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Abstract We illustrate the use of regular and singular reduction methods in con-
junction with classical perturbation theory to find periodic solutions of Hamiltonian
systems. In particular, we use these methods to find families of periodic solutions
when the classical Liapunov center theorem fails due to a resonance.
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1 Introduction

The problem we discuss here has been a testing ground of many different methods
for analyzing Hamiltonian systems—in particular finding periodic solutions and their
stability. Here we illustrate the use of the method of singular reduction on this classic
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problem. Normalization and singular reduction reduces the dimension of the prob-
lem studied and our test problem is a two-degree-of freedom Hamiltonian system in
R
4 which will be studied by a Hamiltonian system on a two dimensional real alge-

braic surface called an orbifold. The two dimensionality lends itself to a graphical
representation with a better geometric insight.

Our starting point is the classic 1892 Liapunov center theorem, to wit, consider the
smooth Hamiltonian system

ż = Az + · · · = J Sz + · · ·

defined in a neighborhood of the origin in R4, let the eigenvalues of the Hamiltonian
matrix A be the pure imaginaries ±iω1, ±iω2, ω1, ω2 �= 0, then if ω1/ω2 is not an
integer the system has a one parameter family of periodic solutions emanating from
the origin of period near 2π/|ω1|.

Thus ifω1/ω2 andω2/ω1 are not integers there are two families of periodic solutions
emanating from the origin, but only one is guaranteed if one ratio is an integer different
from±1 and none is guaranteed if the ratio is±1. The goal of this paper is to illustrate
the method of singular reduction in deciding the existence of the other families of
periodic solutions.

In the celebrated theorem of Weinstein two periodic solutions are found in each
small energy level (H constant) provided the symmetric matrix S is definite, positive
or negative. So we will need to consider the indefinite case in detail and we will find
cases with none, one or two families of periodic solutions depending on a particular
eigenvalue ratio and higher order terms.

The prototypical example is the Hamiltonian of the circular, planar three body
problem at the Lagrange equilateral equilibrium, L4, for various values of the mass
ratio parameter μ. The quadratic part of the Hamiltonian at L4 is indefinite and all
ratios of the frequencies are found for various values of μ.

Notes An early method of finding periodic solutions, indeed the method used by
Liapunov himself, was to construct a formal power series solution and then show that
the series actually converges by obtaining estimates on the coefficients. The refined
version of this method is known as the method of majorants. The classic 1892 paper
of Liapunov was translated into French and reproduced in [11]. Power series proofs of
the center theorem can also be found in [19,26]. Buchanan [3], Moulton [18], Roels
[22] and many others carried on this series tradition.

Another earlymethod still used today is the use of computers, human and electronic,
to numerically calculate periodic solutions in specific equations such as the restricted
three body problem. A famous example of the use of human computer was the series
of papers published by Strömgren and colleagues in the Copenhagen Observatory
Publication starting in 1913 where periodic solutions of the restricted three body
problem with μ = 1/2 where computed—see [27] and references therein. In the early
1960s Rabe and colleagues of the Cincinnati Observatory used the early electronic
workhorse, the IBM 650, to compute Trojan periodic solutions [8,20,21]. Since then
there has been an explosion of papers on computing periodic solutions to various
problems.
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The use of normal form techniques developed slowly from the works of Poincaré
andBirkhoff to finally apply to the resonance cases and bifurcation problems as carried
out by Schmidt [25] and Henrard [9,10] in the early 1970s. It is from this tradition
that our procedure evolved, so additional notes will be found in later sections.

We will not touch on topological methods such as used by Weinstein [28,29] or
the recent explosion of new families of periodic solutions to the N -body problem
using variational methods and exploring various symmetries following the landmark
paper by Chenciner and Montgomery [4]. These lines of research lead to a parallel
and distinct universe which we shall not follow.

2 The Method

2.1 Invariants

We illustrate the use of singular reduction on a resonant system subject to small
perturbations using normalization (i.e. averaging) and invariants. Consider the two
degree-of-freedom system Hk = 1

2

[
k(x21 + y21 ) − (x22 + y22 )

]
where k is a positive

integer and z = (x1, x2, y1, y2) are rectangular coordinates. Change to action-angle
coordinates I j = x2j + y2j , θ j = tan−1 y j/x j , j = 1, 2 which is symplectic with
multiplier 2. Then

Hk = k I1 − I2

and the equations of motion are

İ1 = 0, θ̇1 = −k, İ2 = 0, θ̇2 = 1.

This systemhas three independent invariants (integrals), namely I1, I2, θ1+kθ2,which
is enough since three independent invariants in a four dimensional system specify an
orbit.

A fundamental set of polynomial invariants associated to the k : −1 resonance are

a1 = I1 = x21 + y21 ,

a2 = I2 = x22 + y22 ,

a3 = I 1/21 I k/22 cos(θ1 + k θ2) = �e[(x1 + i y1)(x2 + i y2)
k],

a4 = I 1/21 I k/22 sin(θ1 + k θ2) = �m[(x1 + i y1)(x2 + i y2)
k],

subject to the constraint

a23 + a24 = a1 a
k
2, a1 ≥ 0, a2 ≥ 0,

which follows from the trig identity cos2 φ + sin2 φ = 1.
The Poisson brackets associated to the invariants are given in Table 1. Note that all

Poisson brackets are polynomial, as k is a positive integer.
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Table 1 Poisson brackets among the invariants a1, a2, a3, a4

{ , } a1 a2 a3 a4

a1 0 0 −2 a4 2 a3
a2 0 0 −2k a4 2k a3
a3 2 a4 2k a4 0 ak−1

2 (k2 a1 + a2)

a4 −2 a3 −2k a3 − ak−1
2 (k2 a1 + a2) 0

The ai ’s of the first column must be put in the left-hand side of the bracket, whereas the ones of the top row
are placed on the right-hand side of the brackets

2.2 Orbit Space

Since Hk is an integral the set N = {z ∈ R
4 : Hk(z) = h} is a smooth invariant

submanifold of dimension 3 except possibly at z = 0. The orbit space O is the
quotient space obtained from N by identifying orbits to a point and let � : N → O

be the projection. Thus if p ∈ O then �−1(p) ∈ N is a circle (a periodic solution
of the system defined by Hk) or maybe just the origin. In general quotient spaces are
not even Hausdorff, but since all solutions are periodic N is foliated by circles and the
orbit space is a symplectic manifold or at least a symplectic orbifold. See Satake [24]
where the concept of orbifold was introduced with the name V -manifold.

An orbit of the system is uniquely specified by the four invariants subject to the
constraint and so the orbit space O is determined by the constraint and the integral

Hk = ka1 − a2 = h.

Solve the integral for a2 and substitute into the constraint to get the orbit space
equation

a23 + a24 = a1(k a1 − h)k,

which defines a surface in the (a1, a3, a4)-space and is a representation of the orbit
space O. We distinguish different situations according to the value of h. Note that the
surface is a surface of revolution, so let ρ, ψ be polar coordinates in the (a3, a4)-plane
so that the equation becomes

ρ2 = a1(k a1 − h)k .

The surface of revolution is unbounded and it is smooth when the right-hand side
is positive. A place where the orbit space is smooth we call a plateau point. As always
a1 ≥ 0 but a2 ≥ 0 implies a1 ≥ h/k. Refer to the subsequent sections for illustrative
figures.

When h < 0, the right-hand side of the orbit space equation is zero only at a1 = 0
and nearby ρ ∼ c a1/21 with c a positive constant. Thus the surface O is smooth at
a1 = 0.

When h = 0 the right hand side is zero at a1 = 0 and nearby ρ ∼ c a(k+1)/2
1 with

c > 0 a constant. Thus the surface is cone-like when k = 1 and is cusp-like when
k > 1.
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When h > 0 the right hand side is zero at a1 = h/k and nearby ρ ∼ c (k a1−h)k/2

where c > 0 is a constant. Thus the surface is smooth at a1 = h/k when k = 1, is cone-
like when k = 2 and is cusp-like when k > 2. These points with k > 1 we call peaks.

2.3 Preparation

Start with a real analytic Hamiltonian, Hk , with an equilibrium point in k : −1
resonance, k > 1. The case k = 1 (with non diagonalizable A) is a little different, so it
is treated in the last section. Assume that the equilibrium point is at the origin, time is
scaled so that the frequencies are k and −1 (i.e. ω = 1), symplectic coordinates have
been chosen so that the quadratic terms in the Hamiltonian are in the form Hk . Also
assume that the Hamiltonian is in normal form up to degree k + 1 and let the series
truncated beyond the k + 1 term be Hk . Now the Hamiltonian Hk can be written in
terms of the invariants a1, a2, a3, a4.

The invariants a1 and a2 are the action variables I1 and I2 and are of degree 2 in z.
The invariants a3 and a4 depend on the angle θ1 + kθ2 and are of degree k + 1 in z.
As we shall see the terms that contain angles are of prime importance in determining
the existence and nature of some of the periodic solutions. We call these terms angle
terms.

We consider the generic case where the angle term appears at the lowest degree,
that is, at degree k + 1. A linear combination of a3 and a4 can be combined into one
by a shift of θ1 i.e.

αa3 + βa4 = I 1/21 I k/22 [α cos(θ1 + kθ2) + β sin(θ1 + kθ2)]
= GI 1/21 I k/22 cos(θ1 + kθ2 − θ̃ ),

where G = √
α2 + β2 and tan θ̃ = β/α. Shift θ1 by θ1 → θ1 + θ̃ .

Scale by z → εz which is symplectic with multiplier ε−2. This scaling indicates
we are working near the equilibrium when ε is small. Thus we will look at systems of
the form

Hk = Hk + O(εk),

where

Hk = Hk +
l∑

j=2

ε2 j−2 H̃ j
k (I1, I2) + εk−1GI 1/21 I k/22 cos(θ1 + kθ2),

with 2l ≤ k + 1 and H̃ j
k is a polynomial in I1, I2 of degree j . Here we have separated

out the single angle term a3 = I 1/21 I k/22 cos(θ1 + kθ2). We refer to the system defined
byHk as the full system and the system defined by Hk as the averaged system.

2.4 Reduction

Since Hk is in normal form Hk is an integral, so hold it fixed by setting

h = Hk = k I1 − I2 = ka1 − a2.
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Solve for a2 = ka1 − h, I2 = k I1 − h and so

Hk = h +
l∑

j=2

ε2 j−2 H̃ j
k (a1, h) + εk−1Ga3.

Pass to the averaged system on the orbit space by dropping the constant term and when
k > 2 dividing by ε2 (time scaling) so the reduced averaged system is

H̄ =
l∑

j=2

ε2 j−4 H̄ j
k (a1, h) + εk−3Ga3.

When k = 2 the averaged system on the orbit space is obtained by dropping the
constant term and dividing by ε (time scaling) so the reduced averaged system is

H̄ = Ga3.

Using the table of Poisson brackets given above we can obtain the reduced averaged
flow on the orbit space by using ȧi = {ai , H̄}, i = 1, 3, 4. A critical point p ∈ O of
this flow corresponds to a periodic solution P = �−1(p) ∈ N of the averaged system
or to the origin. Likewise an orbit of the reduced averaged system which tends to the
critical point p corresponds to a surface in N filled with orbits tending to the periodic
solution P .

2.5 Perturbation Theory

We will encounter periodic solutions coming from peaks and plateau points onO and
they give rise to short and long periodic families.

For peaks: Let k > 1,�(p) = p̄ ∈ O be a peak. Then the solution of the full system
through p for ε = 0 is periodic with period 2π/k and characteristic multipliers are
1, 1, e2π i/k, e−2π i/k . For ε > 0 and small, the full system has a periodic solution near
p of period and multipliers near the above.

For plateau points:Let H̄ have anondegenerate equilibriumpoint at�(p) = p̄ ∈ O

with characteristic exponents μ,−μ. Then for ε small the full system has a periodic
solution near p with period near 2π and multipliers near 1, 1, 1 + ε2μ, 1 − ε2μ.

Thus, for k > 1 there is always a short period family and so the quest is to find long
period families.

Notes Bifurcation theory based on regular reduction can be found in our paper [30],
whereas the theory based on singular reduction can be found in [15] and the references
therein.

3 Examples

3.1 Resonance 2 : −1

After preparation the averaged system in 2 : −1 resonance is

H = 2a1 − a2 + εGa3 + · · · = 2I1 − I2 + εGI 1/21 I2 cos(θ1 + 2θ2) + · · · .
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Note that in this discussion the subscript 2 of H is omitted. The reduced averaged
Hamiltonian is H̄ = Ga3 and since we assume G �= 0 by scaling time again G = 1,
so H̄ = a3.

The geometry of the problem is obtained by considering the intersection of two
surfaces inR3. The first surface, the orbit spaceO, is given by the orbit space equation

a23 + a24 = a1(2a1 − h)2, a1 ≥ 0, 2a1 ≥ h,

for various values of h and the second surface is the reduced averaged Hamiltonian

H̄ = a3 = h̄

for various values of h̄. Near the origin in a-space the orbit space is a paraboloid of
revolution when h < 0 and hence smooth, it is a rotated cusp when h = 0, and it is a
cone when h > 0—see Fig. 1.

Of course H̄ = a3 = constant is just a plane parallel to the a1, a4 coordinate plane.
The flow on the orbit spaces is defined by the equations of motion

ȧ1 = {a1, H̄} = −2a4, ȧ3 = {a3, H̄} = 0, ȧ4 = {a4, H̄} = −a2(4a1 + a2).

Recall that on the orbit space a2 = 2a1 − h. For an equilibrium point one must have
a4 = 0 and a2(4a1 + a2) = 0 and since not both a1 and a2 can be zero or negative
the conditions for an equilibrium are a4 = a2 = 0. But on the orbit space a2 = 0 only
when a1 = h/2 and that only occurs when h ≥ 0.

Look at the flow lines in Fig. 1. The flow lines lie in H̄ = a3 = constant and a4 is
decreasing.

When h = 0 the origin in a-space corresponds to the origin in R
4. There is an

orbit on O tending to the origin as t → +∞ and there is an orbit on O tending to the
origin as t → −∞. These represent a surface of solutions that spiral to the origin as
t → ±∞. Thus the equilibrium point is unstable.

When h > 0 there is an equilibrium (a peak) onO at a1 = h/2, a3 = a4 = 0. This
gives rise to a periodic solution of period T ∼ π for each h ≥ 0. These solutions are
the short periodic family given by Liapunov center theorem. Note that here too there

Fig. 1 O when k = 2
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is an orbit onO tending to the equilibrium as t → ±∞. Thus the solutions in the short
period family are unstable.

When h < 0 there are no equilibria and so all solutions recede far away as t → ±∞.
Thus, there is no long period family.

Only a little more care is needed to show that a4 is a Chetaev function for the full
system. Thus, in the case of 2 : −1 resonance there is only one family of periodic
solutions, the short period family of Liapunov, and it is unstable.

3.2 Resonance 3 : −1

Now consider the 3 : −1 system

H = 3I1 − I2 + ε2

2
(AI 21 + 2BI1 I2 + C I 22 ) + ε2GI 1/21 I 3/22 cos(θ1 + 3θ2),

where A, B,C,G are constants. Introduce the constants D = 1
2 (A + 6B + 9C) and

R = B + 3C .
In KAM theory D is called the twist coefficient. Note that in the present 3 : −1

example the twist coefficient D and the angle coefficient G are both defined at the
same order of ε, i.e., at order ε2. In the previous 2 : −1 example the angle coefficient
is of lower order than the twist coefficient, whereas in the next example k : −1, k ≥ 4
the order is reversed. So we are now looking at the case when the twist and the angle
are competing.

Passing to the averaged system we get

H̄ = Da21 − Rha1 + Ga3

which is defined on the orbit space, O,

a23 + a24 = a1(3a1 − h)3, a1 ≥ 0, 3a1 ≥ h.

Again the geometry of the problem is depicted by the intersection in R3 of the surface
of the orbit space for various values of h and the surfaces of the averaged Hamiltonian
H̄ = h̄ for various values of h̄. Near the origin in a-space the orbit space is smooth
when h < 0, it is a rotated parabola when h = 0 and a rotated cusp when h > 0.
The surface H̄ = h̄ = constant is just a translation of a parabola—translated in the a4
direction.

The associated vector field of H̄ , i.e. the reduced system

ȧ1 = {a1, H̄} = −2Ga4,
ȧ3 = {a3, H̄} = 2a4(2Da1 − Rh),

ȧ4 = {a4, H̄} = −2a3(2Da1 − Rh) − Ga22(9a1 + a2)
= −2a3(2Da1 − Rh) − G(3a1 − h)2(12a1 − h),

gives the precise flow on the orbit space. First find a critical point of these equations
on the orbit space. Clearly a4 = 0 (we consider G �= 0) and so we must find a solution
of the equations
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a23 = a1(3a1 − h)3,

2a3(2Da1 − Rh) + G(3a1 − h)2(12a1 − h) = 0.

Solve the second equation for a3, square it, then substitute in a23 from the first equation,
cancel some terms and expand to get

16(D2 − 27G2)a31 + 8h(27G2 − 2DR)a21 + h2(4R2 − 27G2)a1 + G2h3 = 0.

This is a cubic polynomial in a1 with parameters D,G, R and h, but we can reduce
by one the number of parameters by defining α = D/G, β = R/G and dividing
the cubic polynomial by G2. We seek roots a1 ≥ max{0, h/3}. The number of roots
changes when the resultant of the polynomial with its derivative with respect to a1
vanishes, i.e. when

1024(α2 − 27)(α−6β)2(729 + 108α2+648β2−48β4+8αβ(−81 + 4β2))h6 = 0.

Also the number of critical points of the equations on the orbit space changes when
one root of the cubic polynomial meets the peak at a1 = h/3 when h ≥ 0, i.e. when
after replacing a1 by h/3 in the cubic we get

4

27
(2α − 3β)2h3 = 0.

We will distinguish the cases h < 0, h = 0 and h > 0 and analyze the equilibria and
bifurcations as functions of α and β.

The case h = 0 is simple because the above vanishes and the resultant becomes

16a31(α
2 − 27) = 0.

The only equilibrium is the origin in a-space, which corresponds to the origin in R
4.

It is a peak that changes its stability when crossing the line α2 − 27 = 0. See Fig. 2
for the evolution of the flow.

When h �= 0 we have the two bifurcation diagrams appearing in Figs. 3 and 4. The
equations for the bifurcation lines become

Fig. 2 Evolution of the flow for the 3 : −1 resonance when h = 0
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Fig. 3 Bifurcation diagram and flows for the 3 : −1 resonance when h < 0

�1: α2 − 27 = 0 (red lines);
�2: 729 + 108α2 + 648β2 − 48β4 + 8αβ(−81 + 4β2) = 0 (blue curves);
�3: 2α − 3β = 0 (green curve).

The diagrams are symmetric with respect to the origin. The blue curves correspond
to a saddle-center or extremal bifurcation of critical points thus, an extremal bifurcation
of periodic solutions, see [15]. On the red lines, the leading term of the cubic vanishes,
so only two zeros are possible. The green curve is a bifurcation of the peak.

Case h < 0,Fig.3The surfaceO is smooth, so all the critical points are in the plateau
and correspond to periodic orbits with T ∼ 2π . In Region I the cubic polynomial has
three different positive roots, so there are three critical points on the surface, namely
two centers and one saddle. On the blue curve one of the centers and the saddle collide
giving rise to an extremal critical point that disappears in Region II, where only the
other center survives. In Region IV, only one center and the saddle are present. On the
blue curve, this center and the saddle collide in another extremal critical point thus
there are no critical points in Region III.



The Elusive Liapunov Periodic Solutions 391

Fig. 4 Bifurcation diagram and flows for the 3 : −1 resonance when h > 0

Case h > 0, Fig. 4 Here the peak a1 = h/3 is always an equilibrium. It corresponds
to a periodic orbit in the full system with period close to 2π/3 (the short period
family).

We are interested in roots of the cubic which are bigger than h/3. In Region I the
cubic has two roots that are different from h/3. So, there are three equilibria in total:
the peak and two of plateau-type. The peak is a center, there is one saddle close to the
peak and another center is relatively far from the other two points. On the green curve
the saddle collides with the peak and the situation of Region I is recovered in Region
II. On the blue curve the saddle and the center (that is not the peak) collide and then
they disappear in Region III, where only the peak stays as a center up to the red line.
After crossing the red line, in Region IV, a saddle appears and the peak continues to
be a center.

Notes Markeev [12] and Alfriend [1,2] established that the Lagrange point L4 of
the restricted three body problem is unstable in the 2 : −1 and 3 : −1 cases. Their
proofs cover the general instability cases. A proof based on Chetaev theorem can be
found in [13]. Roels [23] established that there are 1 or 3 long period families in the
3 : −1 case depending on the number of zeros of a certain cubic polynomial. Schmidt
[25] and Henrard [9,10] describe the unfolding of these periodic solutions.



392 K. R. Meyer et al.

3.3 Resonances k : −1, k ≥ 4

Now consider the k : −1 system when k ≥ 4, i.e.,

H = k I1 − I2 + ε2

2
(AI 21 + 2BI1 I2 + C I 22 ) + · · · ,

where A, B,C are constants. Again introduce the constants D = 1
2 (A+ 2kB + k2C)

and R = B + kC . At first we ignore the higher order terms, but they will appear later.
As before D is the twist coefficient. Note that the angle term is not yet included

since it is of higher order. Passing to the averaged system we get

H̄ = Da21 − hRa1,

which is defined on the orbit space, O,

a23 + a24 = a1(ka1 − h)k, a1 ≥ 0, ka1 ≥ h.

Again the geometry of the problem is depicted by the intersection in R3 of the surface
of the orbit space for various values of h and the surfaces of the averaged Hamiltonian
H̄ = h̄ for various values of h̄. Near the origin in a-space the orbit space is smooth
when h < 0 and it is a rotated cusp when h ≥ 0.

The associated vector field of H̄ , the reduced system, on the orbit space is

ȧ1 = {a1, H̄} = 0,
ȧ3 = {a3, H̄} = 2a4(2Da1 − Rh),

ȧ4 = {a4, H̄} = −2a3(2Da1 − Rh),

which gives the precise flow on the orbit space. Note that a1 is an integral, so the flow
curves lie in a1 = constant planes.

When h ≥ 0 the orbit space is a trumpet with a peak at a1 = h/k and this
corresponds to an elliptic orbit with period T ∼ 2π/k and multipliers approximately
1, 1, e2π i/k, e−2π i/k . This is of course the short period family of Liapunov.

When h < 0 the orbit space consists of only plateau points. The orbit space,O, and
the planes a1 = constant defined by the averaged equation are tangent at the origin in
(a1, a3, a4)-space which corresponds to a2 = −h. (For D = 0 and R �= 0 it is the only
tangency point). This is a critical point of the averaged equations on the orbit space
and thus corresponds to a periodic solution with period near 2π . The intersection of
the planes and the orbit space are circles on the orbit space suggesting the orbit is
elliptic. At that point a3, a4 are (non-symplectic) coordinates and the matrix of the
linearized equations is

[
0 −2hR

2hR 0

]

with eigenvalues ±2hRi.
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Thus, if h < 0 and R = B+kC �= 0 there is an elliptic family of periodic solutions
(Roels’ long period family) of the full system of period near 2π with characteristic
multipliers 1, 1, 1 + ε24πhRi + · · · , 1 − ε24πhRi + · · · .

There are other critical points on the orbit space when D �= 0. In particular there
are circles with coordinates (a1, a3, a4) that are parameterized by h with

C : a1 = hR

2D
, a23 + a24 = R

(
h

2D

)k+1

(−A − kB)k .

These circles make sense only when the right hand sides are positive.
These circles represent tori filled with periodic solutions. The persistence of these

tori filled with periodic solutions for the full problem cannot be deduced straight-
forwardly since they are not isolated nondegenerate critical points. Using fixed point
methods one can show that at least two periodic solutions persist but the precise num-
ber and nature will depend on higher order terms in the normal form especially the
angle terms.

Natural Centers in the General Case To complete our understanding of the higher
order resonancewewill consider the casewhen k = 4 in detail and refer to the literature
for the similar discussion of the case when k > 4. To find the periodic solutions on
these tori we must include the angle term, so consider

H = 4I1 − I2 + ε2

2
(AI 21 + 2BI1 I2 + C I 22 ) + ε3Ga3 + · · · ,

with G �= 0. The averaged system is given by

H̄ = Da21 − hRa1 + εGa3,

and the associated vector field of H̄

ȧ1 = {a1, H̄} = −2εGa4,
ȧ3 = {a3, H̄} = 2a4(2Da1 − Rh),

ȧ4 = {a4, H̄} = −2a3(2Da1 − Rh) − εGa32(16a1 + a2)
= −2a3(2Da1 − Rh) − εG(4a1 − h)3(20a1 − h).

Let us find the critical points of these equations on the orbit space. Since G �= 0 we
must have a4 = 0 and so the orbit space equation is a23 = a1(4a1 − h)4. Therefore,
we must solve

a23 − a1(4a1 − h)4 = 0,

−2a3(2Da1 − Rh) − εG(4a1 − h)3(20a1 − h) = 0.

To eliminate a3 we can solve the second equation for a3, square it, then substitute into
the first equation and simplify; or we can just eliminate a3 by computing the resultant
of the two polynomials given by the left-hand side of the equations. The resultant is
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Res(a1) = (4a1 − h)4
(
4a1(2Da1 − hR)2 − ε2G2(4a1 − h)2(20a1 − h)2

)
.

Thus, the values of a1 corresponding to the possible critical points have to satisfy
Res(a1) = 0 and a1 ≥ max{0, h/4}.

First we find the solution a1 = h/4 (for h ≥ 0) which gives the short period family
discussed above. Now we look for roots of the long factor of the resultant. First set
ε = 0 in this factor to get a1 = 0, and a1 = hR/(2D). The root a1 = 0 gives Roels’
long period family already discussed, so we look at the case a1 = hR/(2D) in more
detail.

To this end set a1 = hR/(2D) + εη + · · · and insert it in the resultant. We obtain
two specific values for η namely

η∓ = ∓hGZ
(D − 10R)

4D2

√
h

2DR
,

where Z = A + 4B. Henceforth, assume hDR > 0 to assure that η± are real. When
Z �= 0 (i.e., D �= 2R), D �= 10R and G �= 0 there are two different values of η while
when Z = 0 or D = 10R there is only one value of η and this would correspond to
bifurcation lines as we will see. Finally when hDR < 0 there are no real values for η.

For a3 we get two values after replacing in the second equation of the approximation
obtained for a1. Thus, after collecting the intermediate results we end up with two
approximate critical points

a1 = hR

2D
∓ εhGZ

(D − 10R)

4D2

√
h

2DR
,

a3 = ±h2Z2

4D2

√
hR

2D
+ εh3GZ2 (D − 10R)

2D4 ,

a4 = 0.

The upper signs in the expressions of a1 and a3 correspond to one critical point, say
P3, whereas the lower ones correspond to the other critical point, say P4.

Let us describe the bifurcations as functions of the parameters h, D, R,G and ε.
In fact, as in the 3 : −1 analysis we can reduce the number of parameters by defining
α = D/G and β = R/G. The bifurcations take place when the last factor of Res(a1)
has a multiple valid root or when one of its roots is 0 or h/4. The expression of the
last factor of Res(a1) as a function of α and β after dividing by G2 is:

4a1(2αa1 − hβ)2 − ε2(4a1 − h)2(20a1 − h)2.

The case h = 0 is simple because the polynomial gets:

16a31(α
2 − 400a1ε

2).

When h �= 0 the polynomial has a multiple root when the discriminant of the
polynomial is 0, i.e. when:
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(α − 10β)2(α−2β)2[−8α3β3+3(9α4 − 72α3β − 8α2β2−1440αβ3+3600β4)hε

+1536(9α2 − 100αβ + 180β2)hε
2 − 327,680hε

3] = 0,

where we have defined hε = hε2. When h > 0 a root of Res(a1) is h/4 when α = 2β.
When h < 0 the roots of Res(a1) are never 0. Thus, the bifurcation lines are defined by
the previous discriminant to be 0. In Figs. 5 and 6 we represent the bifurcation planes
in α, β for h > 0 and h < 0, respectively. Both planes are symmetric with respect to
the origin. Let us describe the evolution of the flow and the bifurcations in both cases.

Case h > 0,Fig. 5When starting in Region I there are only two equilibria: the peak,
a1 = h/4, which is linearly and nonlinearly stable, and a plateau that is a saddle. The

Fig. 5 4 : −1 resonance case h > 0: bifurcation plane and evolution of the flow through the regions
determined by the bifurcation lines. The red line (the closest to the green one: α = 2β) is the saddle
connection (color figure online)
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Fig. 6 4 : −1 resonance case h < 0: bifurcation plane and evolution of the flow through the regions
determined by the bifurcation lines. The red line (the one to the left of �1

2) is the saddle connection (color
figure online)

green line corresponds to the bifurcation line α −2β = 0. On the first part of this line,
�1
1, we still have the two equilibria, but the peak is linearly degenerate and nonlinearly

stable. It bifurcates after crossing this line onto Region II. Once in Region II, the
saddle already present in Region I continues and the peak, which is again linearly and
nonlinearly stable has bifurcated to give a new saddle and a new center (see “II Zoom”
in Fig. 5). So, we have four equilibria. Still in this region, when approaching the red
line the energies of the two saddles get closer and on the red line a saddle connection
takes place. In this way, after crossing the red line towards the blue one, the center that
was initially attached to the saddle that is close to the peak, gets attached to the saddle
which comes from Region I and is relatively far from the peak. On the blue line (when
the last factor in the discriminant is zero), a saddle-center bifurcation takes place. It
involves the center that is not the peak and the saddle coming from Region I. Once in
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Region I∗ we recover the situation of Region I: we only have two equilibria: the peak,
which is a center, and a saddle. On the middle part of the green bifurcation line, �2

1
we only have one equilibrium, the peak, that is linearly degenerate and nonlinearly
unstable.

Case h < 0, Fig. 6 The only local bifurcations are of saddle-center type and come
from the last factor in the discriminant to be zero. The surface is smooth and the origin
in a-space, (a1, a2, a3) = (0,−h, 0), is never an equilibrium. Starting in Region I we
have two saddles and two centers. One saddle is relatively far from the origin, whereas
the other saddle and the two centers are very close to it (see “I Zoom” in Fig. 6). On
the red line the two saddles have the same energy, so a saddle connection takes place
(see “Saddle connection” in Fig. 6). Previous to the saddle connection, the center that
is not very close to the origin is attached to the saddle near the origin and after the
saddle connection, this center gets related to the saddle far from the origin (see “B/t
Red and Blue” in Fig. 6). This center and this saddle get closer and closer until a
saddle-center bifurcation occurs on the branch �1

2 of the blue line. Once in Region
II only one center very close to the origin and one saddle are present. On the second
branch of the blue line, �2

2, the center and the saddle collide in an extremal critical
point that disappears once in Region III. There are no equilibria in this region. If we
cross from Region I to Region II∗ through �3

2 it is the center and the saddle that are
very close to the origin that collide in an extremal critical point (see “�3

2 Zoom”) that
disappears once in Region II∗. In this region only the other saddle and the other center
remain and we recover the situation of Region II.

Notes Palmore found numerically that in certain situations in the restricted problem
there were two more long period families which he called natural centers and one
was stable and one was unstable. Meyer and Palmore [16] proved their existence
by a topological argument and Schmidt [25] established their existence and stability
analytically.

3.4 Resonance 1 : −1

We place the 1 : −1 at the end because the preliminary work is slightly different. We
start with a Hamiltonian matrix A that has eigenvalues ±i with multiplicity two and
A is not diagonalizable. The standard normal form for the Hamiltonian is

H = H1 = x2y1 − x1y2 + δ

2
(x21 + x22 )

where δ = ±1. Again for this discussion we drop the subscript 1. The linear system
of equations is ż = Az, where

A =

⎡

⎢⎢
⎣

0 1 0 0
−1 0 0 0
−δ 0 0 1
0 −δ −1 0

⎤

⎥⎥
⎦ , z =

⎡

⎢⎢
⎣

x1
x2
y1
y2

⎤

⎥⎥
⎦ .
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The characteristic polynomial of A is p(λ) = (λ2 +1)2 with repeated eigenvalues ±i.
But not all solutions are 2π periodic, since there are secular terms like t sin t, t cos t .

The four invariants usually associated with this Hamiltonian are just

b1 = x2y1 − x1y2, b2 = 1

2
(x21 + x22 ), b3 = 1

2
(y21 + y22 ), b4 = x1y1 + x2y2,

with the constraint

b21 + b24 = 4 b2b3.

The nonzero Poisson brackets are

{b2, b3}=−{b3, b2}= b4, {b2, b4} = −{b4, b2}=2b2, {b4, b3}=−{b3, b4}=2b3.

Consider the nonlinear Hamiltonian systemHwhich hasH = b1+δb2 as its quadratic
part and has been normalized to Sokol’skii normal form through the fourth order terms
in the rectangular coordinates, i.e. let

H = b1 + δb2 + (αb21 + 2βb1b3 + γ b23) + · · · ,

where the ellipsis stands for terms that are at least fifth order.
Use the Meyer–Schmidt scaling

x1 → ε2x1, x2 → ε2x2,

y1 → εy1, y2 → εy2,

which is symplectic with multiplier ε−3, so the Hamiltonian becomes

H = b1 + ε(δb2 + γ b23) + O(ε2).

Now with ε = 0 all solutions are periodic with least period 2π , so the orbit space is a
manifold and we use regular reduction. Let

H = b1 + ε(δb2 + γ b23)

play the role of the averaged system.
The orbit space, O, is specified by the invariants subject to the constraint and

Hε=0 = b1 = h.

Thus the equation of the orbit space is

h2 + b24 = 4 b2 b3,
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Fig. 7 Flows in the 1 : −1 resonance. On the left δγ > 0. On the right δγ < 0

which is a two sheeted hyperboloid in (b2, b3, b4)-space when h �= 0, but we only
look at the sheet where b2 > 0, b3 > 0. This one sheet represents both h > 0 and
h < 0.

The reduced averaged Hamiltonian is

H̄ = δb2 + γ b23 = h̄.

The Hamiltonian H̄ has a critical point on the orbit space if b4 = 0 and γ b3 = δb2
and so a critical point exists if γ h2 = δb22. Hence there is a critical point of H̄ on O

if and only if δ and γ have the same sign, see Fig. 7.
The equations of motion are

ḃ2 = {b2, H̄} = 2γ b3b4, ḃ3 = {b3, H̄} = 0, ḃ4 = {b4, H̄} = −2δb2 + 4γ b23.

Thus b3 is a positive constant, say b3 = p, and then the equations in b2, b4 stand for
a harmonic oscillator when δγ > 0.

Thus, in the case of 1 : −1 resonance there are two families of nearly 2π elliptic
periodic solutions emanating from the origin when δγ > 0. One family exists for
H > 0 and one for H < 0. There are no nearby 2π periodic solutions when δγ < 0.

The designation short and long period family is meaningless in this case, it is better
to distinguish the two families by the sign of H.

Notes In 1941 Buchanan [3] provided a proof by power series of the existence of
families of periodic solutions in the restricted three body problem at the Lagrange
point L4 with mass ratio parameter μ1 provided the sign of a certain coefficient in the
series expansion of the Hamiltonian is of the right sign. This is a 1 : −1 resonance
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problem. Deprit and Henrard computed that term in [7] thus effectively computing γ

in the restricted problem. These early papers did not use normal form methods.
The proof of the existence of such periodic solutions is a byproduct of theHamilton-

Hopf bifurcation analysis as found in [13,17]. For a straightforward proof using normal
form methods see Appendix C of [14].
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