ERRATA - INTRODUCTION TO HAMILTONIAN DYNAMICAL SYSTEMS AND THE N-BODY PROBLEM, 2nd EDITION

K. R. MEYER, G. R. HALL AND D. OFFIN

Please send additional corrections to Ken Meyer, Department of Mathematics, University of Cincinnati, Cincinnati OH 45221-0025 or KEN.MEYER@UC.EDU.

- Pg 50, Ln 9: Change \mathbb{R}^{2n} to \mathbb{R} .
- Pg 79, Eq (4.3): In row 3, column 4 change 0 to 1.
- Pg 81, Ln -4: 2H_ε = (x₁² + y₁²) (x₂² + y₂²) + 2εy₁y₂.
 Pg 136, Ln -12: Add: X satisfies X^T(t, τ, ζ)JX(t, τ, ζ) = J Differentiate this with respect to t (first argument) and set t = τ so X^T(τ, τ, ζ)J + JX(τ, τ, ζ) = 0 so X(τ, τ, ζ) is Hamiltonian. X also satisfies $\dot{X}(t,\tau,\zeta) = f_z(t,\phi(t,\tau,\zeta))X(t,\tau,\zeta)$ Set $t = \tau$ to get $\dot{X}(\tau,\tau,\zeta) = f_z(\tau,\zeta)$ So

1

- $f_z(\tau,\zeta)$ is Hamiltonian, and the rest follows as in the book.
- Pg 151, Ln -11: Change $i \ge j$ to $i \ge |j|$.
- Pg 272, Ln 11: "Elementary Fixed Points" should be a subsection title.
- Pg 292, Ln 5: Sections 10.4 and 10.5.