, y — ¢~ 1y so that the neighborhood is of the
form{|x] <1, |y| > 1}. LetN ={(x,y) € R"\ {0}) x R" : L(x,y) = —1/2},so0N isa
negative energy level of the Kepler problem. Let

A={1<|x|<20<|yl<JYNN, B={0<|x|<L1<[yl<oo}NN,
T=ANB={(x,y) eR" xR": x| = |y| = 1,

and
AT={Enens": —1<t<0), B'={¢nens":0<&<1),
TV=A"NnB ={¢E,n) eTS" : & =0}.

The symplectomorphismtakesA, B, T to AT, BT, T'T respectivelyB = D"\ {0} x §"~1

is a neighborhood of the singularity i = 0 andB™ = D" x §"~1is a neighborhood of
the north pole irf1.S”. Thus, our definition of regularization is excising two copieBof
one about each singularity, and attaching two copieB’ofising the symplectomorphism.
The details of the attaching map are important for our computations.

The symplectomorphism takes = §"~1 x §"~1 diffeomorphically to7T. To
understand the structure of the corresponding homology mapve first look at the
symplectomorphism on the boundariEsand 7T in the planar case whem = 2. We
place angular coordinatés¢ on T by

X1 =C0S9, x2=Sing,
y1=C0Sp, y2 =Sing.
The symplectomorphism df in these coordinates is

=0, & =cosp, & =sing,
no = cos0 — ¢), n1=CosH —coql — ¢)Ccosp, n2 =Ssind —cogH — ¢)sing.
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We place angular coordinaté$, ¢ on 7T by

£ =cosp’, & =sing'

10 1 0 0 coss™ 0 sinet] [0
m|=10 cospT —sing’ 0 1 0 0f.
2 0 sing? cosp™ | | —sinéT 0 cox'| |1

Let« = {0 arbitrary¢ = 0} andp = {6 = O, ¢ arbitrary} be the generators of
H,_1(T) and similarly letx™ = {67 arbitrary ¢ = 0} andg™ = {¢7 = 0, ¢T arbitrary be
the generators ofl,_1(TT). These generators have the usual orientation in mathematics,
i.e. the generators are traversed by increasing the angles.

The symplectomorphism anis

=0 & =1 &=0 mn=cosd, n=0, n2=sind
10 cosd 1 0O cogn/2—0) 0 sinmx/2—0) 0
12 sind 0 0 1||-sin(z/2—0) 0 cosn/2—0)] |1
So¢p' =0,0T=n/2—6ora - —a'.
The symplectomorphism gfiis

& =0, & =cosp, & =sing

10 [ cosp
nm| = sir? )
n2 | —C0S¢ Sing

1 0 0 cosp +m/2) 0 sing+m/2) 0
=|0 cosp —sin¢i||: 0 1 0 :||:Oj|

|0 sing cosy —sin(p +7/2) 0 cosp+7/2) | |1

Thus¢t = ¢,6" = ¢ + /2 or p — o + 1. Thus the homology map, : H1(T) —
Hy(TY) is

-1 1

o)

In the spatial case we take generatorg'afnd 7T consistent with the definitions given
in the planar case. Let

a={xl=1Lyn=Ly=y3=0}, B={x1=Lxx2=x3=0,y|=1},
ol =fho=lE=b=8=0m=0n+n5+n5=1,
Bl ={e0=0E+&+E=1Lno=1m=n=n3=0}
Each of these two-spheres generators have a great circle with the same name as a generator
for the planar problem. These generators are oriented in a manner consistent with the

planar convention and usual mathematical practice. That is, as we traverse the great
circle of the planar problem in the positive sense, using the right-hand rule the thumb
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will point in the direction of the positive third coordinate. By (6) the mappingxois
no = x1,n1 = 0, n2 = x2, n3 = x3, but the coordinates om areng, n3, 2 in that order,
and sax — —a.

To understand the mapping gnobserve that the choice of how the great circles of the
planar problem sit in the spatial problem is arbitrary and that any consistent choice of the
orientation of the circle will yield the same results for the planar problem. Any great circle
in B is mapped onto a great circle @f and of 8, thusg — 4« + . The point where
x1=1,x2=x3=0,y1 =0, y2 = y3 = 0is mapped to the point whetg = 0,&1 = 1,

& =0, =0,n90 = 1,7 = 0,52 = 0,n3 = 0. At these points we choose oriented
coordinates in the generators as follows; x3 for «; y2, y3 for 8; n3, n2 for ot ands,, &3
for 8T in that order. The Jacobian determinants at these points are

9. m2) _ 4 9(62,863) 1

d(y2.y3) 0(y2.y3)
Therefore — —a' + g1 and the homology map, : Ho(T) — Ho(TT) is

-1 -1
0 1|
We will also need to understand the inclusibh— BT. That s, we need to determine

the homology mag,_1(T'") — H,_1(B"). Let aI, ﬂI be the projections of ™ and '
ontoS", and Ieta;r, ﬂ;r be the tangential components. Let

o | cosmt/2)  sin(rt/2) _[R® O
R@ = [—sin(m/Z) cos(m/Z)} » RO = [ 0 1,1_1} ’
wherel,_1 is the(n — 1) x (n — 1) identity matrix. DefineF, G : §*~1 — 715" by

F(q,1) = (R(al (@), R()ad(g))

Glg.1) = (cos(%’) Bl(q) +sin (%t) i), —sin(%) Bl@) + cos(%’> ﬁ%(q)) .

ThenFo =o', Go = BT, while

F(g.1) = (1,0,....0.03)(q). —035(q). 235(@). - . .. @3, (q))
G(q.1) = (1,0,....0, —Blo@). —B11(@). ... —BL, (@)
Whenn = 2, we can evaluate;z;r and,Bir directly to see thaF; = G1. Thatis,«' andg’

have the same image i (BT), and the inclusion mapi1(T1) — Hi(BT) can be taken
as[1 1]. Inthe spatial case, we can use spherical coordinates to write

a2’ yT) = (cogp™ sin(y ™), 0, —sin(¢™) sin(y 1), —cosy))
Bro", ¥ = (0, cogg™) sin(y ™), sin(p") sin(y "), cosy)),

with the signs chosen to embed the planar cade hs= 7/2} and preserve the right-hand
rule. With these choices, we again see that= G1, so thatH1(T'") — Hi(B") is given
by[1 1.
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3.2. Positive energy. Refer to R, 3 for the details that are summarized here. As
before leté, n be coordinates iR"*1 x R"*1, but define an Lorentz inner product
(E,n) = —Eono + &1y + - - + Eumn = ET A whereA is the(n + 1) x (n + 1) square
matrix A = diag(—1, 1, ..., 1). This inner product is positive definite on the hyperboloid
(&, &) = —1 and defines a Riemannian metric with constant negative curvatur&! L
one sheet of this hyperboloi@d S” its tangent bundle antsS” its §-sphere bundle, so

S"={t e R | (£,6) = 1,6 > 0},
TS" ={(&,n) e R" x R"™ | (£,6) = -1, > 0, (£, ) = 0},
TS" = {(E,n) e R x R | (£,6) = —1,60 > 0, (£, ) = O, (n, n) = 62}.
The geodesic flow 088" is defined by the equatidn= A& wherex = (£, £). This can

be written as a Hamiltonian system with Hamiltoniaé (€, &£)(n, n), but we shall take the
square root and consider the system with Hamiltonian

G ={—(& & n)Y2, ©)
with equations of motion on th&sphere bundle
G 1 . G
= _— = . = —A— = (S
3 on n, 0 oF 3

The flows ofG andG?/2 on the unit sphere bundle are precisely the same—on other level
sets they are reparameterizations of one another.
Let S" denote the hyperboloid punctured at the pgiht= (1,0,...,0), i.e.&" =
S"\ {(1,0,...,0)}. The desired projection &" ontoD = {y e R" | |y| > 1} is given
by

k
W:géz,kzL””w (10)
The inverse is given by
Iy2+1 2yi
= , = , k=1 ...,n. 11
P=pEor T heod " 4D

Belbruno extends the stereographic projection (10) to a mappinB” x D — TS"
by

_ _PP-1 _
n=-x-y, nk—Txk—(x'y))’k, k=1...,n (12)
with inverse
xe=mE -1 —&no, k=1,...,n (13)

PrROPOSITION3.2. The extended stereographic mapping R” x D — TS" given by
formulae (10), (11), (13) and (12) is a symplectomorphisi®®fx D and7TS".
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The Hamiltonian (9) of the flow off S" in the symplectic coordinatés, y) € R” x D
becomes
G = 3(Iy* = Dlx/.

In order to treat all positive energy levels we need to scale the variables by x,
y — (2h)~Y2y which is symplectic with multiplier2)%/2. Now

G = @)Yy |? - 2n)|x|.
Lets = u(2h)~Y/2 and observe,

G—68=@h) Y2 x|{L—h}, whereL = %|y|2 - %
andL is the Hamiltonian of the Kepler problem with central mass
As in the previous case define a new timby dt = ¢ (x) dt whereg = (2h)~Y?|x]|.
Then the flow oG = § is a reparameterization of the Kepler flow bn= 4. The flow on
thes-sphere bundle of th&" is by definition the flow of the regularized Kepler problem.
Consider the restricted problem where one primary is at the origin, i.e. equation (8).
Change taé¢, n) coordinates so that

G(H —h) = {—(& )2 -5

1—n 1 5
+o&.n {—§2n1+$mz— — E(l_“’) }
2

= {—(& & mMY2 =8+ 0(e),

wheree = |x|. As in the Kepler problem the change of tide = ¢ dr shows that
the flow of the restricted problem oH = h is a reparameterization of the flow on
{(—(&,&)(n, n)}Y? = 8 + O(e) which is a small perturbation of the geodesic flow on the
3-sphere bundle. Thus, the singularity of the restricted problem has been regularized.
Performing the sequence of transformations used for the Kepler problem on a neigh-
borhood of the singularity yields a perturbation of the geodesic flow on a neighborhood
of the ¢7. Thus, the regularization of this singularity can be viewed as excising this
neighborhood of the singularity and attaching a neighborhogd af the s-sphere bundle
of the hyperboloid.
Let us look closely at the operation of excising and attaching. For purposes of discussing
the geometry of the Kepler problem we may assume ghat 1, » = 1/2 and rescale
the dimensions so that the neighborhood is of the féfm < 2, |y|2 > 2}. Let
P = {(x,y) € R"\ {0}) x R" : L(x,y) = 1/2}, so P is a positive energy level of
the Kepler problem. Let

A={2<|x|<oo,l<[yP<2}nP, B={0<x|<22<[y<oc0}nP,
T=ANB={x,y)eR" xR": x| =2 |y®=2},
and
Al={Enens" :3<& <o), B ={¢Enens 1<k <3},
TV=A"nBY={(¢E,n) e TS" : & = 3).
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The symplectomorphism takes B, T to AT, BT, TT respectivelyB = D" \ {0} x §"~1
is a neighborhood of the singularity ih = 1/2 and BT is a neighborhood of the
gh= D" x s~Lin 1y S".

The symplectomorphism takgs = §"~1 x §"~1 diffeomorphically to7T. As in the
negative energy case, we first look at the symplectomorphism on the bouritianet '
in the planar case = 2. We take coordinates ¢ on T by

x1=2C0%, xp=2sIind
y1=+2cosp, y»=+/2sing
and angular coordinatés, T on 7T by
g0=13, & =2V2cosp!, & =2v2sing!
n =y R3(p R R2(0T) Ryv,

where
3 22 g
10 0 Viz V17
- . v=|0|, Ri=|_22 _3 ol.
ol A B B
0 0 1
1 0 0 1 0 0
R@H =]0 cow' sindT|, Rsp)=|0 cospt —sing'
0 —sin6™ coso’ 0 sing' cosp!

The vectoru is a tangent vector t6” at the point(3, 2v/2, 0), R R2(6") Ry rotatesv
about the normal—3, 2+/2, 0) by an angle™, so it is still a tangent vector. The matrix
R3(¢") rotates this tangent vector about eaxis by an angle .

In this case we are dealing with both Euclidian and Lorentzian geometiy.a unit
vector in the Lorentz metrig{, n) = 1) whereas the vectaris a unit vector in Euclidian
geometry and the matricg®;, R2, R3 are orthogonal matrices. The positive scajais
the Euclidean norm ofi. Both n and the rotations ob lie in the tangent plane of the
hyperboloid and so givemand¢' one can solve faf .

The symplectomorphism oF in these coordinates is

fo=3, no=—2v2co%0 — ¢),
g1 = 2/2cosp, 11 =Cosd — 4cogb — ¢) COSP,
£ = 2v/2sing, 1o =singd — 4cog6 — ¢) sing.
Leta = {0 arbitrary ¢ = 0} andB = {# = 0, ¢ arbitrary} be the generators df,,_1(T)
and, similarly, leta™ = {67 arbitrary ¢ = 0} andg™ = {67 = 0, " arbitrary be the
generators off,_1(TT). These generators have the usual orientation in mathematics, i.e.

the generators are traversed by increasing the angles.
The symplectomorphism anis

& =3, &= 2\/5, &£2=0, no= —2V2 cos), n1=-—-3C0¥, n2=sind.
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Unlike the case of negative energy we cannot iderstiinde™, since we are dealing with
two geometries. Therefore we must consider the equation

—2/2 gjpot _2/2 _ot

—22co¥ . msm@ mcos(n/z 0"

—3c08 | =V R{'Ra(0HRw =1y —%7 sing’ | =¥ —%7 cogr/2 — oM
sing + . t
cosf sin(r/2—-0")

Although they are not equal a completes one revolution in the positive sertde
completes one revolution in the negative sense;, so —a .
The symplectomorphism ofiis

f0=3, & =2V2cosp, & =2v/2sing,

10 —2/2 cosp
@) =|m|=| 1-4co$¢
02 —4 cosp sing

We must consider
¥ R1R3 L (9)71(¢) = Ra(0T) Ryv

or
0 0 0
v | V17cosp | = | sint | = | cogbt —n/2)
—sing cosy’ —sin(eT — 7/2)

Thus, asp makes one complete revolution so dééor 8 — o' + 7.
In the spatial case we take generatorg'aind 7't consistent with the definitions given
in the planar case. Let

a={x|=2y1=v2y2=y3=0}, B={x1=2x2=x3=0,|y]>=2},
o' =(0=36=2V26=5=0(1n=0@nn =1},
Bl =1{60=3 (58 =-Ln=n3=0,(n) =0 (nn =1

Each of these two-sphere generators have a great circle with the same name as a generator
for the planar problem. These generators are oriented in a manner consistent with the
planar convention and usual mathematical practice. That is, as we traverse the great circle
of the planar problem in the positive sense, using the right-hand rule the thumb will point
in the direction of the positive third coordinate. By (12) the mappingxas & = 3,
£1 = 242,86 = £3 = 0,0 = —/2x1, 1 = —3x1, 12 = —ix2, N3 = 3x3, but the
coordinates om areng, n3, n2 in that order, and sa — —a.

The point wherer; = 2,x2 = x3 = 0, y1 = /2, y2 = y3 = 0 is mapped to the point
wheregy = 3,& = 2,6 = £ = 0,70 = —2v/2, 711 = =3, 92 = n3 = 0. At these
points we choose oriented coordinates in the generators as follgws; for «; yo, y3 for
B: 3, n2 for o andés, &3 for BT in that order. The Jacobian determinants at these points

are
Iz n2) _ o 92,83 _4

A2, y3) 02y 9
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Therefore — —a' + g1 and the homology map, : Ho(T) — Ho(TT) is

-1 -1
0o 1]/
That is, the homological results for positive energy are the same as those for negative
energy:H, 1(T) - H,-1(T") andH,_1(T") — H,_1(B") are given by 1 " ] and
[1 1] respectively.

The case of zero energy can be handled in the same way using the regularizegjon in [
or one can consider it as a small perturbation of the previous cases.

3.3. Construction of the regularized manifoldsWe are now ready to construct the
regularized manifolds(c) andi(c). We describe in detail the construction for the spatial
problem—the planar problem will simply be the restriction to the appropriate planar
subspaces. For the spatial problem, choose small balls about the singularjtie8),

(1 — u, 0) in the Hill's region$(c). The boundaries of these disks are the sphéres
introduced in §2.1. LeM be the preimage of these ballshifi(c). Then (up to a rescaling),

91 is conjugate to the set8 constructed in §3.1 and §3.2. Then take= BT. For the
attaching map : 9t — D, takev (asin 83.1) forc > (1 — w), and takew (as in §3.2)
forc < u(1— w). In either case, the regularized manifold is

R(c) = M(c) Uy D.

The construction for the planar problem can be viewed in two ways. On the one hand,
the same construction can be employed, choosing disksaith boundary circles(c),
taking the preimage in m(c) and attaching = D? x S via eitherv or w to produce

t(c) = m(c) Uy 0.

On the other handy(c) can also be viewed as a submanifold %fc), obtained by
restricting botti(c) and® to the appropriate invariant submanifolds.

4. Homology of the regularized manifolds

We are now ready to compute the homology groups for the integral manifolds in the
regularized problem. Having observed that) = m(c) U, 0 andfR(c) = M(c) Us D, it

is natural to use these as Mayer—Vietoris decompositions. The sequences have the form

— Hy(m) 5 Hy(m) ® Hy(d) — Hp(x) —

and
> H,O) 5 H,(0M & Hy(®) > H,y(R) — .

Since the homology groups af 91, m, 9, » and® are all known, we only need to
determine the mapg andJ, to compute the homology efandfR. That s, there are short
exact sequences

0 —— cokelj,x) —— Hp(t) —— ker(j,—14) —— 0

0 —— cokelJpy) —— H,(R) —— ker(Jp,—1.) —— 0.
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Moreover, since k&p,) and ke(J,) are torsion-free, these sequences split and

Hp(r) = cokeljpx) @ ker(jp—1.)
H,(R) = cokel(J ) @ ker(Jp—14).
The mapsj, and J, are simply the induced homomorphisms of the inclusion maps

m <« n — 9 andM <« 9N — D. To assemble the information on these homomorphisms,
we need to use the decompositions

Hy(n) = Hy(s) ® Hp-1(s), Hp(m) = Hy(h) © Hp-1(b, ab)
H,(M) = Hp(6) ® Hp—2(6), H,(M) = Hyp(H) ® Hp-1(5, 99).

The attaching maps, : H.(n) — H,(0) andX : H,(M) — H.(D) are simply the
compositions — 7T — BT of §§3.1and 3.2. Thatis,

-1 1

ox=[1 1][0 1}=[—1 2]
-1 -1

2, =[1 1][0 1}:[—1 o).

Using the decompositions df.(n) and H,(N) (with the mapsHi(n) — Hi(s) and
H>(M) — H»(&) both mappingy to the generator), the maps

ol Hy(s) > Hy(d), o02:Hy_1(s) > H,()
21 H,(6) > Hy(D), T2:H, 2(8) — Hy(®)

can be written explicitly as:

10 5 1 0 , [2 0
U&* = [0 1j| ’ 00 = O’ O—]:!_* = [ 0 _1j| ’ 014 = [0 2j|
1 0 -1 0
E(%* = [0 1j| ’ Eg* =0, E%* = [ 0 _1j| ’ E%* =0.

Similarly, the homology maps induced by the inclusians> m and9t — 2t can be
derived from Theorem 2.1. Consider— m(c) first. The diagram

Sel

00— Hp_1(8) — H,(n) H)(s) 0
lipl* l llp*
Seq
0——= Hp-1(h, 9h) —— Hp(m) Hp(s) 0

commutes and splits naturally, so there is a commutative diagram

Hp(n) Hp(m)

N

Hy(s) ® Hp_1(s) =5 H,(h) & Hyp_1(h, db)
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In exactly the same fashion, there is a commutative diagram

H, () H, ()

l; Ipx 0 l;
0 fp72*

H,(6) & Hp—2(6) Hy($) © Hp—2(5,09)

Combining these, the homomorphisms : H,(n) — H,(m) @ H,(®) and J, :
H,(M) — H,(OMN) & H,(D) can be expressed as

Lps 0

0 2p—1>s<
1 2

Opx  Ops
Hp(s) ® Hp1(8) ———— H,(h) & Hyp-1(h, 9h) & H,(2)

and
I 0
0 Ip—2>|<
1 2
pr Zps

H,(6) & Hp—2(6) Hy($) & Hp—2(5,99) & Hp(D)

For the planar probleny, can only be non-trivial in dimensions 0, 1 and 2. In these
dimensionsH,(n) has rank 2, 4 and 2 respectively, and

1% 0
. L0x . N . N
Jox = [id}’ Jae=1| 0 dox |, Jox =114
—id 2id

Clearly, jo is injective for allc. Consulting Table 6 shows that, is injective for allc,
To« is surjective for alk and j» has full rank for allc.

Forc > 3, Hp(h, dh) =0, so
P AT 0
= —id 2id]

with (1, injective. Thusji, is injective, but the two generators H(s) each map to twice
a generator. Far < 3, o, is an isomorphism, s@, can be row-reduced (ovéh) to [{;‘]

The result of all this is that there is 2-torsion#f (v) for ¢ > 3, and the Betti numbers
forvare

Bo(x) = Bo(h)
B1(v) = B1(h) + Bo(h, ah) — 2
B2(r) = B1(h, 9h) — rank(iz.)
B3(r) = 2 — rank(i1.)

The values are shown in Table 3.

The calculations fofR are simpler, becausg. only occurs in even dimensions. For
p=0,2,4,H,(R) = cokelJ,,), whileforp =1, 3,5, H,(R) = H,(IN) @ ker(J,_14).



Integral manifolds of the restricted three-body problem 911

The values fot/, are:

1>, 0
Jo. — 1o _ ~ 7
0x = id |’ Jow = 0 Ios | » Jay = I
—id 0

We need to consider the cases< (1 — p) ande > w(l — u) separately. For
c>pnl—pw), Hy(H,09) = H,_1(h, ) andl,, is conjugate t@,_14. Thatis,

Jow = [i‘” = [ 2 8] L e =i
S0 noJ, creates torsion and ratk,) = rank(Jz,) = 2, rank Jas) = rank(i1y).
There is no torsion itH, (PR (c)) and the Betti numbers are:
Bo(R) = Po($)
B1(R) = B1(IM)
B2(R) = P2(9)
B3(R) = B3(M) + 2
Ba(R) = B1(h, ah) — rank(iz.)
B5(R) = Bs(M) + 2 — rank(iz.).
These are the formulae obtained by direct evaluation. It is worth noting that these can
be reformulated, by comparing them to the Betti number formulaéltee). That is,
Bo($H) = Po(M) andBz($H) = B2(M), while B1(h, dh) = Ba((M)). That s,
Bo(R) = Bo(M)
B1(R) = B1(M)
B2(R) = B2(IM)
B3(R) = B3(M) + 2
Ba(R) = Ba(M) — rank(iz«)
Bs(R) = Bs(M) + 2 — rank(ix).

These values are listed in Table 4. R

Forc < pu(l — w), Hy(H,99) = Hy($H) and I, is conjugate tol,.. Clearly,

Iox = [1 1], while I, is an isomorphism. The matrices are then (up to a choice of
bases inH2($))

1 0 0O
1 1 0 1 0O 10
Jox = |:l 0j| , Juw=1]0 0 1 1|, Jag= |:O 1:| .
0 1 -1 0 0O
0O -1 0O

Thus none of the/, homomorphisms create torsion, and rahk) = rank(Js) = 2,
rank(Jo,) = 3. SinceMN, M andD all have non-trivial homology only in dimensions 0, 2
and 4, it is a simple matter to now read off the Betti numbef&oThese values are listed
in Table 4.
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5. Cross sections

Typically, the homology of a manifold can only be directly related to the dynamics on the
manifold when the manifold is compact. One exception is the existence of a cross section.
For any space (compact or not), the existence of a cross section imposes restrictions on the
homology of the space. These were formulate®i} fs the following.

THEOREMS.1. Ifthe flow®d : R x M — M on the manifold/ admits a cross sectiof,
then:

. M \ 9C is a fiber bundle oves?* with fiberC \ 3C;

° there is a long exact homology sequence

— Hpy1(M,0C) — Hi(C,9C) IE;* Hi(C,0C) — Hy (M, 9C) —;

° if M, C andaC are of finite type, then there exists a polynongdlt) with

—min{Pyc (1), tPc.ac)(H)} < Q) < Picac)(t)

such thatPy (1) — Pyc(t) = (L +0)0@);
° if M andaC are of finite type, theiy (M) = x(3C).

In the case of a global cross section wien = ¢, this theorem implieg (M) = 0,

Hi(M) must have a factdZ and the polynomia (1) must have non-negative coefficients.

Sincem, 21, v andfR all have finitely generated homology, the only hypothesis required
to apply the theorem is that the cross sectibis of finite type. As described in 81.2, these
can be interpreted as necessary conditions for any of the four manifolfig, ¢, 2R to
admit a global cross section of finite type; and also as necessary conditiongfait to
be the boundaries of cross sections of finite typ@tands.

If we look first for global cross sections, the Euler characteristic requirement shows that
the spatial restricted manifoftit can never admit a global cross section, nor can the spatial
regularized manifoldR in case I. The requirement that has a factor o further rules
out a global cross section f@t in case Il. When the manifolds are disconnected, these
requirements must be satisfied on all components; but in cases V and VI, the bounded
components of bothand$R fail to have a factor oZ in H;. Thus global cross sections are
ruled out for both: andf® in cases V and VI.

A priori, the requirement that the Poinegrolynomial factors agl + ) Q(¢), with Q(¢)
positive, is a stronger requirement that might exclude further cases. In this instance, it does
not. In all remaining cases, the Poine@dlynomial is divisible by1+r), and the quotient
has positive coefficients. So, farin all cases, for in cases |-V and fofk in cases llI
and IV, there is no homological obstruction to the existence of a global cross section.

We next consider if the planar manifolds can serve as boundaries for cross sections to
the spatial manifolds. Since the Euler characteristics of the planar and spatial restricted
manifolds are never equai, is never the boundary of a cross section to the flofbfFor
the regularized problem, the results are more equivocal. In case | the Euler characteristics
of the planar and spatial manifolds are different, ruling out a cross sectioi fwith
boundaryt. In all other cases the Euler characteristics of the planar and spatial manifolds
are both zero. In case Il some of the finer structure of Theorem 5.1 can be used to rule out
a cross section with boundary
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Namely, if there were a sectian with boundaryt, then Hg(C, t) = 0. For, if not, then
there must be a componefig to C which does not interseet As the image oo under
the flow is clearly connected and disjoint framthere must be a component®which
is disjoint fromt; but there is no such component, Bg(C,t) = 0. Thus the Poincar’
polynomial of any such paiiC, r) must have constant term zero. On the other hand,

Pyr(t) — Pe(t) = —t + 22+ 31° = (1 + 1) (—t + 39).

The inequality—z Pc (1) < Q(¢) would then require the constant term Bf(¢) to be at
least 1.

In the remaining cases, l1I-VI, there is no homological obstruction. Indeed, in case VI,
there is a very natural candidate for a cross secfioBotht and? have three components:
one around each of the regularized singularities and one unbounded component. Each
of the bounded components 8 is conjugate to the geodesic flow @hs3, with the
corresponding componentotonjugate to the geodesic flow 8nS?. If 7152 = {(&, n) €
7153 | &3 = 0,3 = O}, then letC = {(£, ) € T1.S3 | &3 = 0, n3 > 0}. ThenC is a cross
section for the geodesic flow df $2, and has boundar# $2.

On the unbounded component, &t(c) = {(x,y) € M,(c)|x3 = 0, y3 > 0}. Then
9C,(c) = my(c), andxz = y3 > 0, so the flow is transverse ©, on C, \ m,. What
remains open is whether or not all orbitsdin, (¢) intersectC, (c). If they do, thenC,, (¢)
is a cross section t#1, (c). It would suffice to show that the forward orbit of every point
in C, (¢) intersects the sdtx, y) € M, (c) | x3 > 0, y3 = 0}. This is an open question at
the moment.

Acknowledgements.This research was partially supported by grants from the National
Science Foundation and the Taft Foundation.

REFERENCES

[1] R. Abraham and J. Marsdefoundations of Mechanic&nd edn. Addison-Wesley, New York, 1978.

[2] E. A. Belbruno. Two-body motion under the inverse square central force and equivalent geodesic flows.
Celest. Mech15(4) (1977), 467-476.

[3] E. A. Belbruno. Regularization and geodesic flo@slestial Mechanics and Dynamical Systems (Lecture
Notes in Pure and Applied Mathematic&ds. R. Devaney and Z. Nitecki. Marcel Dekker, New York,
1981, pp. 1-11.

[4] G. D. Birkhoff. Dynamical System#&merican Mathematical Society, Providence, RI, 1927.

[5] G. D. Birkhoff. The restricted problem of three bodi&end. Circolo Mat. Palerm89 (1915), 265-334.

[6] D. Brouwer and G. M. Clemenc#&lethods of Celestial Mechanic&cademic Press, New York, 1961.

[7] G. H. Darwin. Periodic orbitsActa Mathematic21 (1897), 99-242.

[8] R. W. Easton. Regularization of vector fields by surgériff. Eqns10(1971), 92—-99.

[9] R. W. Easton. Some topology of the three-body probléniff. Eqns10 (1971), 371-377.

[10] L. Euler.Theoria Motuum Lunze, nova methodo pertract&atropli, 1772.

[11] G. W. Hill. Researches in the lunar theory, chAimer. J. Mathl (1878), 5-26

[12] E.A.Lacomba. Regularization by surgery in the restricted three-body problé@ff. Eqns24(2) (1977),
240-252.

[13] E. A. Lacomba. Topology of the regularized submanifolds in the restricted 3-body proBtEnde la
Soc. Mat. Mexic@0(2) (1975), 35-48.



914

(14]

[15]
[16]

(17]
(18]

(19]
(20]
(21]
(22]
(23]
[24]
(25]

(26]
(27]

(28]
[29]
(30]
(31]
(32]

(33]

C. K. McCord and K. R. Meyer

T. Levi-Civita. Sur la Esolution qualitative du probine restreint des trois corp&cta MathaticaXXX
(1906), 305-327.

T. Levi-Civita. Sur la egularisation du prokine des trois corpé\cta Mathatica42 (1920), 99-144.

J. Lundberg, V. Szebehely, R. S. Nerem and B. Beal. Surfaces of zero velocity in the restricted problem
of three bodiesCelest. Mech36 (1985), 191-205.

C. G. J. Jacobi. Lettre de M. Jacobi. R. Acad. Sci. Paril (1836), 59-61.

P. Kustaanheimo and E. Stiefel. Perturbation theory of Kepler motion based on spinor regularization.
J. reine angew. MatH218(1965), 204—219.

C. McCord. On the homology of the integral manifolds in the plaNabody problem.Ergod. Th. &
Dynam. Sys21 (2001), 861-883.

C. K. McCord and K. R. Meyer. Cross sections in the three-body prohle®yn. Diff. Eqnsl2 (2000),
247-271.

C. K. McCord, K. R. Meyer and Q. Wang. The integral manifolds of the three body prodMem. Amer.
Math. Soc132(1998), 1-91.

K. R. Meyer and G. R. Halllntroduction to Hamiltonian Dynamical Systems and the N-body Problem
Springer, New York, 1992.

J. Milnor. Morse TheoryPrinceton University Press, Princeton, NJ, 1963.

J. Milnor. On the geometry of the Kepler probleAmer. Math. Monthl{90 (1983), 353—365.

J. K. Moser. Regularization of Kepler's problem and the averaging method on a matifoitn. Pure
Appl. Math.XXIIl (1970), 609—635.

F. R. Moulton.An Introduction to Celestial Mechanic&nd edn. Macmillan, 1914.

L. Picart. Discussion des surfaces de niveau dans le probleme redaiintAstronomique20 (1903),
401-409.

D. G. Saari. From rotation and inclination to zero configurational velocity surface, Il. The best possible
configurational velocity surfac€elest. Mech40(1987), 197-223.

S. Smale. Topology and mechanitszent. Math.10 (1970), 305-331.

S. Smale. Topology and mechanicslfivent. Math.11 (1970), 45-64.

V. SzebhelyTheory of Orbits Academic Press, New York, 1967.

T. N. Thiele. Recherches nriques concernant des solutioreripdiques d’'un cas sgial du probtme
des trois corpsAstron. NachCXXXVIIl (1895), 1-10.

A. Wintner. The Analytic Foundations of Celestial MechaniBsinceton University Press, Princeton, NJ,
1941.



